1
|
Tucci M, Fernández-Verdejo D, Resitano M, Ciacia P, Guisasola A, Blánquez P, Marco-Urrea E, Cruz Viggi C, Matturro B, Crognale S, Aulenta F. Toluene-driven anaerobic biodegradation of chloroform in a continuous-flow bioelectrochemical reactor. CHEMOSPHERE 2023; 338:139467. [PMID: 37437617 DOI: 10.1016/j.chemosphere.2023.139467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Subsurface co-contamination by multiple pollutants can be challenging for the design of bioremediation strategies since it may require promoting different and often antagonistic degradation pathways. Here, we investigated the simultaneous degradation of toluene and chloroform (CF) in a continuous-flow anaerobic bioelectrochemical reactor. As a result, 47 μmol L-1 d-1 of toluene and 60 μmol L-1 d-1 of CF were concurrently removed, when the anode was polarized at +0.4 V vs. Standard Hydrogen Electrode (SHE). Analysis of the microbial community structure and key functional genes allowed to identify the involved degradation pathways. Interestingly, when acetate was supplied along with toluene, to simulate the impact of a readily biodegradable substrate on process performance, toluene degradation was adversely affected, likely due to competitive inhibition effects. Overall, this study proved the efficacy of the developed bioelectrochemical system in simultaneously treating multiple groundwater contaminants, paving the way for the application in real-world scenarios.
Collapse
Affiliation(s)
- Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy
| | - David Fernández-Verdejo
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy
| | - Pamela Ciacia
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ernest Marco-Urrea
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, RM, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
2
|
Táncsics A, Banerjee S, Soares A, Bedics A, Kriszt B. Combined Omics Approach Reveals Key Differences between Aerobic and Microaerobic Xylene-Degrading Enrichment Bacterial Communities: Rhodoferax─A Hitherto Unknown Player Emerges from the Microbial Dark Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2846-2855. [PMID: 36752053 DOI: 10.1021/acs.est.2c09283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Among monoaromatic hydrocarbons, xylenes, especially the ortho and para isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus Pseudomonas were the most dominant in both types of enrichments, the Rhodoferax and Azovibrio lineages were only abundant under microaerobic conditions, while Sphingobium entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a Rhodoferax-related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains Sphingobium sp. AS12 and Pseudomonas sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus Sphingobium are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - André Soares
- Group for Aquatic Microbial Ecology, Institute for Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| |
Collapse
|
3
|
Bacosa HP, Cayabo GDB, Inoue C. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microbial consortium from paddy rice soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:617-622. [PMID: 37122120 DOI: 10.1080/10934529.2023.2204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widely spread pollutants in the environment including the agricultural soil. PAH degradation by indigenous bacteria is an effective and economical means to remove these pollutants from the environment. Here, we report a bacterial consortium (Pdy-1) isolated from paddy rice soil in northern Japan able to degrade polycyclic aromatic hydrocarbons (PAHs) at high rates. Pdy-1 was incubated with a mixture of PAH compounds (fluorene, phenanthrene, and pyrene) in Bushnell Haas Medium at a final concentration of 100 mg/L each. PDY-1 degraded 100% of fluorene, 95% of phenanthrene, and 52% of pyrene in 5 days. Phenanthrene and pyrene were completely degraded at 10 d and 15 d, respectively. Cloning of the 16S rRNA gene revealed that the consortium was composed of 40% Achromobacter and 7% each of Castelaniella, Rhodanobacter, and Hypomicrobium. Comamonas, Ferrovibrio, Terrimonas, Bordetella, Rhizobium, and Pseudonocardia were also detected. PCR-DGGE showed the dynamics of the consortium during the incubation period. Real-time PCR revealed that PAH degrading genes such as the gram-positive ring dihydroxylating genes (PAH-RDH) and pyrene dioxygenase (nidA) were most abundant at day 5 when the rapid biodegradation of the PAHs was observed. This study improves our understanding on dynamics and characteristics of an effective PAH-degrading bacterial consortium from paddy rice soil.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Environmental Science Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan, Philippines
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Genese Divine B Cayabo
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Palawan, Philippines
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Nguyen PM, Arslan M, Kappelmeyer U, Mäusezahl I, Wiessner A, Müller JA. Spatial characterization of microbial sulfur cycling in horizontal-flow constructed wetland models. CHEMOSPHERE 2022; 309:136605. [PMID: 36179921 DOI: 10.1016/j.chemosphere.2022.136605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective technology for wastewater treatment in which plant-microorganism relationships play a key role in transforming pollutants. However, there is little knowledge about the spatial organization of microbial metabolic processes in CWs. Here we show the structuring of microbial transformation of inorganic sulfur compounds (ISCs) in two horizontal subsurface-flow CW models fed with sulfate-rich artificial wastewater. One model was fully planted with Juncus effusus, while the other was planted only in the middle to investigate further the influence of the plant on ISC transformations. Chemical analyses revealed that sulfate reduction and re-oxidation of sulfide/sulfur occurred simultaneously along the flow paths, with net reduction at the beginning of the CWs, where organic carbon from the influent was still present, and predominant re-oxidation in the downstream sections. Porewater ISC concentrations hardly differed between the two CWs. However, analysis of the bacterial communities showed that sulfur cycling in the fully planted CW was much higher. Total bacterial abundances were about 50 times and 3-4 orders of magnitude higher in the rhizoplane than in porewater and on gravel, respectively, as quantified by qPCR determination of the 16S rRNA gene. Sequencing of 16S rRNA gene amplicons revealed that bacterial communities on the roots and in the porewater differed substantially, apparently a consequence of the fluxes of oxygen and exudates from the roots. Furthermore, we observed partitioning of ISC transforming bacteria into different niches of the CWs. The results of the chemical and microbial analyses collectively support that extensive sulfur cycling occurred in the rhizospheres of the CW models. The study is relevant to the treatment of sulfur-containing wastewater and the elucidation of microbial communities involved in biogeochemical activities to improve water quality.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Muhammad Arslan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Arndt Wiessner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek 2022; 115:1113-1128. [PMID: 35841500 PMCID: PMC9363352 DOI: 10.1007/s10482-022-01759-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).
Collapse
|
6
|
Torres-Beltrán M, Vargas-Gastélum L, Magdaleno-Moncayo D, Riquelme M, Herguera-García JC, Prieto-Davó A, Lago-Lestón A. The metabolic core of the prokaryotic community from deep-sea sediments of the southern Gulf of Mexico shows different functional signatures between the continental slope and abyssal plain. PeerJ 2021; 9:e12474. [PMID: 34993013 PMCID: PMC8679910 DOI: 10.7717/peerj.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Marine sediments harbor an outstanding level of microbial diversity supporting diverse metabolic activities. Sediments in the Gulf of Mexico (GoM) are subjected to anthropic stressors including oil pollution with potential effects on microbial community structure and function that impact biogeochemical cycling. We used metagenomic analyses to provide significant insight into the potential metabolic capacity of the microbial community in Southern GoM deep sediments. We identified genes for hydrocarbon, nitrogen and sulfur metabolism mostly affiliated with Alpha and Betaproteobacteria, Acidobacteria, Chloroflexi and Firmicutes, in relation to the use of alternative carbon and energy sources to thrive under limiting growth conditions, and metabolic strategies to cope with environmental stressors. In addition, results show amino acids metabolism could be associated with sulfur metabolism carried out by Acidobacteria, Chloroflexi and Firmicutes, and may play a crucial role as a central carbon source to favor bacterial growth. We identified the tricarboxylic acid cycle (TCA) and aspartate, glutamate, glyoxylate and leucine degradation pathways, as part of the core carbon metabolism across samples. Further, microbial communities from the continental slope and abyssal plain show differential metabolic capacities to cope with environmental stressors such as oxidative stress and carbon limiting growth conditions, respectively. This research combined taxonomic and functional information of the microbial community from Southern GoM sediments to provide fundamental knowledge that links the prokaryotic structure to its potential function and which can be used as a baseline for future studies to model microbial community responses to environmental perturbations, as well as to develop more accurate mitigation and conservation strategies.
Collapse
Affiliation(s)
- Mónica Torres-Beltrán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Lluvia Vargas-Gastélum
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Dante Magdaleno-Moncayo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Juan Carlos Herguera-García
- Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Alejandra Prieto-Davó
- Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
7
|
Zhang Y, Meng C, He Y, Wang X, Xue G. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148042. [PMID: 34323827 DOI: 10.1016/j.scitotenv.2021.148042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The cell lysis-cryptic growth was implemented by Fenton oxidation in sequencing batch reactor. Optimizing sludge lysis condition could maximize the release of nutrients and sludge disintegration degree. After Fenton oxidation, the extracellular polymeric substance was obviously destroyed with the sludge average particle decreased from 64 μm to 36 μm. After 5% of the settled sludge in sequencing batch reactor (SBR) was oxidized by Fenton and then returned to SBR, the mixed liquor suspended solids (MLSS) decreased by 19.3% at the end of 35 days operation, the average mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS) was promoted by 13.3% during the entire operation. Returning lysed sludge had no significant influence on the organics and nitrogen removal, but the total phosphorus removal was distinctly enhanced by generating FePO4 precipitate. Additionally, returning lysed sludge suppressed nitrifying bacteria and promoted denitrifying bacteria slightly. Consequently, the cell lysis-cryptic growth for reducing sludge source discharge from wastewater biological treatment could be achieved on the premise of ensuring effluent quality.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengcheng Meng
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Tianjin United Environmental Protection Engineering Design Co., Ltd., Tianjin 300110, China
| | - Yueling He
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaonuan Wang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai 201620, China.
| |
Collapse
|
8
|
Révész F, Farkas M, Kriszt B, Szoboszlay S, Benedek T, Táncsics A. Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: enrichment, isolation and whole-genome analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31130-31142. [PMID: 32474783 PMCID: PMC7392937 DOI: 10.1007/s11356-020-09277-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 04/12/2023]
Abstract
The primary aims of this present study were to evaluate the effect of oxygen limitation on the bacterial community structure of enrichment cultures degrading either benzene or toluene and to clarify the role of Malikia-related bacteria in the aerobic degradation of BTEX compounds. Accordingly, parallel aerobic and microaerobic enrichment cultures were set up and the bacterial communities were investigated through cultivation and 16S rDNA Illumina amplicon sequencing. In the aerobic benzene-degrading enrichment cultures, the overwhelming dominance of Malikia spinosa was observed and it was abundant in the aerobic toluene-degrading enrichment cultures as well. Successful isolation of a Malikia spinosa strain shed light on the fact that this bacterium harbours a catechol 2,3-dioxygenase (C23O) gene encoding a subfamily I.2.C-type extradiol dioxygenase and it is able to degrade benzene, toluene and ethylbenzene under clear aerobic conditions. While quick degradation of the aromatic substrates was observable in the case of the aerobic enrichments, no significant benzene degradation, and the slow degradation of toluene was observed in the microaerobic enrichments. Despite harbouring a subfamily I.2.C-type C23O gene, Malikia spinosa was not found in the microaerobic enrichments; instead, members of the Pseudomonas veronii/extremaustralis lineage dominated these communities. Whole-genome analysis of M. spinosa strain AB6 revealed that the C23O gene was part of a phenol-degrading gene cluster, which was acquired by the strain through a horizontal gene transfer event. Results of the present study revealed that bacteria, which encode subfamily I.2.C-type extradiol dioxygenase enzyme, will not be automatically able to degrade monoaromatic hydrocarbons under microaerobic conditions.
Collapse
Affiliation(s)
- Fruzsina Révész
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Milán Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary.
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary.
| |
Collapse
|
9
|
The fate of model organic pollutants; 3,5-dimethylphenol and N-phenyl-1-naphthaleneamine in Lake Naivasha wetland, Kenya. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Gafni A, Siebner H, Bernstein A. Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey. WATER RESEARCH 2020; 171:115431. [PMID: 31893553 DOI: 10.1016/j.watres.2019.115431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is a groundwater pollutant that is prevalent worldwide. In contaminated groundwater, TCE can be biodegraded following either reductive dechlorination or aerobic co-metabolic oxidation. However, since the co-metabolic process is not accompanied by indicative and easily detectable transformation products, little is known about its prominence in the environment. To estimate the environmental importance of the oxidative process, a regional groundwater survey was conducted. In this survey, polluted water from 100 wells along the Israeli Coastal Aquifer was sampled. Geochemical data indicated oxic conditions prevailing in most sites. The sampled groundwater was used for microcosm experiments, functional gene analysis, and TCE compound-specific isotope analysis (δ13C and δ37Cl). Enrichments of methane and toluene oxidizers in microcosms indicated the high potential of the indigenous microbial community to co-metabolically oxidize TCE. This was further reinforced by the high abundance of mmoX and PHE functional genes quantified in some of the sites (yet lower abundance of TOD functional gene was found). Finally, compound-specific isotope analysis was used to assess the magnitude of TCE oxidation in practice. Applying the isotopic tool for scattered points on a regional scale demanded the consideration of a wide δ13C range of source TCE, hampering the ability to detect small shifts of a single permil. Thus, despite the high potential for the oxidation process, no evidence was attained for the natural occurrence of the process, and significant isotopic shifts were restricted to actively treated sites only. This limitation should be considered in future regional scale studies, in which no single source is defined.
Collapse
Affiliation(s)
- Almog Gafni
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
11
|
Dziuba MV, Zwiener T, Uebe R, Schüler D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. Environ Microbiol 2020; 22:1603-1618. [PMID: 32079043 DOI: 10.1111/1462-2920.14950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 11/28/2022]
Abstract
The magnetotactic lifestyle represents one of the most complex traits found in many bacteria from aquatic environments and depends on magnetic organelles, the magnetosomes. Genetic transfer of magnetosome biosynthesis operons to a non-magnetotactic bacterium has only been reported once so far, but it is unclear whether this may also occur in other recipients. Besides magnetotactic species from freshwater, the genus Magnetospirillum of the Alphaproteobacteria also comprises a number of strains lacking magnetosomes, which are abundant in diverse microbial communities. Their close phylogenetic interrelationships raise the question whether the non-magnetotactic magnetospirilla may have the potential to (re)gain a magnetotactic lifestyle upon acquisition of magnetosome gene clusters. Here, we studied the transfer of magnetosome gene operons into several non-magnetotactic environmental magnetospirilla. Single-step transfer of a compact vector harbouring >30 major magnetosome genes from M. gryphiswaldense induced magnetosome biosynthesis in a Magnetospirillum strain from a constructed wetland. However, the resulting magnetic cellular alignment was insufficient for efficient magnetotaxis under conditions mimicking the weak geomagnetic field. Our work provides insights into possible evolutionary scenarios and potential limitations for the dissemination of magnetotaxis by horizontal gene transfer and expands the range of foreign recipients that can be genetically magnetized.
Collapse
Affiliation(s)
- Marina V Dziuba
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Theresa Zwiener
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Rene Uebe
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
12
|
Nitz H, Duarte M, Jauregui R, Pieper DH, Müller JA, Kästner M. Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Appl Microbiol Biotechnol 2019; 104:1809-1820. [DOI: 10.1007/s00253-019-10323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 11/24/2022]
|
13
|
Oliva G, Ángeles R, Rodríguez E, Turiel S, Naddeo V, Zarra T, Belgiorno V, Muñoz R, Lebrero R. Comparative evaluation of a biotrickling filter and a tubular photobioreactor for the continuous abatement of toluene. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120860. [PMID: 31302359 DOI: 10.1016/j.jhazmat.2019.120860] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/20/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The negative effects of volatile organic compounds (VOCs) on humans' health and the environment have boosted the enforcement of regulations, resulting in the need of effective and environmentally friendly off-gas treatment technologies. In this work, the synergism between microalgae and bacteria was investigated as a sustainable platform to enhance the biological degradation of toluene, herein selected as a model VOC. An innovative algal-bacterial tubular photobioreactor (TPBR) was systematically compared with a conventional biotrickling filter (BTF). The BTF supported average removal efficiencies close to those obtained in the TPBR (86 ± 9% and 88 ± 4%, respectively) at the highest inlet load (∼23 g m3 h-1) and lowest gas residence time (0.75 min). However, the BTF was more sensitive towards the accumulation of secondary metabolites. In this regard, photosynthetic O2 supplementation (resulting in dissolved oxygen concentrations of ∼7.3 mg O2 L-1) and CO2 consumption by microalgae (which reduced the impact of acidification) enhanced toluene abatement performance and process stability.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Roxana Ángeles
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Elisa Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sara Turiel
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Vincenzo Naddeo
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Tiziano Zarra
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- SEED - Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, Fisciano, SA, Italy
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
14
|
Táncsics A, Farkas M, Horváth B, Maróti G, Bradford LM, Lueders T, Kriszt B. Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans Buc T. Arch Microbiol 2019; 202:421-426. [PMID: 31659381 PMCID: PMC7012976 DOI: 10.1007/s00203-019-01743-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023]
Abstract
Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome sequence of the type strain BucT was revealed. Metatranscriptomic sequence reads, originated from a previous SIP study on microaerobic toluene degradation, were mapped on the genome. The genome (5.68 Mb) had a mean G + C content of 62.5%, 5005 protein coding gene sequences and 80 RNA genes. Annotation predicted that 66 genes were involved in the metabolism of aromatic compounds. Genome analysis revealed the presence of a cluster with genes coding for a multicomponent phenol-hydroxylase system and a complete catechol meta-cleavage pathway. Another cluster flanked by mobile-element protein coding genes coded a partial catechol meta-cleavage pathway including a subfamily I.2.C-type extradiol dioxygenase. Analysis of metatranscriptomic data of a microaerobic toluene-degrading enrichment, containing Z . oleivorans as an active-toluene degrader revealed that a toluene dioxygenase-like enzyme was responsible for the ring-hydroxylation, while enzymes of the partial catechol meta-cleavage pathway coding cluster were responsible for further degradation of the aromatic ring under microaerobic conditions. This further advances our understanding of aromatic hydrocarbon degradation between fully oxic and strictly anoxic conditions.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary.
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary.
| | - Milán Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
- Chair of Ecological Microbiology Bayreuth, Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Balázs Kriszt
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
15
|
Ruan Z, Sun Q, Zhang Y, Jiang JD. Oleisolibacter albus gen. nov., sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2220-2225. [DOI: 10.1099/ijsem.0.003428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Qun Sun
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yanlin Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
16
|
Arslan M, Devisetty UK, Porsch M, Große I, Müller JA, Michalski SG. RNA-Seq analysis of soft rush (Juncus effusus): transcriptome sequencing, de novo assembly, annotation, and polymorphism identification. BMC Genomics 2019; 20:489. [PMID: 31195970 PMCID: PMC6567414 DOI: 10.1186/s12864-019-5886-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Juncus effusus L. (family: Juncaceae; order: Poales) is a helophytic rush growing in temperate damp or wet terrestrial habitats and is of almost cosmopolitan distribution. The species has been studied intensively with respect to its interaction with co-occurring plants as well as microbes being involved in major biogeochemical cycles. J. effusus has biotechnological value as component of Constructed Wetlands where the plant has been employed in phytoremediation of contaminated water. Its genome has not been sequenced. RESULTS In this study we carried out functional annotation and polymorphism analysis of de novo assembled RNA-Seq data from 18 genotypes using 249 million paired-end Illumina HiSeq reads and 2.8 million 454 Titanium reads. The assembly comprised 158,591 contigs with a mean contig length of 780 bp. The assembly was annotated using the dammit! annotation pipeline, which queries the databases OrthoDB, Pfam-A, Rfam, and runs BUSCO (Benchmarking Single-Copy Ortholog genes). In total, 111,567 contigs (70.3%) were annotated with functional descriptions, assigned gene ontology terms, and conserved protein domains, which resulted in 30,932 non-redundant gene sequences. Results of BUSCO and KEGG pathway analyses were similar for J. effusus as for the well-studied members of the Poales, Oryza sativa and Sorghum bicolor. A total of 566,433 polymorphisms were identified in transcribed regions with an average frequency of 1 polymorphism in every 171 bases. CONCLUSIONS The transcriptome assembly was of high quality and genome coverage was sufficient for global analyses. This annotated knowledge resource can be utilized for future gene expression analysis, genomic feature comparisons, genotyping, primer design, and functional genomics in J. effusus.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, Germany.,Institute for Biology V (Environmental Research), RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | | | - Martin Porsch
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle (Saale), Germany.,Core Facility Deep Sequencing, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ivo Große
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Jochen A Müller
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, Germany.
| | - Stefan G Michalski
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
17
|
Zhang B, Xu X, Zhu L. Activated sludge bacterial communities of typical wastewater treatment plants: distinct genera identification and metabolic potential differential analysis. AMB Express 2018; 8:184. [PMID: 30430271 PMCID: PMC6236004 DOI: 10.1186/s13568-018-0714-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the differences in activated sludge microbial communities of different wastewater treatment plants (WWTPs) and understand their metabolic potentials, we sampled sludge from every biological treatment unit of 5 full-scale waste water treatment systems in 3 typical Chinese municipal WWTPs. The microbial communities and overall metabolic patterns were not only affected by influent characteristics but also varied between different biological treatment units. Distinct genera in different wastewater treatment systems were identified. The important microorganisms in domestic sewage treatment systems were unclassified SHA-20, Caldilinea, Dechloromonas, and unclassified genera from Rhodospirilaceae and Caldilineaceae. The important microorganisms in dyeing wastewater treatment systems were Nitrospira, Sphingobacteriales, Thiobacillus, Sinobacteraceae and Comamonadaceae. Compared with the obvious differences in microbial community composition, the metabolic potential showed no significant differences.
Collapse
|
18
|
Benedek T, Szentgyörgyi F, Szabó I, Kriszt B, Révész F, Radó J, Maróti G, Táncsics A. Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32178-32195. [PMID: 30220065 DOI: 10.1007/s11356-018-3096-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/28/2018] [Indexed: 05/14/2023]
Abstract
Due to their high resistance against environmental challenges, bacterial biofilms are ubiquitous and are frequently associated with undesired phenomena in environmental industry (e. g. biofouling). However, because of the high phylogenetic and functional diversity, bacterial biofilms are important sources of biotechnologically relevant microorganisms, e.g. those showing bioremediation potential. In our previous work, the high phylogenetic and metabolic diversity of a clogging biofilm, developed in a simple aromatic hydrocarbon (BTEX)-contaminated groundwater well was uncovered. The determination of relationships between different groups of biofilm bacteria and certain metabolic traits has been omitted so far. Therefore, by setting up new biofilm-based enrichment microcosms, the research goal of the present study was to identify the aerobic/hypoxic BTEX-degrading and/or prolific biofilm-forming bacteria. The initial bacterial community composition as well as temporal dynamics due to the selective enrichment has been determined. The obtained results indicated that the concentration of dissolved oxygen may be a strong selective force on the evolution and final structure of microbial communities, developed in hydrocarbon-contaminated environments. Accordingly, members of the genus Malikia proved to be the most dominant community members of the aerobic BTEX-degrading enrichments. Acidovorax spp. dominated the oxygen-limited/hypoxic setup. During the study, a strain collection of 23 different bacterial species was obtained. Non-pathogenic members of this strain collection, with outstanding biodegradation (e.g. Pseudomonas, Variovorax isolates) and biofilm-forming potential (e.g. Rhizobium), may potentially be applied in the development of biofilm-based semipermeable reactive biobarriers.
Collapse
Affiliation(s)
- Tibor Benedek
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary.
| | - Flóra Szentgyörgyi
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Fruzsina Révész
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary
- Faculty of Agricultural and Economics Studies, Tessedik Campus, Szent István University, Szabadság u. 1-3, Szarvas, H-5530, Hungary
| | - András Táncsics
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| |
Collapse
|
19
|
Vásquez-Piñeros MA, Martínez-Lavanchy PM, Jehmlich N, Pieper DH, Rincón CA, Harms H, Junca H, Heipieper HJ. Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation. BMC Microbiol 2018; 18:108. [PMID: 30189831 PMCID: PMC6127914 DOI: 10.1186/s12866-018-1255-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an important approach to further improvements of biodegradation processes in these treatment systems. RESULTS In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP. The enzyme may also catalyze both monooxygenation reactions during the degradation of benzene. Proteome data led to the identification of catechol meta cleavage pathway enzymes during the growth on ortho DMP, and validated that cleavage of the aromatic rings of 2,5- and 3,5-DMPs does not result in mineralization. In addition, the tolerance of the strain to high concentrations of DMP, especially to 3,4-DMP was higher than that of other reported microorganisms from activated sludge treating phenols. CONCLUSIONS LCW strain was able to degraded complex aromatics compounds. DMPs and benzene are reported for the first time to be degraded by a member of Delftia genus. In addition, LCW degraded DMPs with a first oxidation of the aromatic rings by a phenol hydroxylase, followed by a further meta cleavage pathway. The higher resistance to DMP toxicity, the ability to degrade and transform DMP isomers and the origin as a rhizosphere bacterium from wastewater systems, make LCW a suitable candidate to be used in bioremediation of complex DMP mixtures in CWs systems.
Collapse
Affiliation(s)
- Mónica A Vásquez-Piñeros
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany
| | - Paula M Martínez-Lavanchy
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany.,Technical University of Denmark, Research Data Management - DTU Library, Lyngby, Denmark
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Dietmar H Pieper
- Helmholtz Centre for Infection Research -HZI, Microbial Interaction and Processes Research Group, Braunschweig, Germany
| | - Carlos A Rincón
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Howard Junca
- Microbiomas Research Foundation, Bogotá, Colombia
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany.
| |
Collapse
|
20
|
Wiessner A, Kuschk P, Nguyen PM, Müller JA. The sulfur depot in the rhizosphere of a common wetland plant, Juncus effusus, can support long-term dynamics of inorganic sulfur transformations. CHEMOSPHERE 2017; 184:375-383. [PMID: 28605708 DOI: 10.1016/j.chemosphere.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The sulfur cycle in the rhizosphere of constructed wetlands is frequently interlaced with transformations of carbon and nitrogen. Knowledge about the manifold sulfur transformations may thus aid in improving treatment performance of constructed wetlands. In this study, two laboratory-scale constructed wetland models (planted fixed bed reactors; PFR1 and PFR2) were used to investigate inorganic sulfur transformations at various total loads of sulfate and organic carbon. Sulfate, sulfide and elemental sulfur were the most abundant sulfur compounds detected, thus providing evidence for the simultaneous occurrence of dissimilatory sulfate reduction and sulfide oxidation. This co-occurrence was likely enabled by oxygen micro-gradients in the root-near environment, i.e. aerobic sulfide and elemental sulfur oxidation took place mostly at the roots while sulfate and elemental sulfur reduction occurred in the pore water under reduced redox conditions. The rhizosphere was found to be first sink, then source for sulfur during the course of the experiment. Immobilization of reduced sulfur was triggered by catabolism of organic matter coupled to dissimilatory sulfate reduction and the subsequent partial oxidation of generated sulfide. Good plant status was critical for sulfur deposition in the systems. Without externally provided sulfate the sulfur depot of the rhizosphere was a prolonged source for sulfur, which was remobilized into the pore water. Oscillations between sulfide and sulfur (PFR1) or sulfide and sulfate (PFR2) suggested a dynamic interplay between plants and various microbial guilds, i.e. dissimilatory sulfate and sulfur reducers on one side and sulfide and sulfur oxidizers on the other.
Collapse
Affiliation(s)
- Arndt Wiessner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Peter Kuschk
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Phuong Minh Nguyen
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany; Department of Environmental Technology, Faculty of Environmental Sciences, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
21
|
Martirani-Von Abercron SM, Marín P, Solsona-Ferraz M, Castañeda-Cataña MA, Marqués S. Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microb Biotechnol 2017; 10:1781-1796. [PMID: 28840968 PMCID: PMC5658598 DOI: 10.1111/1751-7915.12842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen‐limiting conditions, we set up enrichment cultures from samples of an oil‐polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate‐reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co‐dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
Collapse
Affiliation(s)
| | - Patricia Marín
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Marta Solsona-Ferraz
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Mayra-Alejandra Castañeda-Cataña
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
22
|
Li CH, Ye C, Hou XP, Chen MH, Zheng XY, Cai XY. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria with tolerance to hypoxic environments. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:581-589. [PMID: 28281889 DOI: 10.1080/10934529.2017.1293991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hypoxic conditions are considerably different from aerobic and anaerobic conditions, and they are widely distributed in natural environments. Many pollutants, including polycyclic aromatic hydrocarbons (PAHs), tend to accumulate in hypoxic environments. However, PAH biodegradation under hypoxic conditions is poorly understood compared with that under obligate aerobic and obligate anaerobic conditions. In the present study, PAH-degrading bacteria were enriched, and their biodegradation rates were tested using a hypoxic station with an 8% oxygen concentration. PAH-degrading bacteria collected from sediments in low-oxygen environments were enriched using phenanthrene (Phe) or pyrene (Pyr) as the sole carbon and energy source. Individual bacterial colonies showing the ability to degrade Phe or Pyr were isolated and identified by 16S rDNA gene sequencing. Morphological and physiological characterizations of the isolated bacterial colonies were performed. The isolated bacteria were observed by scanning electron microscopy (SEM) and were identified as Pseudomonas sp., Klebsiella sp., Bacillus sp., and Comamonas sp. Phylogenetic tree of the isolated PAH-degrading bacteria was also constructed. The biodegradation ability of these bacteria was tested at an initial Phe or Pyr concentration of 50 mg L-1. The biodegradation kinetics were best fit by a first-order rate model and presented regression coefficients (r2) that varied from 0.7728 to 0.9725 (P < 0.05). The half-lives of the PAHs varied from 2.99 to 3.65 d for Phe and increased to 60.3-82.5 d for Pyr. These half-lives were much shorter than those observed under anaerobic conditions but were similar to those observed under aerobic conditions.
Collapse
Affiliation(s)
- Chun-Hua Li
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Chun Ye
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Xiao-Peng Hou
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Ming-Hua Chen
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Xiang-Yong Zheng
- c Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University , Zhejiang , China
| | - Xu-Yi Cai
- b School of Water Resource and Environment, China University of Geosciences , Beijing , China
| |
Collapse
|
23
|
Meyer-Cifuentes I, Martinez-Lavanchy PM, Marin-Cevada V, Böhnke S, Harms H, Müller JA, Heipieper HJ. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model. PLoS One 2017; 12:e0174750. [PMID: 28369150 PMCID: PMC5378359 DOI: 10.1371/journal.pone.0174750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/14/2017] [Indexed: 11/23/2022] Open
Abstract
Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15–1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99%) with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15–1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15–1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15–1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place.
Collapse
Affiliation(s)
- Ingrid Meyer-Cifuentes
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Paula M Martinez-Lavanchy
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
- Technical University of Denmark, Bibliometrics and Data Management, Department for Innovation and Sector Services, Lyngby, Denmark
| | - Vianey Marin-Cevada
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Stefanie Böhnke
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Jochen A Müller
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| |
Collapse
|
24
|
Sánchez O. Constructed Wetlands Revisited: Microbial Diversity in the -omics Era. MICROBIAL ECOLOGY 2017; 73:722-733. [PMID: 27832305 DOI: 10.1007/s00248-016-0881-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Constructed wetlands (CWs) constitute an interesting alternative option to conventional systems for wastewater treatment. This technology is based on the utilization of the concerted activity of microorganisms for the removal of contaminants. Consequently, knowledge on the microbial assemblages dwelling CWs and the different environmental factors which can alter their activities is crucial for understanding their performance. In the last decades, the use of molecular techniques to characterize these communities and more recently, application of -omics tools, have broaden our view of microbial diversity and function in wastewater microbiology. In this manuscript, a review of the current knowledge on microbial diversity in CWs is offered, placing particular emphasis on the different molecular studies carried out in this field. The effect of environmental conditions, such as plant species, hydraulic design, water depth, organic carbon, temperature and substrate type on prokaryotic communities has been carefully revised, and the different studies highlight the importance of these factors in carbon, nitrogen and sulfur cycles. Overall, the novel -omics open a new horizon to study the diversity and ecophysiology of microbial assemblages and their interactions in CWs, particularly for those microorganisms belonging to the rare biosphere not detectable with conventional molecular techniques.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
25
|
Michael E, Gomila M, Lalucat J, Nitzan Y, Pechatnikov I, Cahan R. Proteomic Assessment of the Expression of Genes Related to Toluene Catabolism and Porin Synthesis in Pseudomonas stutzeri ST-9. J Proteome Res 2017; 16:1683-1692. [PMID: 28276695 DOI: 10.1021/acs.jproteome.6b01044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The organization and expression of Pseudomonas stutzeri ST-9 genes related to toluene catabolism and porin synthesis was investigated. Toluene-degrading genes were found to be localized in the chromosome close to a phage-type integrase. A regulatory gene and 21 genes related to an aromatics degradation pathway are organized as a putative operon. These proteins are upregulated in the presence of toluene. Fourteen outer membrane proteins were identified as porins in the ST-9 genome. The identified porins showed that the main detected porins are related to the OmpA and OprD superfamilies. The percentage of porins in the outer membrane protein fraction, as determined by mass spectrometry, was 73% and 54% when the cells were cultured with toluene and with glucose, respectively. Upregulation of OmpA and downregulation of OprD occurred in the presence of toluene. A porin fraction (90% OprD) from both cultures was isolated and examined as a toluene uptake system using the liposome-swelling assay. Liposomes were prepared with the porin fraction from a culture that was grown on toluene (T-proteoliposome) or glucose (G-proteoliposome). There was no significant difference in the permeability rate of the different solutes through the T-proteoliposome and the G-proteoliposome.
Collapse
Affiliation(s)
- Esti Michael
- Department of Chemical Engineering, Ariel University , Ariel, 40700, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, 52900, Israel
| | - Margarita Gomila
- Microbiology, Biology Department, and IMEDEA, (CSIC-UIB) University of the Balearic Islands , Palma de Mallorca, 07122, Spain
| | - Jorge Lalucat
- Microbiology, Biology Department, and IMEDEA, (CSIC-UIB) University of the Balearic Islands , Palma de Mallorca, 07122, Spain
| | - Yeshayahu Nitzan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, 52900, Israel
| | - Izabella Pechatnikov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, 52900, Israel
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University , Ariel, 40700, Israel
| |
Collapse
|
26
|
Microbial Community Assessment in Wetlands for Water Pollution Control: Past, Present, and Future Outlook. WATER 2016. [DOI: 10.3390/w8110503] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Delgado-Balbuena L, Bello-López JM, Navarro-Noya YE, Rodríguez-Valentín A, Luna-Guido ML, Dendooven L. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils. PLoS One 2016; 11:e0160991. [PMID: 27727277 PMCID: PMC5058544 DOI: 10.1371/journal.pone.0160991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the effect of application of carrot residue, earthworms or the surfactant on the bacterial community structure was more accentuated in the arable soil than in the pasture soil. It was found that removal of anthracene was not linked to changes in the bacterial community structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, D.F., Mexico
| |
Collapse
|
28
|
Wang P, Zhang H, Zuo J, Zhao D, Zou X, Zhu Z, Jeelani N, Leng X, An S. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter. Sci Rep 2016; 6:33600. [PMID: 27646687 PMCID: PMC5028706 DOI: 10.1038/srep33600] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.
Collapse
Affiliation(s)
- Penghe Wang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, P. R. China
| | - Hui Zhang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
| | - Jie Zuo
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
| | - Dehua Zhao
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
| | - Xiangxu Zou
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
| | - Zhengjie Zhu
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, P. R. China
| | - Nasreen Jeelani
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
| | - Xin Leng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, P. R. China
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, P. R. China
| |
Collapse
|
29
|
Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 2016; 100:7361-76. [DOI: 10.1007/s00253-016-7709-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
30
|
Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism. Appl Environ Microbiol 2016; 82:4126-4132. [PMID: 27129963 DOI: 10.1128/aem.00493-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem.
Collapse
|
31
|
Heinaru E, Naanuri E, Grünbach M, Jõesaar M, Heinaru A. Functional redundancy in phenol and toluene degradation in Pseudomonas stutzeri strains isolated from the Baltic Sea. Gene 2016; 589:90-98. [PMID: 27185632 DOI: 10.1016/j.gene.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
In the present study we describe functional redundancy of bacterial multicomponent monooxygenases (toluene monooxygenase (TMO) and toluene/xylene monooxygenase (XylAM) of TOL pathway) and cooperative genetic regulation at the expression of the respective catabolic operons by touR and xylR encoded regulatory circuits in five phenol- and toluene-degrading Pseudomonas stutzeri strains. In these strains both toluene degradation pathways (TMO and Xyl) are active and induced by toluene and phenol. The whole genome sequence of the representative strain 2A20 revealed the presence of complete TMO- and Xyl-upper pathway operons together with two sets of lower catechol meta pathway operons, as well as phenol-degrading operon in a single 292,430bp contig. The much lower GC content and analysis of the predicted ORFs refer to the plasmid origin of the approximately 130kb region of this contig, containing the xyl, phe and tou genes. The deduced amino acid sequences of the TMO, XylA and the large subunit of phenol monooxygenase (LmPH) show 98-100% identity with the respective gene products of the strain Pseudomonas sp. OX1. In both strains 2A20 and OX1 the meta-cleavage pathways for catechol degradation are coded by two redundant operons (phe and xyl). We show that in the strain 2A20 TouR and XylR are activated by different effector molecules, phenol and toluene, respectively, and they both control transcription of the xyl upper, tou (TMO) and phe catabolic operons. Although the growth parameters of redundant strains did not show advantage at toluene biodegradation, the functional redundancy could provide better flexibility to the bacteria in environmental conditions.
Collapse
Affiliation(s)
- Eeva Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Eve Naanuri
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | - Maarja Grünbach
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Ain Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
32
|
Benedek T, Táncsics A, Szabó I, Farkas M, Szoboszlay S, Fábián K, Maróti G, Kriszt B. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9019-9035. [PMID: 26825521 DOI: 10.1007/s11356-016-6128-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.
Collapse
Affiliation(s)
- Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary.
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Milán Farkas
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Krisztina Fábián
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged, 6726, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| |
Collapse
|
33
|
Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen JL, Hettich RL, Seifert J, Nielsen PH. Enhancing metaproteomics--The value of models and defined environmental microbial systems. Proteomics 2016; 16:783-98. [PMID: 26621789 DOI: 10.1002/pmic.201500305] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022]
Abstract
Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin von Bergen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.,Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, USA
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L, Duarte M, Pieper DH, von Bergen M, Müller JA, Heipieper HJ, Jehmlich N. In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environ Microbiol 2016; 18:1176-86. [PMID: 26616584 DOI: 10.1111/1462-2920.13133] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022]
Abstract
In constructed wetlands, organic pollutants are mainly degraded via microbial processes. Helophytes, plants that are commonly used in these systems, provide oxygen and root exudates to the rhizosphere, stimulating microbial degradation. While the treatment performance of constructed wetlands can be remarkable, a mechanistic understanding of microbial degradation processes in the rhizosphere is still limited. We investigated microbial toluene removal in a constructed wetland model system combining 16S rRNA gene sequencing, metaproteomics and (13) C-toluene in situ protein-based stable isotope probing (protein-SIP). The rhizospheric bacterial community was dominated by Burkholderiales and Rhizobiales, each contributing about 20% to total taxon abundance. Protein-SIP data revealed that the members of Burkholderiaceae, the proteins of which showed about 73% of (13) C-incorporation, were the main degraders of toluene in the planted system, while the members of Comamonadaceae were involved to a lesser extent in degradation (about 64% (13) C-incorporation). Among the Burkholderiaceae, one of the key players of toluene degradation could be assigned to Ralstonia pickettii. We observed that the main pathway of toluene degradation occurred via two subsequent monooxygenations of the aromatic ring. Our study provides a suitable approach to assess the key processes and microbes that are involved in the degradation of organic pollutants in complex rhizospheric ecosystems.
Collapse
Affiliation(s)
- Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - René Benndorf
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Paula M Martinez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anja Taubert
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marcia Duarte
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Aalborg, Denmark
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|