1
|
Leng W, Li Y, Liang X, Yuan L, Li X, Gao R. Engineering of protein glutaminase for highly efficient modification of fish myofibrillar protein through structure-based and computational-aided strategy. Food Chem 2024; 461:140845. [PMID: 39154467 DOI: 10.1016/j.foodchem.2024.140845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Protein glutaminase (PG; EC 3.5.1.44) is a class of food-grade enzyme with the potential to significantly improve protein functionality. However, its low catalytic activity and stability greatly hindered industrial application. In this study, we employed structural-based engineering and computational-aided design strategies to target the engineering of protein glutaminase PG5, which led to the development of a combinatorial mutant, MT8, exhibiting a specific activity of 31.1 U/mg and a half-life of 216.2 min at 55 °C. The results indicated that the flexible region in MT8 shifted from the C-terminus to the N-terminus, with increased N-terminal flexibility positively correlating with its catalytic activity. Additionally, MT8 notably boosted fish myofibrillar proteins (MPs) solubility under the absence of NaCl conditions and enhanced their foaming and emulsifying properties. Key residues like Asp31, Ser72, Asn121, Asp471, and Glu485 were crucial for maintaining PG5-myosin interaction, with Ser72 and Asn121 making significant energy contributions.
Collapse
Affiliation(s)
- Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Liang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Balasubramanian S, Køhler JB, Jers C, Jensen PR, Mijakovic I. Exploring the secretome of Corynebacterium glutamicum ATCC 13032. Front Bioeng Biotechnol 2024; 12:1348184. [PMID: 38415189 PMCID: PMC10896948 DOI: 10.3389/fbioe.2024.1348184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The demand for alternative sources of food proteins is increasing due to the limitations and challenges associated with conventional food production. Advances in biotechnology have enabled the production of proteins using microorganisms, thus prompting the exploration of attractive microbial hosts capable of producing functional proteins in high titers. Corynebacterium glutamicum is widely used in industry for the production of amino acids and has many advantages as a host organism for recombinant protein production. However, its performance in this area is limited by low yields of target proteins and high levels of native protein secretion. Despite representing a challenge for heterologous protein production, the C. glutamicum secretome has not been fully characterized. In this study, state-of-the-art mass spectrometry-based proteomics was used to identify and analyze the proteins secreted by C. glutamicum. Both the wild-type strain and a strain that produced and secreted a recombinant β-lactoglobulin protein were analyzed. A total of 427 proteins were identified in the culture supernatants, with 148 predicted to possess a secretion signal peptide. MS-based proteomics on the secretome enabled a comprehensive characterization and quantification (based on abundance) of the secreted proteins through label-free quantification (LFQ). The top 12 most abundant proteins accounted for almost 80% of the secretome. These are uncharacterized proteins of unknown function, resuscitation promoting factors, protein PS1, Porin B, ABC-type transporter protein and hypothetical membrane protein. The data can be leveraged for protein production by, e.g., utilizing the signal peptides of the most abundant proteins to improve secretion of heterologous proteins. In addition, secretory stress can potentially be alleviated by inactivating non-essential secreted proteins. Here we provide targets by identifying the most abundant, secreted proteins of which majority are of unknown function. The data from this study can thus provide valuable insight for researchers looking to improve protein secretion and optimize C. glutamicum as a host for secretory protein production.
Collapse
Affiliation(s)
- Suvasini Balasubramanian
- Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julie Bonne Køhler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Wang L, Lyu Y, Miao X, Yin X, Zhang C. Enhanced protein glutaminase production from Chryseobacterium proteolyticum combining physico-chemical mutagenesis and resistance screening and its application to soybean protein isolates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4562-4572. [PMID: 36853147 DOI: 10.1002/jsfa.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Protein glutaminase (PG) is a novel protein modification biotechnology that is increasingly being used in the food industry. However, the current level of fermentation of PG-producing strains still does not meet the requirements of industrial production. To obtain the mutant strains with high PG production, the atmospheric and room temperature plasma (ARTP) combined with LiCl chemical mutagen were used in mutagenesis of a PG producing Chryseobacterium proteolyticum 1003. RESULTS A mutant strain (WG15) was successfully obtained based on malonic acid resistance screening after compound mutagenesis of the starting strain C. proteolyticum 1003 using ARTP with LiCl, and it was confirmed to be genetically stable in PG synthesis after 15 generations. The protein glutaminase production of WG15 was 2.91 U mL-1 after optimization of fermentation conditions, which is 48.69% higher than the original strain C. proteolyticum 1003. The PG obtained from fermentation showed good activities in deamidation of soy protein isolate. The solubility and foaming properties of the PG-treated soy protein isolate were significantly increased by 36.50% and 10.03%, respectively, when PG was added at the amount of 100 U mL-1 . In addition, the emulsifying activity and emulsion stability of the treated soy protein isolate were improved by 12.44% and 10.34%, respectively, on the addition of 10 U mL-1 PG. The secondary structure of the soy protein isolate changed after PG treatment, with an increased proportion of glutamate. CONCLUSION The results of the present study indicate that the PG produced by this mutant strain could improve the functional properties of soybean protein isolate and the C. proteolyticum mutant WG15 has great potential in food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Wang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Miao
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Chong Zhang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Functional, structural properties and interaction mechanism of soy protein isolate nanoparticles modified by high-performance protein-glutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zheng N, Long M, Zhang Z, Zan Q, Osire T, Zhou H, Xia X. Protein-Glutaminase Engineering Based on Isothermal Compressibility Perturbation for Enhanced Modification of Soy Protein Isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13969-13978. [PMID: 36281950 DOI: 10.1021/acs.jafc.2c06063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-glutaminase plays a significant role in future food (e.g., plant-based meat) processing as a result of its ability to improve the solubility, foaming, emulsifying, and gel properties of plant-based proteins. However, poor stability, activity, high pressure, and high shear processing environments hinder its application. Therefore, we developed an application-oriented method isothermal compressibility perturbation engineering strategy to improve enzyme performance by simulating the high-pressure environment. The best variant with remarkable improvement in specific activity and half-time, N16M/Q21H/T113E, exhibited a 4.28-fold increase compared to the wild type in specific activity (117.18 units/mg) and a 1.23-fold increase in half-time (472 min), as one of the highest comprehensive performances ever reported. The solubility of the soy protein isolate deaminated by the N16M/Q21H/T113E mutant was 55.74% higher than that deaminated by the wild type, with a tinier particle size and coarser texture. Overall, this strategy has the potential to improve the functional performance of enzymes under complex food processing conditions.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong518172, People's Republic of China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu214122, People's Republic of China
| |
Collapse
|
7
|
L-Glutamine-, peptidyl- and protein-glutaminases: structural features and applications in the food industry. World J Microbiol Biotechnol 2022; 38:204. [PMID: 36002753 DOI: 10.1007/s11274-022-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
L-Glutaminases are enzymes that catalyze the cleavage of the gamma-amido bond of L-glutamine residues, producing ammonia and L-glutamate. These enzymes have several applications in food and pharmaceutical industries. However, the L-glutaminases that hydrolyze free L-glutamine (L-glutamine glutaminases, EC 3.5.1.2) have different structures and properties with respect to the L-glutaminases that hydrolyze the same amino acid covalently bound in peptides (peptidyl glutaminases, EC 3.5.1.43) and proteins (protein-glutamine glutaminase, EC 3.5.1.44). In the food industry, L-glutamine glutaminases are applied to enhance the flavor of foods, whereas protein glutaminases are useful to improve the functional properties of proteins. This review will focus on structural backgrounds and differences between these enzymes, the methodology available to measure the activity as well as strengths and limitations. Production methods, applications, and challenges in the food industry will be also discussed. This review will provide useful information to search and identify the suitable L-glutaminase that best fits to the intended application.
Collapse
|
8
|
Sun M, Gao AX, Ledesma-Amaro R, Li A, Wang R, Nie J, Zheng P, Yang Y, Bai Z, Liu X. Hypersecretion of OmlA antigen in Corynebacterium glutamicum through high-throughput based development process. Appl Microbiol Biotechnol 2022; 106:2953-2967. [PMID: 35435456 DOI: 10.1007/s00253-022-11918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Outer membrane lipoprotein A (OmlA) is a vaccine antigen against porcine contagious pleuropneumonia (PCP), a disease severely affecting the swine industry. Here, we aimed to systematically potentiate the secretory production of OmlA in Corynebacterium glutamicum (C. glutamicum), a widely used microorganism in the food industry, by establishing a holistic development process based on our high-throughput culture platform. The expression patterns, expression element combinations, medium composition, and induction conditions were comprehensively screened or optimized in microwell plates (MWPs), followed by fermentation parameter optimization in a 4 × 1 L parallel fermentation system (CUBER4). An unprecedented yield of 1.01 g/L OmlA was ultimately achieved in a 5-L bioreactor following the scaling-up strategy of fixed oxygen mass transfer coefficient (kLa), and the produced OmlA antigen showed well-protective immunity against Actinobacillus pleuropneumoniae challenge. This result provides a rapid and reliable pipeline to achieve the hyper-production of OmlA, and possibly other recombinant vaccines, in C. glutamicum. KEY POINTS: • Established a holistic development process and applied it to potentiate the secretion of OmlA. • The secretion of OmlA reached an unprecedented yield of 1.01 g/L. • The recombinant OmlA antigen induced efficient protective immunity.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - An Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rongbin Wang
- Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Jianqi Nie
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi, 830000, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Nagano H, Mannen T, Kikuchi Y, Shiraki K. Solution design to extend the pH range of the pH-responsive precipitation of a CspB fusion protein. Protein Expr Purif 2022; 195-196:106091. [PMID: 35338005 DOI: 10.1016/j.pep.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Cell surface protein B (CspB) from Corynebacterium glutamicum has been developed as a reversible pH-responsive tag for protein purification. CspB fusion proteins precipitate at acidic pH, after that they completely dissolve at neutral pH. This property has been used in a non-chromatographic protein purification method named pH-responsive Precipitation-Redissolution of CspB tag Purification (pPRCP). However, it is difficult to apply pPRCP to proteins that are unstable under acidic conditions. In an effort to shift the precipitation pH to a milder range, we investigated the solution conditions of CspB-fused Teriparatide (CspB50TEV-Teriparatide) during the process of pH-responsive precipitation using pPRCP. The purified CspB50TEV-Teriparatide in buffer without additives precipitated at pH 5.3. By contrast, CspB50TEV-Teriparatide in buffer with 0.5 M Na2SO4 precipitated at pH 6.6 because of the kosmotropic effect. Interestingly, the pH at which precipitation occurred was independent of the protein concentration. The precipitated CspB50TEV-Teriparatide was fully redissolved at above pH 8.0 in the presence or absence of salt. The discovery that proteins can be precipitated at a mild pH will allow pPRCP to be applied to acid-sensitive proteins.
Collapse
Affiliation(s)
- Hayato Nagano
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Teruhisa Mannen
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
10
|
Jin Q, Pan F, Hu CF, Lee SY, Xia XX, Qian ZG. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab Eng 2022; 70:102-114. [DOI: 10.1016/j.ymben.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
11
|
Zhang G, Ma S, Liu X, Yin X, Liu S, Zhou J, Du G. Protein-glutaminase: Research progress and prospect in food manufacturing. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Yin X, Zhang G, Zhou J, Li J, Du G. Combinatorial engineering for efficient production of protein-glutaminase in Bacillus subtilis. Enzyme Microb Technol 2021; 150:109863. [PMID: 34489022 DOI: 10.1016/j.enzmictec.2021.109863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Protein-glutaminase (EC 3.5.1.44, PG) converts protein glutamine residues in proteins and peptides into glutamic acid residue, and markedly improves the solubility, emulsification, and foaming properties of food proteins. However, the source bacteria, Chryseobacterium proteolyticum, have low enzyme production ability, inefficient genetic operation, and high production cost. Therefore, it is critical to establish an efficient expression system for active PG. Here, combinatorial engineering was developed for high-yield production of PG in Bacillus subtilis. First, we evaluated different B. subtilis strains for PG self-activation. Then, combinatorial optimization involving promoters, signal peptides, and culture medium was applied to produce active recombinant PG in a B. subtilis expression system. Through combinatorial engineering, PG enzyme activity reached 3.23 U/mL in shaken-flask cultures. Active PG with the yield of 7.07 U/mL was obtained at 40 h by the PSecA-YdeJ combination in fed-batch fermentation, which is the highest yield of PG in existing reports.
Collapse
Affiliation(s)
- Xinxin Yin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Jeon EJ, Choi JW, Cho MS, Jeong KJ. Enhanced production of neoagarobiose from agar with Corynebacterium glutamicum producing exo-type and endo-type β-agarases. Microb Biotechnol 2021; 14:2164-2175. [PMID: 34310855 PMCID: PMC8449658 DOI: 10.1111/1751-7915.13899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
Neoagarobiose (NA2) derived from agar marine biomass is a rare reagent that acts as an anti-melanogenesis reagent and moisturizer. Here, for the economical manufacturing of NA2, we developed the co-secretory production system of endo-type β-agarases (DagA) and exo-type β-agarases (EXB3) in Corynebacterium glutamicum. For this purpose, we first developed a secretory system of DagA via Tat pathway. To improve the secretion efficiency, we coexpressed two Tat pathway components (TatA and TatC), and to improve the purity of secreted DagA in the culture supernatant, two endogenous protein genes (Cg2052 and Cg1514) were removed. Using the engineered strain (C. glutamicum SP002), we confirmed that DagA as high as 1.53 g l-1 was successfully produced in the culture media with high purity (72.7% in the supernatant protein fraction). Next, we constructed the expression system (pHCP-CgR-DagA-EXB3) for the simultaneous secretion of EXB3 via Sec-pathway together with DagA, and it was clearly confirmed that DagA and EXB3 were successfully secreted as high as 54% and 24.5%, respectively. Finally, using culture medium containing DagA and EXB3, we successfully demonstrated the conversion of high-concentration agar (40 g l-1 ) into NA2 via a two-stage hydrolysis process.
Collapse
Affiliation(s)
- Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Min Soo Cho
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,Korea Advanced Institute of Science and Technology (KAIST), Institute for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
14
|
Balasubramanian S, Chen J, Wigneswaran V, Bang-Berthelsen CH, Jensen PR. Droplet-Based Microfluidic High Throughput Screening of Corynebacterium glutamicum for Efficient Heterologous Protein Production and Secretion. Front Bioeng Biotechnol 2021; 9:668513. [PMID: 34026744 PMCID: PMC8137953 DOI: 10.3389/fbioe.2021.668513] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
With emerging interests in heterologous production of proteins such as antibodies, growth factors, nanobodies, high-quality protein food ingredients, etc. the demand for efficient production hosts increases. Corynebacterium glutamicum is an attractive industrial host with great secretion capacity to produce therapeutics. It lacks extracellular protease and endotoxin activities and easily achieves high cell density. Therefore, this study focuses on improving protein production and secretion in C. glutamicum with the use of droplet-based microfluidic (DBM) high throughput screening. A library of C. glutamicum secreting β-glucosidase was generated using chemical mutagenesis coupled with DBM screening of 200,000 mutants in just 20 min. Among 100 recovered mutants, 16 mutants exhibited enhanced enzyme secretion capacity, 13 of which had unique mutation profiles. Whole-genome analysis showed that approximately 50–150 SNVs had occurred on the chromosome per mutant. Functional enrichment analysis of genes with non-synonymous mutations showed overrepresentation of genes involved in protein synthesis and secretion relevant biological processes, such as DNA and ribosome RNA synthesis, protein secretion and energy turnover. Two mutants JCMT1 and JCMT8 exhibited the highest secretion with a six and a fivefold increase in the β-glucosidase activity in the supernatant, respectively, relative to the reference strain JC0190. After plasmid curing, a new plasmid with the gene encoding α-amylase was cloned into these two mutants. The new strains SB024 and SB025 also exhibited a five and a sixfold increase in α-amylase activity in the supernatant, respectively, relative to the reference strain SB023. The results demonstrate how DBM screening can serve as a powerful development tool to improve cell factories for the production and secretion of heterologous proteins.
Collapse
Affiliation(s)
- Suvasini Balasubramanian
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vinoth Wigneswaran
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Yuki Y, Uchida Y, Sawada SI, Nakahashi-Ouchida R, Sugiura K, Mori H, Yamanoue T, Machita T, Honma A, Kurokawa S, Mukerji R, Briles DE, Akiyoshi K, Kiyono H. Characterization and Specification of a Trivalent Protein-Based Pneumococcal Vaccine Formulation Using an Adjuvant-Free Nanogel Nasal Delivery System. Mol Pharm 2021; 18:1582-1592. [PMID: 33621107 DOI: 10.1021/acs.molpharmaceut.0c01003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-β-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,HanaVax Inc., Tokyo 103-0012, Japan
| | - Yohei Uchida
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Factory of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Rika Nakahashi-Ouchida
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kotomi Sugiura
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromi Mori
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamanoue
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomonori Machita
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayaka Honma
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Kurokawa
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Factory of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, Tokyo 113-8654, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan.,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine, University of California, San Diego, San Diego, California, 92093, United States
| |
Collapse
|
16
|
Napiorkowska M, Pestalozzi L, Panke S, Held M, Schmitt S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005523. [PMID: 33325637 DOI: 10.1002/smll.202005523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest. Bead-retained products are then fluorescently labeled and strains with superior production titers are isolated using flow cytometry. The broad applicability of the platform is demonstrated by successfully culturing several industrially relevant bacterial and yeast strains and detecting peptides or proteins of interest that are secreted or released from the cell via autolysis. Lastly, the platform is applied to optimize cutinase secretion in Komagataella phaffii (Pichia pastoris) and a strain with 5.7-fold improvement is isolated. The platform permits the analysis of >106 genotypes per day and is readily applicable to any protein that can be equipped with a His6 -tag. It is envisioned that the platform will be useful for large screening campaigns that aim to identify improved hosts for large-scale production of biotechnologically relevant proteins, thereby accelerating the costly and time-consuming process of strain engineering.
Collapse
Affiliation(s)
- Marta Napiorkowska
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Luzius Pestalozzi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
17
|
Lu X, Poon TCW, Zhang H. Mass production of active recombinant Chryseobacterium proteolyticum protein glutaminase in Escherichia coli using a sequential dual expression system and one-step purification. IUBMB Life 2020; 72:2391-2399. [PMID: 32827356 DOI: 10.1002/iub.2358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
Protein glutaminase (PG) is an enzyme that specifically catalyzes the deamidation of glutamine residues on proteins or peptides, remarkably improving the solubility, emulsification and foaming properties of food proteins and, thereby, conferring great potential in food industry applications. PG is primarily produced from wild strains of Chryseobacterium proteolyticum and the low enzyme production yield restricts large-scale industrial applications. In this context, by evaluating different cleavage site insertions between the pro-region and mature domain of PG as well as different linkers flanking the cleavage site, an E. coli expression and purification protocol has been developed to produce active recombinant PG. To simplify the production workflow, we developed a sequential dual expression system. More than 15 mg of pure and active PG was obtained from 1 L of shaking-flask bacteria culture by one-step nickel affinity chromatography purification. The enzymatic characteristics of the recombinant PG protein were similar to those of native PG. For the deamidation effect of recombinant PG, the deamidation degree (DD) of gliadin reached up to 67% and the solubility increased 84-fold. Thus, this study provides a practical approach to mass producing active PG proteins and investigates its potential applications on food proteins.
Collapse
Affiliation(s)
- Xin Lu
- Pilot Laboratory, Institute of Translational Medicine, Centre for Precision Medicine Research and Training, Faculty of Health sciences, University of Macau, Macau, China.,Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Terence Chuen Wai Poon
- Pilot Laboratory, Institute of Translational Medicine, Centre for Precision Medicine Research and Training, Faculty of Health sciences, University of Macau, Macau, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
18
|
Utami MF, Matsuda Y, Takada A, Iwai N, Hirasawa T, Wachi M. Growth promotion in Corynebacterium glutamicum by overexpression of the NCgl2986 gene encoding a protein homologous to peptidoglycan amidases. J GEN APPL MICROBIOL 2020; 66:1-7. [PMID: 31217415 DOI: 10.2323/jgam.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We previously reported the extracellular production of antibody fragment Fab by Corynebacterium glutamicum. In the course of searching for genes which improve the secretion efficiency of Fab, we coincidentally found that the final growth increased significantly when the NCgl2986 gene encoding an amidase-like protein was overexpressed. This effect was observed when cells were grown on the production medium MMTG, which contains high concentrations of glucose and neutralizing agent CaCO3, but not on MMTG without CaCO3 or Lennox medium. Not only turbidity but also dry cell weight was increased by NCgl2986 overexpression, although the growth rate was not affected. It was recently reported that the Mycobacterium tuberculosis homolog Rv3915 functions as an activator of MurA protein, which catalyzes the initial step of peptidoglycan synthesis. Growth promotion was also observed when the MurA protein was overproduced. His-tagged NCgl2986 protein was purified, but its peptidoglycan hydrolyzing activity could not be detected. These results suggest that NCgl2986 promotes cell growth by activating the peptidoglycan synthetic pathway.
Collapse
Affiliation(s)
- Mia Fitria Utami
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc
| | - Ayako Takada
- Biomaterials Analysis Division, Technical Department, Tokyo Institute of Technology
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Takashi Hirasawa
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
19
|
Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
20
|
Hashiro S, Mitsuhashi M, Yasueda H. Overexpression system for recombinant RNA in Corynebacterium glutamicum using a strong promoter derived from corynephage BFK20. J Biosci Bioeng 2019; 128:255-263. [PMID: 31076339 DOI: 10.1016/j.jbiosc.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023]
Abstract
In recent years, it has been shown that recombinant RNA molecules have a great potential in mRNA therapy and as novel agricultural pesticides. We developed a fundamental system for efficient production of target RNA molecules in Corynebacterium glutamicum, composed of a strong promoter named F1 and a terminator derived from corynephage BFK20 in a high-copy number plasmid vector. As a target model RNA for overexpression, we designed and used an RNA molecule [designated U1A*-RNA, ∼160 nucleotides (nt) long] containing a stem/loop II (SL-II, hairpin-II) structure from U1 small nuclear RNA (snRNA), which binds to U1A protein, forming a U1 sn-ribonucleoprotein, which is essential in the pre-mRNA splicing process. C. glutamicum strains harboring the U1A*-RNA expression plasmid were cultured and the total RNA was analyzed. We observed prominent expression of RNA corresponding to the U1A*-RNA transcript along with lower expression of a 3'-region-truncated form of the transcript (∼110 nt) in an rnc (encoding RNase III)-deficient strain. We also found that the produced U1A*-RNA bound to the U1A RNA-binding domain protein, which was separately prepared with C. glutamicum. In a batch cultivation using a fermentor, the total accumulated amount of the target RNA reached about 300 mg/L by 24 h. Thus, our results indicated that our system can serve as an efficient platform for large-scale preparation of an RNA of interest.
Collapse
Affiliation(s)
- Shuhei Hashiro
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Mayu Mitsuhashi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Hisashi Yasueda
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan.
| |
Collapse
|
21
|
Isolation of Novel Exo-type β-Agarase from Gilvimarinus chinensis and High-level Secretory Production in Corynebacterium glutamicum. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Matsumura K, Yamada M, Yamashita T, Muto H, Nishiyama KI, Shimoi H, Isobe K. Expression of alcohol oxidase gene from Ochrobactrum sp. AIU 033 in recombinant Escherichia coli through the twin-arginine translocation pathway. J Biosci Bioeng 2019; 128:13-21. [PMID: 30704918 DOI: 10.1016/j.jbiosc.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
We cloned a set of genes encoding alcohol oxidase from Ochrobactrum sp. AIU 033 (OcAOD), which exhibits the appropriate substrate specificity for glyoxylic acid production from glycolic acid. The set of genes for OcAOD contained two open reading frames consisting of 555-bp (aodB) and 1572-bp (aodA) nucleotides, which encode the precursor for the β-subunit and α-subunit of OcAOD, respectively. We expressed the cloned genes as an active product in Escherichia coli BL21(DE3). The recombinant OcAOD oxidized glycolic acid and primary alcohols with C2-C8 but not glyoxylic acid (as is the case for native OcAOD), whereas the Km and Vmax values for glycolic acid and the pH stability were higher than those of native OcAOD. A consensus sequence for the twin-arginine translocation (Tat) pathway was identified in the N-terminal region of the precursor for the β-subunit, and the active form of OcAOD was localized in the periplasm of recombinant E. coli, which indicated that OcAOD would be transported from the cytoplasm to the periplasm by the hitchhiker mechanism through the Tat pathway. The OcAOD productivity of the recombinant E. coli was 24-fold higher than that of Ochrobactrum sp. AIU 033, and it was further enhanced by 1.2 times by the co-expression of additional tatABC from E. coli BL21(DE3). Our findings thus suggest a function of the β-subunit of OcAOD in membrane translocation, and that the recombinant OcAOD has characteristics that are suitable for the enzymatic synthesis of glyoxylic acid as well as native OcAOD.
Collapse
Affiliation(s)
- Kenji Matsumura
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan.
| | - Takeshi Yamashita
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Hitomi Muto
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Hitoshi Shimoi
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| | - Kimiyasu Isobe
- Department of Biological Chemistry and Food Science, Iwate University, Ueda-3, Morioka 020-8550, Japan
| |
Collapse
|
23
|
Nonaka T, Tsurui N, Mannen T, Kikuchi Y, Shiraki K. Non-chromatographic purification of Teriparatide with a pH-responsive CspB tag. Protein Expr Purif 2018; 155:66-71. [PMID: 30485791 DOI: 10.1016/j.pep.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Cell surface protein B (CspB) from Corynebacterium glutamicum is used as a pH-responsive peptide tag to enable a simple solid-liquid separation method for isolating a CspB fusion protein. Here we demonstrate the first application of a CspB tag for the purification of Teriparatide, which is a biologic drug that is prescribed for osteoporosis. The Teriparatide was constructed as CspB50TEV-Teriparatide, comprising 50 amino acid residues of CspB, the cleavage site of TEV protease, and Teriparatide. CspB50TEV-Teriparatide was expressed in a culture supernatant by C. glutamicum secretion system at 3.0 g/L (equivalent to approximately 1.2 g/L Teriparatide). The CspB50TEV-Teriparatide was precipitated by reducing the pH of the culture supernatant, and the precipitate was then dissolved in a neutral buffer. A TEV protease treatment was applied to cleave the Teriparatide from the CspB50TEV-Teriparatide. Then, the remaining digested CspB50TEV, undigested CspB50TEV-Teriparatide, and TEV protease were precipitated in an acidic pH, whereas the soluble Teriparatide remained in the supernatant. The process had a yield of 96.5% and resulted in Teriparatide with a purity of 98.0% and productivity of 1.1 g/L of C. glutamicum culture. Thus, tag-free Teriparatide was successfully purified from the CspB fusion protein using only pH changes, centrifugation, and protease digestion without the need for chromatography. This versatile purification protocol is expected to be applicable to various proteins from laboratory to industrial scales.
Collapse
Affiliation(s)
- Takahiro Nonaka
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki, 210-8681, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Noriko Tsurui
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki, 210-8681, Japan
| | - Teruhisa Mannen
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki, 210-8681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki, 210-8681, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
24
|
Nonaka T, Tsurui N, Mannen T, Kikuchi Y, Shiraki K. A new pH-responsive peptide tag for protein purification. Protein Expr Purif 2018; 146:91-96. [DOI: 10.1016/j.pep.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
|
25
|
Oki S, Nonaka T, Shiraki K. Specific solubilization of impurities in culture media: Arg solution improves purification of pH-responsive tag CspB50 with Teriparatide. Protein Expr Purif 2018; 146:85-90. [PMID: 29425938 DOI: 10.1016/j.pep.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification.
Collapse
Affiliation(s)
- Shogo Oki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takahiro Nonaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan; Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki 210-8681, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
26
|
Freudl R. Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 2017; 258:101-109. [DOI: 10.1016/j.jbiotec.2017.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
|
27
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
28
|
Liu X, Zhang W, Zhao Z, Dai X, Yang Y, Bai Z. Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol 2016; 37:541-551. [PMID: 27737570 DOI: 10.1080/07388551.2016.1206059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics - its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity - C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression - the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Wei Zhang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zihao Zhao
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Xiaofeng Dai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yankun Yang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zhonghu Bai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
29
|
Zhang L, Jia H, Xu D. Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum. Plasmid 2015; 82:50-5. [DOI: 10.1016/j.plasmid.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
30
|
Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 2015; 99:9349-60. [PMID: 26362682 DOI: 10.1007/s00253-015-6947-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.
Collapse
|
31
|
Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ. Development of a new platform for secretory production of recombinant proteins inCorynebacterium glutamicum. Biotechnol Bioeng 2015; 113:163-72. [DOI: 10.1002/bit.25692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/23/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - Roo Jin Lee
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - Yong Jae Lee
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - Se Hwa Lee
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| | - So Young Kim
- Bio R&D Center; CJ CheilJedang, 92 Gayang-dong, Gangseo-gu; Seoul 175-724 Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering; BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
- Institute for the BioCentury; KAIST, 291 Daehak-ro, Yuseong-gu; Daejeon 305-701 Republic of Korea
| |
Collapse
|
32
|
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications. Crit Rev Biotechnol 2015; 36:652-64. [PMID: 25714007 DOI: 10.3109/07388551.2015.1004519] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established "expression tool box" for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yankun Yang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Wei Zhang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yang Sun
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Feng Peng
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Laura Jeffrey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Linda Harvey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Brian McNeil
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Zhonghu Bai
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| |
Collapse
|
33
|
Eberhardt D, Jensen JVK, Wendisch VF. L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 2014; 4:85. [PMID: 26267114 PMCID: PMC4883986 DOI: 10.1186/s13568-014-0085-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022] Open
Abstract
L-citrulline plays an important role in human health and nutrition and is an intermediate of the L-arginine biosynthetic pathway. L-citrulline is a by-product of L-arginine production by Corynebacterium glutamicum. In this study, C. glutamicum was engineered for overproduction of L-citrulline as major product without L-arginine being produced as by-product. To this end, L-arginine biosynthesis was derepressed by deletion of the arginine repressor gene argR and conversion of L-citrulline towards L-arginine was avoided by deletion of the argininosuccinate synthetase gene argG. Moreover, to facilitate L-citrulline production the gene encoding a feedback resistant N-acetyl L-glutamate kinase argBfbr as well as the gene encoding L-ornithine carbamoylphosphate transferase argF were overexpressed. The resulting strain accumulated 44.1 ± 0.5 mM L-citrulline from glucose minimal medium with a yield of 0.38 ± 0.01 g⋅g−1 and a volumetric productivity of 0.32 ± 0.01 g⋅l−1⋅h−1. In addition, production of L-citrulline from the alternative carbon sources starch, xylose, and glucosamine could be demonstrated.
Collapse
|
34
|
Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, Date M, Kikuchi Y, Wachi M. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb Cell Fact 2014; 13:56. [PMID: 24731213 PMCID: PMC4021378 DOI: 10.1186/1475-2859-13-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022] Open
Abstract
Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Masaaki Wachi
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
35
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
36
|
Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl Environ Microbiol 2013; 79:6776-83. [PMID: 23995924 PMCID: PMC3811516 DOI: 10.1128/aem.02003-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/25/2013] [Indexed: 11/20/2022] Open
Abstract
To date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway of Corynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background. The selection of spontaneous mutants resistant to the palmitic acid ester surfactant Tween 40 resulted in the isolation of a desired mutant that produced oleic acid, suggesting that a single mutation would cause increased carbon flow down the pathway and subsequent excretion of the oversupplied fatty acid into the medium. Two additional rounds of selection of spontaneous cerulenin-resistant mutants led to increased production of the fatty acid in a stepwise manner. Whole-genome sequencing of the resulting best strain identified three specific mutations (fasR20, fasA63(up), and fasA2623). Allele-specific PCR analysis showed that the mutations arose in that order. Reconstitution experiments with these mutations revealed that only fasR20 gave rise to oleic acid production in the wild-type strain. The other two mutations contributed to an increase in oleic acid production. Deletion of fasR from the wild-type strain led to oleic acid production as well. Reverse transcription-quantitative PCR analysis revealed that the fasR20 mutation brought about upregulation of the fasA and fasB genes encoding fatty acid synthases IA and IB, respectively, by 1.31-fold ± 0.11-fold and 1.29-fold ± 0.12-fold, respectively, and of the accD1 gene encoding the β-subunit of acetyl-CoA carboxylase by 3.56-fold ± 0.97-fold. On the other hand, the fasA63(up) mutation upregulated the fasA gene by 2.67-fold ± 0.16-fold. In flask cultivation with 1% glucose, the fasR20 fasA63(up) fasA2623 triple mutant produced approximately 280 mg of fatty acids/liter, which consisted mainly of oleic acid (208 mg/liter) and palmitic acid (47 mg/liter).
Collapse
Affiliation(s)
- Seiki Takeno
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Manami Takasaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Akinobu Urabayashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Akinori Mimura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tetsuhiro Muramatsu
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Satoshi Mitsuhashi
- Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Masato Ikeda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
37
|
High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2013; 98:273-84. [PMID: 24380967 DOI: 10.1007/s00253-013-5315-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023]
Abstract
We describe the development of a new secretory production system for the enhanced production of a single-chain variable fragment (scFv) against the anthrax toxin in Corynebacterium glutamicum. For efficient secretory production of the antibody fragment, the following components were examined: (1) signal peptides, (2) codon usage of antibody fragment, (3) promoters, (4) 5' untranslated region (5' UTR) sequence, and (5) transcriptional terminator. Among all the systems examined, the use of a codon-optimized gene sequence, a Sec-dependent PorB signal peptide, and a fully synthetic H36 promoter, allowed the highest production of antibody fragments in a culture medium. For large-scale production, fed-batch cultivations were also conducted in a 5-L lab-scale bioreactor. When cells were cultivated in semi-defined media, cells could grow up to an OD600 of 179 for 32 h and an antibody fragment concentration as high as 68 mg/L could be obtained in a culture medium with high purity. From the culture medium, the secreted antibody was successfully purified using a simple purification procedure, with correct binding activity confirmed by enzyme-linked immunosorbent assay. To the best of our knowledge, this is the first report of a fed-batch cultivation for antibody fragment production in C. glutamicum.
Collapse
|
38
|
Goosens VJ, Monteferrante CG, van Dijl JM. The Tat system of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1698-706. [PMID: 24140208 DOI: 10.1016/j.bbamcr.2013.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The 'universal minimal Tat system' is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec-YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
39
|
Miyazaki T, Noda S, Tanaka T, Kondo A. Hyper secretion of Thermobifida fusca β-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans. Microb Cell Fact 2013; 12:88. [PMID: 24083334 PMCID: PMC3850917 DOI: 10.1186/1475-2859-12-88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/28/2013] [Indexed: 12/02/2022] Open
Abstract
Background Protein production as secretory-form is a powerful tool in industrial enzyme production due to the simple purification procedure. Streptomyces lividans is a versatile host for secretory production of useful proteins. In order to expand the amount of secreted protein, signal peptide sequences, which encourage protein secretion from inside cell to extracellular environment, are one of the most significant factors. In this study, we focused on Streptomyces lividans as a host strain to secrete useful proteins, and screened for signal peptides from the biomass-degradation enzymes derived from Thermobifida fusca YX and S. lividans. Results Three candidate signal peptides were isolated and evaluated for their protein secretion ability using β-glucosidase derived from T. fusca YX, which is a non-secreted protein, as a model protein. Using S. lividans xylanase C signal peptide, the amount of produced the β-glucosidase reached 10 times as much as that when using Streptomyces cinnamoneus phospholipase D signal peptide, which was identified as a versatile signal peptide in our previous report. In addition, the introduction of the β-glucosidase fused to xylanase C signal peptide using two kinds of plasmid, pUC702 and pTYM18, led to further protein secretion, and the maximal level of produced the β-glucosidase increased up to 17 times (1.1 g/l) compared to using only pUC702 carrying the β-glucosidase fused to S. cinnamoneus phospholipase D signal peptide. Conclusion In the present study, we focused on signal peptide sequences derived from biomass degradation enzymes, which are usually secreted into the culture supernatant, and screened for signal peptides leading to effective protein secretion. Using the signal peptides, the hyper-protein secretion system was successfully demonstrated for the cytoplasmic β-glucosidase.
Collapse
Affiliation(s)
- Takaya Miyazaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|
40
|
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 2013; 4:212-23. [PMID: 23686280 DOI: 10.4161/bioe.24761] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Machado H, Lourenço A, Carvalho F, Cabanes D, Kallipolitis BH, Brito L. The Tat pathway is prevalent in Listeria monocytogenes lineage II and is not required for infection and spread in host cells. J Mol Microbiol Biotechnol 2013; 23:209-18. [PMID: 23595063 DOI: 10.1159/000348245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes, a foodborne pathogenic bacterium, remains a serious public health concern due to its frequent occurrence in food products coupled with a high mortality rate. Bacterial pathogenicity depends greatly on the ability to secrete virulence factors to or beyond the bacterial cell surface. The Tat pathway, one of the secretion systems present in L. monocytogenes, was until now only investigated in silico. In L. monocytogenes strain EGDe two genes constitute this pathway, tatC(lmo0361) and tatA(lmo0362). Here we show that tatC and tatA are cotranscribed in a bicistronic- and growth-phase-dependent manner, being downregulated in the stationary phase. An EGDe tatAC mutant strain (EGDe ΔtatAC) was constructed, confirming that the Tat pathway is not essential for L.monocytogenes survival or biofilm-forming ability. When compared to the wild-type EGDe, deletion of tatAC did not decrease the virulence potential of EGDe ΔtatAC in HT-29 human epithelial cell line and even increased (p < 0.05) the virulence potential for mice. Moreover, we show that tat genes are prevalent in L. monocytogenes strains belonging to genetic lineage II and are generally absent from lineage I, which is more associated with human cases, thus excluding the possibility of using the Tat system as a target for novel antimicrobial compounds targeting L.monocytogenes.
Collapse
Affiliation(s)
- Henrique Machado
- CBAA/DRAT, Laboratório de Microbiologia, Instituto Superior de Agronomia, Technical University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
42
|
An SJ, Yim SS, Jeong KJ. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Expr Purif 2013; 89:251-7. [PMID: 23597779 DOI: 10.1016/j.pep.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/27/2022]
Abstract
Corynebacterium glutamicum is one of the useful hosts for the secretory production of heterologous proteins because of intrinsic attributes such as the presence of few endogenous proteins and proteases in culture medium. Here, we report the development of a new secretory system for the production of heterologous proteins by using the porin B (PorB) signal peptide in C. glutamicum. We examined two different endoxylanases and an antibody fragment (scFv) as model proteins for secretory production. In the flask cultivations, all the examined proteins were successfully produced as active forms into the culture medium with high efficiency. For the high-level production of endoxylanase, fed-batch cultivation was also performed in a lab-scale (5L) bioreactor, and the endoxylanases were efficiently secreted in the culture medium at levels as high as 615mg/L. From the culture supernatant, the secreted endoxylanases could be purified with high purity via one-step affinity column chromatography.
Collapse
Affiliation(s)
- Seul Ji An
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
43
|
Reed B, Chen R. Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. Res Microbiol 2013; 164:675-82. [PMID: 23541476 DOI: 10.1016/j.resmic.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Recent years have witnessed significant progresses in engineering of recombinant protein secretion. The relatively simple secretion mechanisms, Type I and Type V (autotransporters), are increasingly used for secretion of recombinant proteins. The secretion level of target proteins varied from milligrams to grams per liter. The range of proteins was significantly expanded beyond medical application. Notable additions include biofuel productions from renewable feedstock. Despite the progress, almost all successes in the engineering efforts come with significant trials and errors, highlighting the need for a better understanding of secretion systems and rational based methods.
Collapse
Affiliation(s)
- Ben Reed
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
44
|
Vertès AA. Protein Secretion Systems of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Abstract
The non-essential Corynebacterium glutamicum sigma factor, sigB, modulates global gene expression during the transition from exponential growth to the stationary phase. Utilizing a signal peptide derived from C. glutamicum R CgR_0949, a sigB disruption mutant able to secrete 3- to 5-fold more green fluorescence protein (GFP) and α-amylase than the wild type strain was isolated. The signal peptide selectively enabled the mutant to produce greater amounts of both proteins, which were in turn secreted in culture medium in greater quantities than previously acknowledged. A peak GFP productivity of 2.8 g/l was attained, representing the highest GFP productivity reported in C. glutamicum to date. CgR_0949 signal sequence length (30 residues), type (Tat) or the target protein identity (GFP or α-amylase) had no measurable effect on the magnitude of the protein accumulation and consequent secretion. It therefore follows that actual experimentation remains the fastest way to identify suitable signal sequences in C. glutamicum. More secretion studies may reveal even greater secretion productivity by C. glutamicum and consequently present an attractive avenue to further enhance the utility of C. glutamicum as an industrial workhorse.
Collapse
|
46
|
Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer KH, Bott M, Freudl R. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb Biotechnol 2012; 6:202-6. [PMID: 23163932 PMCID: PMC3917463 DOI: 10.1111/1751-7915.12005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 12/02/2022] Open
Abstract
Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.
Collapse
Affiliation(s)
- Sandra Scheele
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ravasi P, Peiru S, Gramajo H, Menzella HG. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 2012; 11:147. [PMID: 23134565 PMCID: PMC3539996 DOI: 10.1186/1475-2859-11-147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/03/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. RESULTS A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod) and RBS (lacZ, cspB and sod) elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional "fine-tuning"of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. CONCLUSIONS We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C. glutamicum. The standardization provided by this approach may provide a means to improve the productivity of biosynthetic pathways in microbial factories for the production of novel compounds.
Collapse
Affiliation(s)
- Pablo Ravasi
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
- Geneg SRL, Cuba 4710, Buenos Aires, Argentina
| | - Salvador Peiru
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| | - Hugo Gramajo
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| | - Hugo G Menzella
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| |
Collapse
|
48
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
49
|
Recombinant protein production and streptomycetes. J Biotechnol 2012; 158:159-67. [DOI: 10.1016/j.jbiotec.2011.06.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/21/2022]
|
50
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|