1
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Rahmdel S, Purkayastha M, Nega M, Liberini E, Li N, Luqman A, Brüggemann H, Götz F. Diversity of Neurotransmitter-Producing Human Skin Commensals. Int J Mol Sci 2024; 25:12345. [PMID: 39596410 PMCID: PMC11595044 DOI: 10.3390/ijms252212345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Recent findings indicate that human microbiota can excrete trace amines, dopamine, and serotonin. These neurotransmitters (NTs) can either affect classical neurotransmitter signaling or directly trigger trace amine-associated receptors (TAARs), with still unclear consequences for host physiology. Compared to gut microbiota, less information is available on the role of skin microbiota in NT production. To explore this, 1909 skin isolates, mainly from the genera Staphylococcus, Bacillus, and Corynebacterium, were tested for NT production. Only 6.7% of the isolates were capable of producing NTs, all of which belonged to the Staphylococcus genus. Based on substrate specificity, we identified two distinct profiles among the NT producers. One group primarily produced tryptamine (TRY) and phenylethylamine (PEA), while the other mainly produced tyramine (TYM) and dopamine (Dopa). These differing production profiles could be attributed to the activity of two distinct aromatic amino acid decarboxylase enzymes, SadA and TDC, responsible for generating the TRY/PEA and TYM/Dopa product spectra, respectively. SadA and TDC orthologues differ in structure and size; SadA has approximately 475 amino acids, whereas the TDC type consists of about 620 amino acids. The genomic localization of the respective genes also varies: tdc genes are typically found in small, conserved gene clusters, while sadA genes are not. The heterologous expression of sadA and tdc in Escherichia coli yielded the same product spectrum as the parent strains. The possible effects of skin microbiota-derived NTs on neuroreceptor signaling in the human host remain to be investigated.
Collapse
Affiliation(s)
- Samane Rahmdel
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Moushumi Purkayastha
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Elisa Liberini
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Arif Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus Centrum, Denmark;
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| |
Collapse
|
3
|
Alan Y. Chemical changes of potential probiotic Lactiplantibacillus plantarum and Lactobacillus pentosus starter cultures in natural Gemlik type black olive fermentation. Food Chem 2024; 434:137472. [PMID: 37722330 DOI: 10.1016/j.foodchem.2023.137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The aim of this study was to determine the ability of probiotic Lactiplantibacillus plantarum and Lactobacillus pentosus starter cultures to maintain Olea europaea L. cv. Gemlik fermentation and some chemical changes occurred by HPLC. It was observed that starter cultures decreased the pH by increasing the acidity of the fermentation medium. In addition, it was determined that the number of yeast-mold (Y-M) and aerobic mesophilic bacteria (AMB) were lower than the number of lactic acid bacteria (LAB) in the samples with starter cultures. As the fermentation period progressed, it was observed that the amount and variety of phenolic substances increased, albeit slightly, in the brined olive samples to which the starter culture was added. Alcohols, biogenic amines, sugars and organic acids increased or decreased in all samples. During the fermentation gallic acid, apigenin, kaempferol, curcumin, vanillin, caffeic acid, salicylic acid, putrescine, triamine, spermidine and maleic acid could not be detected.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, Turkey.
| |
Collapse
|
4
|
Amadoro C, Rossi F, Poltronieri P, Marino L, Colavita G. Diversity and Safety Aspects of Coagulase-Negative Staphylococci in Ventricina del Vastese Italian Dry Fermented Sausage. APPLIED SCIENCES 2022; 12:13042. [DOI: 10.3390/app122413042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Ventricina del Vastese is a traditional dry fermented sausage from Central Italy not yet characterized for the occurrence, identity and safety of coagulase-negative staphylococci (CNS), a bacterial group technologically important for this kind of product. Therefore, in this study, 98 CNS isolates from four manufacturers were differentiated using repetitive element palindromic PCR (Rep-PCR) and identified using 16S rRNA gene sequencing. These were examined for genes encoding biogenic amine (BA) production, resistance to aminoglycosides, β-lactams, tetracyclines and staphylococcal enterotoxins (SEs). Staphylococcus succinus (55%) predominated, followed by S. xylosus (30%), S. epidermidis (7.4%), S. equorum (3.1%), S. saprophyticus (3.1%) and S. warneri (1%). One S. succinus subsp. casei isolate was slightly β-hemolytic. SEs and the histidine decarboxylase gene hdcA were not detected, whereas the tyrosine decarboxylase gene tdcA was detected in four S. xylosus isolates. The blaZ beta-lactamase gene in an S. equorum isolate, tetracycline resistance genes tetK in six S. succinus isolates and tetA in one S. succinus isolate also bearing tetK were found. The product examined is characterized by a peculiar CNS species ratio and a low occurrence and diversity of AR transferable genes than found in other studies, as a probable consequence of production only with meat from animals raised in small farms with extensive rearing systems in which antibiotic usage is infrequent.
Collapse
|
5
|
Effect of Temperature and Fermentation Time on Fermentation Characteristics and Biogenic Amine Formation of Oat Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Temperature is known to have a clear influence on the formation of biogenic amines during fermentation. To improve the quality of oat silage, the impact of ensiling temperature on the fermentation, microbiological and chemical characteristics, as well as biogenic amines (BAs) was investigated. Vacuum bag mini silos of oat forage were incubated at four different temperature levels (10, 20, 30 and 37 °C) and opened on day 0, 1, 3, 7, 15 and 60. All oat silages were sampled to evaluate the fermentation quality and biogenic amine production. Results showed that putrescine, cadaverine and tyramine were the most prevalent biogenic amines in oat silage, representing approximately about 90% of the total biogenic amines (TBAs) investigated. Ensiling increased the β–phenylethylamine, putrescine, cadaverine, histamine and tyramine accumulation in oat silage at the four incubation temperatures. On day 60, the β–phenylethylamine, cadaverine, histamine, tyramine and TBAs levels at a high temperature (37 °C) were significantly higher than those at a lower temperature (10, 20 and 30 °C); 10 °C fermentation increased the putrescine content in oat silage. A closed relationship between fermentation properties and BAs showed that the silages containing higher lactic acid, propionic acid and ammonia nitrogen and lower pH value had more BA content in oat silage. In conclusion, the ensiling process caused a significant increase in the amounts of BAs, except spermidine and spermine. The oat silage made in elevated temperature (30 and 37 °C) environments may accumulate more BAs than at a low temperature (10 °C), but low temperature (10 °C) fermentation may increase the putrescine levels in silage. The results suggested that ensiling at the proper temperature could retard BA formation and enhance the quality of oat silage.
Collapse
|
6
|
Huang Y, Yu H, Lu S, Zou L, Tang Z, Zeng T, Tang J. Effect and mechanism of ferulic acid inclusion complexes on tyramine production by Enterobacter hormaechei MW386398 in smoked horsemeat sausages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Berthoud H, Wechsler D, Irmler S. Production of Putrescine and Cadaverine by Paucilactobacillus wasatchensis. Front Microbiol 2022; 13:842403. [PMID: 35308356 PMCID: PMC8928434 DOI: 10.3389/fmicb.2022.842403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg−1 of cadaverine and 304 mg kg−1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.
Collapse
|
8
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
9
|
ALAN Y, YILDIZ N. Effects of Lactobacillus used as the starter culture on naturally fermented pickled cabbage. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.45020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Li B, Lu S. The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci 2020; 27:95. [PMID: 32981524 PMCID: PMC7520957 DOI: 10.1186/s12929-020-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is relatively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreover, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have pinpointed a "missing link" that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express trace amine associated receptors and significant amounts of trace amines originate from both food and the gut microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that components of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa.
| |
Collapse
|
12
|
Luo Y, Huang Y, Xu RX, Qian B, Zhou JW, Xia XL. Primary and Secondary Succession Mediate the Accumulation of Biogenic Amines during Industrial Semidry Chinese Rice Wine Fermentation. Appl Environ Microbiol 2020; 86:e01177-20. [PMID: 32591381 PMCID: PMC7440807 DOI: 10.1128/aem.01177-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
The use of exogenous functional microorganisms to regulate biogenic amine (BA) content is a common approach in fermentation systems. Here, to better understand the microbial traits of succession trajectories in resource-based and biotic interference systems, the BA-related primary and secondary succession were tracked during industrial semidry Chinese rice wine (CRW) fermentation. Dominant abundance and BA-associated microbial functionality based on phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) indicated that Citrobacter, Acinetobacter, Lactobacillus, Exiguobacterium, Bacillus, Pseudomonas, and Enterobacter spp. prominently contributed to the decarboxylase gene family in CRW. The expression levels of tyrosine decarboxylase (tyrDC), ornithine decarboxylase (odc), and agmatine deiminase (aguA) genes were assessed by quantitative PCR (qPCR). The transcription levels of these genes did not correlate with the BA formation rate during postfermentation, indicating that acidification and carbon source depletion upregulated the expression and microbes launch the dormancy strategy to respond to unfavorable conditions. Furthermore, microbial interference with CRW fermentation by Lactobacillus plantarum (ACBC271) and Staphylococcus xylosus (CGMCC1.8382) coinoculated at a ratio of 1:2 exhibited the best synergetic control of BA content. Spearman correlations revealed that Lactobacillus and Staphylococcus exhibited influence on BA-associated microbiota (|ρ| > 0), Exiguobacterium and Pseudomonas were strongly suppressed by Lactobacillus (ρ = -0.867 and ρ = -0.782, respectively; P < 0.05), and Staphylococcus showed the strongest inhibitory effect toward Lactobacillus (ρ = -0.115) and Citrobacter (ρ = -0.188) in the coinoculated 1:2 group. The high inhibitory effect of exogenous added strains on specific bacteria presented evidence for the obtained BA-associated contributors. Overall, this work provides important insight into the microbial traits that rely on resource usage and functional microbiota within food microbial ecology.IMPORTANCE Understanding the shifting patterns of substance usage and microbial interactions is a fundamental objective within microbiology and ecology. Analyses of primary and secondary microbial succession allow for determinations of taxonomic diversity, community traits, and functional transformations over time or after a disturbance. The kinetics of BA generation and the patterns of resource consumption, functional metagenome prediction, and microbial interactions were profiled to elucidate the equilibrium mechanism of microbial systems. Secondary succession after a disturbance triggers a change in resource usage, which in turn affects primary succession and metabolism. In this study, the functional potential of exogenous microorganisms under disturbance synergized with secondary succession strategies, including rebalancing and dormancy, which ultimately reduced BA accumulation. Thus, this succession system could facilitate the settling of essential issues with respect to microbial traits that rely on resource usage and microbial interactions that occur in natural ecosystems.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Yang Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Rui-Xian Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Bin Qian
- Zhejiang Guyue Longshan Shaoxing Wine Co. Ltd., Shaoxing, People's Republic of China
| | - Jing-Wen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiao-le Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
13
|
Tabanelli G. Biogenic Amines and Food Quality: Emerging Challenges and Public Health Concerns. Foods 2020; 9:foods9070859. [PMID: 32630178 PMCID: PMC7404793 DOI: 10.3390/foods9070859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
In addition to pathogenic bacteria and viruses, some bioactive compounds and natural toxins such as biogenic amines (BAs) can be responsible for food poisoning. These compounds, produced mainly by bacteria through the action of decarboxylases, represent a risk for consumers' health and are involved in several pathogenic syndromes, with histamine and tyramine being the most dangerous ones. Since the presence of dangerous amounts of BAs is associated with the relevant growth of spoiling decarboxylating microorganisms, BA content has been proposed as a food quality index in fresh products. Several factors, both intrinsic and technological, can regulate BA accumulation in foods influencing the decarboxylase-positive bacteria population and proteolysis phenomena, especially in fermented products where strains belonging to different species and genera, commonly found in these foods, have been characterized for their decarboxylase activities and have been associated with high levels of BAs. Due to their impact on human health and food quality, both the development of simple and rapid methods for BA detection and the increase of knowledge of factors involved in BA accumulation are needed to face new challenges in food chains and to reduce health concerns regarding food poisoning.
Collapse
Affiliation(s)
- Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
14
|
Andersen G, Marcinek P, Sulzinger N, Schieberle P, Krautwurst D. Food sources and biomolecular targets of tyramine. Nutr Rev 2020; 77:107-115. [PMID: 30165672 DOI: 10.1093/nutrit/nuy036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tyramine is a biogenic trace amine that is generated via the decarboxylation of the amino acid tyrosine. At pico- to nanomolar concentrations, it can influence a multitude of physiological mechanisms, exhibiting neuromodulatory properties as well as cardiovascular and immunological effects. In humans, the diet is the primary source of physiologically relevant tyramine concentrations, which are influenced by a large number of intrinsic and extrinsic factors. Among these factors are the availability of tyrosine in food, the presence of tyramine-producing bacteria, the environmental pH, and the salt content of food. The process of fermentation provides a particularly good source of tyramine in human nutrition. Here, the potential impact of dietary tyramine on human health was assessed by compiling quantitative data on the tyramine content in a variety of foods and then conducting a brief review of the literature on the physiological, cellular, and systemic effects of tyramine. Together, the data sets presented here may allow both the assessment of tyramine concentrations in food and the extrapolation of these concentrations to gauge the physiological and systemic effects in the context of human nutrition.
Collapse
Affiliation(s)
| | | | - Nicole Sulzinger
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Peter Schieberle
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
15
|
Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell Mol Neurobiol 2020; 40:191-201. [PMID: 31836967 DOI: 10.1007/s10571-019-00772-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Dulce Pamela González
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Neva Olliffe
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Haley Oller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Rachel Hoffing
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Marissa Puzan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
Alan Y. Culture fermentation of Lactobacillus in traditional pickled gherkins: Microbial development, chemical, biogenic amine and metabolite analysis. Journal of Food Science and Technology 2019; 56:3930-3939. [PMID: 31413418 DOI: 10.1007/s13197-019-03866-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
Fermented cucumber pickles are the lactic acid fermentation products formed through the influence of microorganisms present in the environment. This study investigated the impacts of starter cultures, namely, Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum, typically utilized for the fermentation of traditional pickled gherkins, on fermentation process. The chemical (pH, total acidity and salt) and microbiological (total mesophilic aerobic bacteria, lactic acid bacteria and yeast-mould) changes were observed against the control sample during fermentation process. Moreover, the amounts of biogenic amines (BAs) and metabolites formed as a consequence of fermentation were determined using HPLC. It was found that the chemical analyses provided similar results for all the samples. The amount of total mesophilic aerobic bacteria and yeast-mould colonies in pickle sample containing L. plantarum 49 strain appeared to reduce significantly. The amount of BAs was the lowest for the pickle samples where L. plantarum strains were added. The amount of BAs was below the toxic value that could affect human health. More BAs were synthesized as the fermentation period increased. Lactate was seen to exist in the samples when pyruvate was present, and acetoin was converted into 2.3-butanediol during the fermentation period. It was concluded that the pickle sample for which L. plantarum 49 strain was used displayed a better fermentation profile (i.e., metabolite and biogenic amines) than the remaining samples. Producing a more delicious and reliable product using such characteristics of L. plantarum strains in pickled gherkins is believed to significantly contribute to the food industry.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Primary Education, Faculty of Education, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
17
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
18
|
Pasini F, Soglia F, Petracci M, Caboni MF, Marziali S, Montanari C, Gardini F, Grazia L, Tabanelli G. Effect of Fermentation with Different Lactic Acid Bacteria Starter Cultures on Biogenic Amine Content and Ripening Patterns in Dry Fermented Sausages. Nutrients 2018; 10:nu10101497. [PMID: 30322117 PMCID: PMC6213744 DOI: 10.3390/nu10101497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023] Open
Abstract
In the present study, two different diameter (small and large) Milano-type dry fermented sausages were industrially produced to evaluate the effect of two different LAB starter cultures (Lactobacillus sakei and Pediococcus pentosaceus) on biogenic amines (BAs) content, proteolysis, and lipolysis taking place during both fermentation and ripening. With regard to BAs, putrescine and tyramine were mostly found in fermented sausages having large diameter and those inoculated with P. pentosaceus/S. xylosus exhibited significantly higher accumulation of these compounds. Overall, the small size sausages showed a more pronounced proteolysis taking place during processing. In addition, aside from the distinctive electrophoretic bands detected with both starter cultures, a more pronounced proteolysis and a faster protein hydrolysis was observed in salami inoculated with P. pentosaceus/S. xylosus. As for lipolysis, a significantly higher amount of diacylglycerols was observed at the end of ripening in the sausages inoculated with L. sakei/S. xylosus, which concurrently exhibited an increased D32, D34, and D36 series. The results of the present study confirms profound differences in BAs concentration, proteolysis, and lipolysis. These findings are strictly dependent on the starter cultures, which demonstrates that the choice of an appropriate starter optimized for peculiar products and processes should be the key factor to improve safety and quality features of traditional fermented sausages.
Collapse
Affiliation(s)
- Federica Pasini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Francesca Soglia
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Massimiliano Petracci
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Maria Fiorenza Caboni
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Sara Marziali
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100 Campobasso, Italy.
| | - Chiara Montanari
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Luigi Grazia
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum, Università di Bologna, Sede di Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Giulia Tabanelli
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Alma Mater Studiorum, Università di Bologna, Sede di Cesena, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
19
|
Strøman P, Sørensen KI, Derkx PMF, Neves AR. Development of Tyrosine Decarboxylase-Negative Strains of Lactobacillus curvatus by Classical Strain Improvement. J Food Prot 2018; 81:628-635. [PMID: 29543528 DOI: 10.4315/0362-028x.jfp-17-301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biogenic amines have been widely studied because of their potential toxicity in fermented foods. Several lactic acid bacteria have the potential to decarboxylate the amino acid tyrosine to tyramine. In this work, we identified two strains of Lactobacillus curvatus, Lbc1 and Lbc2, endowed with the ability to produce tyramine, a metabolic feature that limits their application in starter cultures for fermented meat. To overcome this limitation, we set out to eliminate tyramine production from L. curvatus strains by using classical strain improvement. About 4,000 mutant isolates of both strains were screened using a colorimetric method, and then potential tyrosine decarboxylase-negative mutants were selected. Firm identification of loss-of-function mutants was performed by analytical determination of tyrosine and tyramine in cultivation medium. Of the 8,000 mutants screened, only one mutant of Lbc1 and two mutants of Lbc2 had completely lost the potential to produce tyramine. Subsequently, one tyrosine decarboxylase-negative mutant of both Lbc1 and Lbc2 was characterized in more detail. DNA sequencing of the Lbc1 mutant tdcA gene disclosed two missense mutations in the promoter distal part of the coding sequence. These two mutations result in two amino acid changes in the encoded tyrosine decarboxylase, Pro87Thr and Ser130Leu, presumably inactivating the enzyme activity. The DNA sequence of the other characterized mutant, derived from strain Lbc2, showed that insertion of a 6-bp fragment at nucleotide position 1348 in the tdc gene is presumably the factor leading to loss of activity. With the successful elimination of the undesirable tyramine-producing phenotype without the use of recombinant DNA technology, these developed L. curvatus mutant strains can be safely used in the dairy industry or in the manufacture of various food products.
Collapse
Affiliation(s)
- Per Strøman
- Discovery, Research & Development, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kim Ib Sørensen
- Discovery, Research & Development, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Patrick M F Derkx
- Discovery, Research & Development, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ana Rute Neves
- Discovery, Research & Development, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
20
|
Doeun D, Davaatseren M, Chung MS. Biogenic amines in foods. Food Sci Biotechnol 2017; 26:1463-1474. [PMID: 30263683 PMCID: PMC6049710 DOI: 10.1007/s10068-017-0239-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Biogenic amines are produced by bacterial decarboxylation of corresponding amino acids in foods. Concentration of biogenic amines in fermented food products is affected by several factors in the manufacturing process, including hygienic of raw materials, microbial composition, fermentation condition, and the duration of fermentation. Intake of low amount of biogenic amines normally does not have harmful effect on human health. However, when their amount in food is too high and detoxification ability is inhibited or disturbed, biogenic amines could cause problem. To control concentration of BAs in food, decarboxylase activity for amino acids can be regulated. Levels of BAs can be reduced by several methods such as packaging, additives, hydrostatic pressure, irradiation, pasteurization, smoking, starter culture, oxidizing formed biogenic amine, and temperature. The objective of this review paper was to collect, summarize, and discuss necessary information or useful data based on previous studies in terms of BAs in various foods.
Collapse
Affiliation(s)
- Dara Doeun
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-si, Gyeonggi-do 456-756 Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-si, Gyeonggi-do 456-756 Korea
| | - Myung-Sub Chung
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-Ro, Daedeok-Myeon, Anseong-si, Gyeonggi-do 456-756 Korea
| |
Collapse
|
21
|
Bargossi E, Tabanelli G, Montanari C, Gatto V, Chinnici F, Gardini F, Torriani S. Growth, biogenic amine production and tyrDC transcription of Enterococcus faecalis in synthetic medium containing defined amino acid concentrations. J Appl Microbiol 2017; 122:1078-1091. [PMID: 28117533 DOI: 10.1111/jam.13406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
AIMS The tyraminogenic potential of the strains Enterococcus faecalis EF37 and ATCC 29212 was investigated in a synthetic medium containing defined amounts of tyrosine and phenylalanine at different temperatures. METHODS AND RESULTS Enterococci growth and the production of biogenic amines (BA) were evaluated in relation to their pre-growth in medium containing tyrosine. Significant differences between the two strains were evidenced at metabolic level. Both the pre-adapted strains grew faster in all the tested conditions, independently of the presence of the precursor. Temperatures of 30 and 40°C positively affected the growth parameters. The tyrosine decarboxylase (tyrDC) activity of the strain EF37 was positively affected by pre-adaptation, while ATCC 29212 showed a faster and higher tyramine accumulation with not-adapted cells. The expression analysis of the gene tyrDC confirmed the influence of the growth conditions on gene transcription. CONCLUSIONS The small differences found between the two strains in the maximum transcript level reached rapidly after the inoculum and the different behaviour in the tyramine accumulation suggested the possible involvement of complex regulation mechanisms on the tyrDC or on the membrane transport systems, which could affect the different BA accumulation trend. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives deeper insight into the metabolic regulation of tyrDC activity of enterococci.
Collapse
Affiliation(s)
- E Bargossi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - G Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - C Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - V Gatto
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| | - F Chinnici
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - F Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy.,Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - S Torriani
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| |
Collapse
|
22
|
Elsanhoty RM, Ramadan MF. Genetic screening of biogenic amines production capacity from some lactic acid bacteria strains. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front Microbiol 2016; 7:1218. [PMID: 27570519 PMCID: PMC4982241 DOI: 10.3389/fmicb.2016.01218] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed.
Collapse
Affiliation(s)
- Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di BolognaCesena, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di BolognaCesena, Italy
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova UniversityAdana, Turkey
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of TeramoMosciano Sant’Angelo, Italy
| | - Giulia Tabanelli
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di BolognaCesena, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di BolognaCesena, Italy
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova UniversityAdana, Turkey
| |
Collapse
|
24
|
Benkerroum N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr Rev Food Sci Food Saf 2016; 15:801-826. [PMID: 33401839 DOI: 10.1111/1541-4337.12212] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Biogenic amines (BAs) are toxic compounds produced by a number of microorganisms (bacteria, yeasts, and molds) as a result of the metabolism of some amino acid, usually decarboxylation reactions. BA-producing microorganisms are not necessarily pathogenic, such as lactic acid bacteria, which are, on the contrary, among the most beneficial microbiota to human beings and some of which even have probiotic properties. However, the incidence of BAs in dairy products and their possible implication in serious dairy-borne intoxications has long been overlooked. Consequently, the implementation of control measures to limit such an incidence has not been considered among the priorities of the food safety authorities. Nonetheless, there is a growing concern with regard to the presence of BAs in dairy products, because their toxicological status as toxins that may have serious acute and/or chronic adverse health effects is becoming increasingly evident and well-documented. The main BAs associated with dairy products are reviewed herein from the perspective of their incidence in these food products, and to draw the attention of readers to the shortage in data to perform pertinent risk assessment, which is considered to be a key action to provide efficient control means and to help decision makers issue appropriate legislative and regulatory measures.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Inst. Agronomique et Vétérinaire Hassan II, Dépt. des Sciences Alimentaires et Nutritionnelles, BP 6202, Instituts, 10101-Rabat, Morocco
| |
Collapse
|
25
|
Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production. Int J Food Microbiol 2016; 232:1-6. [PMID: 27218410 DOI: 10.1016/j.ijfoodmicro.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/17/2016] [Accepted: 05/08/2016] [Indexed: 11/20/2022]
Abstract
The reduction of NaCl in food is a public health priority; high NaCl intakes have been associated with serious health problems. However, it is reported that reducing the NaCl content of cheeses may lead to an increase in the content of biogenic amines (BAs). The present work examines the effect of NaCl on the accumulation of putrescine (one of the BAs often detected at high concentration in cheese) in experimental Cabrales-like cheeses containing Lactococcus lactis subsp. cremoris CECT 8666, a dairy strain that catabolises agmatine to putrescine via the agmatine deiminase (AGDI) pathway. The genes responsible for this pathway are grouped in the AGDI cluster. This comprises a regulatory gene (aguR) (transcribed independently), followed by the catabolic genes that together form an operon (aguBDAC). Reducing the NaCl concentration of the cheese led to increased putrescine accumulation. In contrast, increasing the NaCl concentration of both pH-uncontrolled and pH-controlled (pH 6) cultures of L. lactis subsp. cremoris CECT 8666 significantly inhibited its growth and the production of putrescine. Such production appeared to be inhibited via a reduction in the transcription of the aguBDAC operon; no effect on the transcription of aguR was recorded. The present results suggest that low-sodium cheeses are at risk of accumulating higher concentrations of putrescine.
Collapse
|
26
|
Uriot O, Galia W, Awussi AA, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol 2016; 53:18-29. [DOI: 10.1016/j.fm.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
|
27
|
Zhang C, Xin Y, Wang Y, Guo T, Lu S, Kong J. Identification of a Novel Dye-Decolorizing Peroxidase, EfeB, Translocated by a Twin-Arginine Translocation System in Streptococcus thermophilus CGMCC 7.179. Appl Environ Microbiol 2015; 81:6108-19. [PMID: 26092460 PMCID: PMC4542251 DOI: 10.1128/aem.01300-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is a facultative anaerobic bacterium that has the ability to grow and survive in aerobic environments, but the mechanism for this remains unclear. In this study, the efeB gene, encoding a dye-decolorizing peroxidase, was identified in the genome of Streptococcus thermophilus CGMCC 7.179, and purified EfeB was able to decolorize reactive blue 5. Strikingly, genes encoding two components (TatA and TatC) of the twin-arginine translocation (TAT) system were also found in the same operon with the efeB gene. Knocking out efeB or tatC resulted in decreased growth of the strain under aerobic conditions, and complementation of the efeB-deficient strains with the efeB gene enhanced the biomass of the hosts only in the presence of the tatC gene. Moreover, it was proved for both S. thermophilus CGMCC 7.179 and Escherichia coli DE3 that EfeB could be translocated by the TAT system of S. thermophilus. In addition, the transcriptional levels of efeB and tatC increased when the strain was cultured under aerobic conditions. Overall, these results provide the first evidence that EfeB plays a role in protecting cells of S. thermophilus from oxidative stress, with the assistance of the TAT system.
Collapse
Affiliation(s)
- Chenchen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Shiyi Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
28
|
Bargossi E, Tabanelli G, Montanari C, Lanciotti R, Gatto V, Gardini F, Torriani S. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. Front Microbiol 2015; 6:259. [PMID: 25914676 PMCID: PMC4392317 DOI: 10.3389/fmicb.2015.00259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.
Collapse
Affiliation(s)
- Eleonora Bargossi
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy
| | - Veronica Gatto
- Department of Biotechnology, University of Verona Verona, Italy
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy ; Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona Verona, Italy
| |
Collapse
|
29
|
The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. Food Chem 2015; 173:45-53. [DOI: 10.1016/j.foodchem.2014.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
|
30
|
Liu F, Du L, Wu H, Wang D, Zhu Y, Geng Z, Zhang M, Xu W. Effects of storage temperature on tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks. J Food Prot 2014; 77:1804-8. [PMID: 25285502 DOI: 10.4315/0362-028x.jfp-14-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 μg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 μg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Lihui Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, People's Republic of China
| | - Haihong Wu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Zhiming Geng
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Muhan Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| |
Collapse
|
31
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
32
|
Kim MJ, Kim KS. Tyramine production among lactic acid bacteria and other species isolated from kimchi. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Effects of aw at packaging time and atmosphere composition on aroma profile, biogenic amine content and microbiological features of dry fermented sausages. Meat Sci 2013; 94:177-86. [DOI: 10.1016/j.meatsci.2013.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 11/20/2022]
|
34
|
Gezginc Y, Akyol I, Kuley E, Özogul F. Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem 2013; 138:655-62. [DOI: 10.1016/j.foodchem.2012.10.138] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
|
35
|
Rossi F, Marzotto M, Cremonese S, Rizzotti L, Torriani S. Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiol 2013; 35:27-33. [PMID: 23628611 DOI: 10.1016/j.fm.2013.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/24/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The bacteriocin-producing Streptococcus thermophilus strains that can dominate in natural dairy ecosystems, may also enhance safety in products obtained from natural cultures. In this study, we sought to identify bacteriocin production and bacteriocin genes in 75 strains of dairy and plant origin. The strains were tested for antimicrobial activity against pathogens or pathogen models, spoiling bacteria, and lactic acid bacteria associated with dairy products. All strains moderately inhibited Staphylococcus aureus P310, none inhibited Listeria innocua LMG 11387(T) or Clostridium tyrobutyricum LMG 1285(T). In addition, 14 were active against one or more indicators in addition to S. aureus P310. Inhibition of other starter bacteria was more common than the inhibition of unwanted microorganisms. The involvement of a proteinaceous compound was ascertained in all cases. Results suggested that the selection of bacteriocinogenic S. thermophilus strains for use in biopreservation must take into account the effects exerted on other lactic acid bacteria. PCR detection of thermophilin genes proved unreliable in predicting antimicrobial activity. For S. thermophilus PRI36 and PRI45, with relevant inhibitory features, the identity of the bacteriocin genes present in the thermophilin 9 cluster was defined, thus revealing novel variants for this genome region.
Collapse
Affiliation(s)
- Franca Rossi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, Verona, Italy.
| | | | | | | | | |
Collapse
|
36
|
Schirone M, Tofalo R, Fasoli G, Perpetuini G, Corsetti A, Manetta AC, Ciarrocchi A, Suzzi G. High content of biogenic amines in Pecorino cheeses. Food Microbiol 2012; 34:137-44. [PMID: 23498190 DOI: 10.1016/j.fm.2012.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Pecorino refers to Italian cheeses made exclusively from raw or pasteurized ewes' milk, characterized by a high content of fat matter and it is mainly produced in the Middle and South of Italy by traditional procedures. The autochthonous microbiota plays an important role in the organoleptic traits of Pecorino cheese and it can influence biogenic amines (BA) content. The aim of this study was to characterize from microbiological and chemical point of view 12 randomly purchased commercial cheeses produced in Abruzzo region. Moreover, the BA content and the bacteria showing a decarboxylating activity were detected. For this purpose, a real-time quantitative PCR (qPCR) was applied to evaluate histamine and tyramine-producers. The samples were well differentiated for microbial groups composition, such as aerobic mesophilic bacteria, Enterobacteriaceae, coagulase-negative staphylococci, yeasts, enterococci, mesophilic and thermophilic lactobacilli. Pathogens such as Salmonella spp., Listeria monocytogenes and Escherichia coli O157:H7 were absent in all samples. In most samples the content of BA resulted to be high, with prevalence of histamine and tyramine. In particular, total BA content reached 5861 mg/kg in Pecorino di Fossa cheese. The qPCR method resulted to be very useful to understand the role of autochthonous Pecorino cheese microbiota on BA accumulation in many different products. In fact, since the ability of microorganisms to decarboxylate aminoacids is highly variable being in most cases strain-specific, the detection of bacteria possessing this activity is important to estimate the risk of BA cheese content.
Collapse
Affiliation(s)
- Maria Schirone
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via C.R. Lerici 1, 64023 Mosciano Sant'Angelo, Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Quantification of yeast and bacterial gene transcripts in retail cheeses by reverse transcription-quantitative PCR. Appl Environ Microbiol 2012; 79:469-77. [PMID: 23124230 DOI: 10.1128/aem.02360-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed.
Collapse
|
38
|
Linares DM, del Río B, Ladero V, Martínez N, Fernández M, Martín MC, Álvarez MA. Factors influencing biogenic amines accumulation in dairy products. Front Microbiol 2012; 3:180. [PMID: 22783233 PMCID: PMC3390585 DOI: 10.3389/fmicb.2012.00180] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/27/2012] [Indexed: 12/02/2022] Open
Abstract
Fermented foods are among the food products more often complained of having caused episodes of biogenic amines (BA) poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain potentially harmful levels of BA, specially tyramine, histamine, and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report all those elaboration and processing technological aspects affecting BA biosynthesis and accumulation in dairy foods. Improved knowledge of the factors involved in the synthesis and accumulation of BA should lead to a reduction in their incidence in milk products. Synthesis of BA is possible only when three conditions converge: (i) availability of the substrate amino acids; (ii) presence of microorganisms with the appropriate catabolic pathway activated; and (iii) environmental conditions favorable to the decarboxylation activity. These conditions depend on several factors such as milk treatment (pasteurization), use of starter cultures, NaCl concentration, time, and temperature of ripening and preservation, pH, temperature, or post-ripening technological processes, which will be discussed in this chapter.
Collapse
Affiliation(s)
- Daniel M. Linares
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - Beatriz del Río
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - Noelia Martínez
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - María Fernández
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - María Cruz Martín
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| | - Miguel A. Álvarez
- Instituto de Productos Lácteos de Asturias, (IPLA – CSIC)Villaviciosa, Spain
| |
Collapse
|
39
|
Schirone M, Tofalo R, Visciano P, Corsetti A, Suzzi G. Biogenic amines in italian pecorino cheese. Front Microbiol 2012; 3:171. [PMID: 22586425 PMCID: PMC3347038 DOI: 10.3389/fmicb.2012.00171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/17/2012] [Indexed: 11/13/2022] Open
Abstract
The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations, and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (∼62.000t of production in 2010). Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or pasteurized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA). Bacterial amino acid decarboxylase activity and BA content have to be investigated within the complex microbial community of raw milk cheese for different cheese technologies. The results emphasize the necessity of controlling the indigenous bacterial population responsible for high production of BA and the use of competitive adjunct cultures could be suggested. Several factors can contribute to the qualitative and quantitative profiles of BA's in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, water activity, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge), and the presence of cofactor (pyridoxal phosphate, availability of aminases and deaminases). In fact physico-chemical parameters seem to favor biogenic amine-positive microbiota; both of these environmental factors can easily be modulated, in order to control growth of undesirable microorganisms. Generally, the total content of BA's in Pecorino cheeses can range from about 100-2400 mg/kg, with a prevalence of toxicologically important BA's, tyramine and histamine. The presence of BA is becoming increasingly important to consumers and cheese-maker alike, due to the potential threats of toxicity to humans and consequent trade implications.
Collapse
Affiliation(s)
- Maria Schirone
- Department of Food Science, University of TeramoTeramo, Italy
| | - Rosanna Tofalo
- Department of Food Science, University of TeramoTeramo, Italy
| | | | - Aldo Corsetti
- Department of Food Science, University of TeramoTeramo, Italy
| | - Giovanna Suzzi
- Department of Food Science, University of TeramoTeramo, Italy
| |
Collapse
|
40
|
Tabanelli G, Torriani S, Rossi F, Rizzotti L, Gardini F. Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PRI60. J Food Sci 2012; 77:M231-7. [PMID: 22429258 DOI: 10.1111/j.1750-3841.2012.02628.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
UNLABELLED In this study the activity of the histidine decarboxylase (HdcA) of Streptococcus thermophilus PRI60 was determined during growth and in crude enzyme preparations to evaluate its hazardousness in dairy products. The effect of different pH values, lactose availability, NaCl concentration, and growth temperature on histamine production was evaluated in M17 medium during 168 h incubation. In each case, the production of histamine increased concomitantly with the cell number with a relatively small further rise during the stationary phase. In all cultures the maximum histamine levels were reached at the end of active growth. Histamine was detectable (10 to 55 mg/L) even when growth was strongly inhibited. The HdcA enzyme in crude cell-free extracts was mostly active at acidic pH values common in dairy products. NaCl concentrations lower than 5% did not affect its activity. The enzyme was quite resistant to heat treatments resembling low pasteurization, but was inactivated at 75 °C for 2 min. Given the features of the enzyme studied, efforts must be dedicated to a thorough risk analysis and development of strategies to contrast the presence of histaminogenic S. thermophilus strains in products from raw or mildly heat-treated milk. PRACTICAL APPLICATION During its growth Streptococcus thermophilus can produce histamine over a wide range of conditions encountered in cheesemaking and cheese ripening. The histidine-decarboxylase is even more active in cell-free extract and histamine can be accumulated independently of cell viability.
Collapse
Affiliation(s)
- Giulia Tabanelli
- Dipartamento di Scienze degli Alimenti, Università degli Studi di Bologna, Cesena, Italy
| | | | | | | | | |
Collapse
|
41
|
Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol 2012; 78:3185-92. [PMID: 22367081 DOI: 10.1128/aem.00085-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions.
Collapse
|
42
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Arena M, Romano A, Capozzi V, Beneduce L, Ghariani M, Grieco F, Lucas P, Spano G. Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deiminase genes in wine correlates with substrate availability. Lett Appl Microbiol 2011; 53:395-402. [DOI: 10.1111/j.1472-765x.2011.03120.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Quantitative analysis of histidine decarboxylase gene (hdcA) transcription and histamine production by Streptococcus thermophilus PRI60 under conditions relevant to cheese making. Appl Environ Microbiol 2011; 77:2817-22. [PMID: 21378060 DOI: 10.1128/aem.02531-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese.
Collapse
|