1
|
Tanger IS, Stefanschitz J, Schwert Y, Roth O. The source of microbial transmission influences niche colonization and microbiome development. Proc Biol Sci 2024; 291:20232036. [PMID: 38320611 PMCID: PMC10846951 DOI: 10.1098/rspb.2023.2036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Early life microbial colonizers shape and support the immature vertebrate immune system. Microbial colonization relies on the vertical route via parental provisioning and the horizontal route via environmental contribution. Vertical transmission is mostly a maternal trait making it hard to determine the source of microbial colonization in order to gain insight into the establishment of the microbial community during crucial development stages. The evolution of unique male pregnancy in pipefishes and seahorses enables the disentanglement of both horizontal and vertical transmission, but also facilitates the differentiation of maternal versus paternal provisioning ranging from egg development, to male pregnancy and early juvenile development. Using 16S rRNA amplicon sequencing and source-tracker analyses, we revealed how the distinct origins of transmission (maternal, paternal and horizontal) shaped the juvenile internal and external microbiome establishment in the broad-nosed pipefish Syngnathus typhle. Our data suggest that transovarial maternal microbial contribution influences the establishment of the juvenile gut microbiome whereas paternal provisioning mainly shapes the juvenile external microbiome. The identification of juvenile key microbes reveals crucial temporal shifts in microbial development and enhances our understanding of microbial transmission routes, colonization dynamics and their impact on lifestyle evolution.
Collapse
Affiliation(s)
- Isabel S. Tanger
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Julia Stefanschitz
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Yannick Schwert
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrookerweg 20, 24105 Kiel, Germany
- Zoological Institute, Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
2
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
3
|
Engelberts JP, Abdul Wahab MA, Maldonado M, Rix L, Marangon E, Robbins SJ, Wagner M, Webster NS. Microbes from Mum: symbiont transmission in the tropical reef sponge Ianthella basta. ISME COMMUNICATIONS 2022; 2:90. [PMID: 37938734 PMCID: PMC9723589 DOI: 10.1038/s43705-022-00173-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 05/28/2023]
Abstract
Most marine sponge species harbour distinct communities of microorganisms which contribute to various aspects of their host's health and physiology. In addition to their key roles in nutrient transformations and chemical defence, these symbiotic microbes can shape sponge phenotype by mediating important developmental stages and influencing the environmental tolerance of the host. However, the characterisation of each microbial taxon throughout a sponge's life cycle remains challenging, with several sponge species hosting up to 3000 distinct microbial species. Ianthella basta, an abundant broadcast spawning species in the Indo-Pacific, is an emerging model for sponge symbiosis research as it harbours only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium. Here, we successfully spawned Ianthella basta, characterised its mode of reproduction, and used 16S rRNA gene amplicon sequencing, fluorescence in situ hybridisation, and transmission electron microscopy to characterise the microbial community throughout its life cycle. We confirmed I. basta as being gonochoric and showed that the three dominant symbionts, which together make up >90% of the microbiome according to 16S rRNA gene abundance, are vertically transmitted from mother to offspring by a unique method involving encapsulation in the peri-oocytic space, suggesting an obligate relationship between these microbes and their host.
Collapse
Affiliation(s)
- J Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | | | - Manuel Maldonado
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Emma Marangon
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| |
Collapse
|
4
|
Abbas S, Mahmoud H. Identification of Sponge-Associated Bacteria From the Coast of Kuwait and Their Potential Biotechnological Applications. Front Microbiol 2022; 13:896718. [PMID: 35859748 PMCID: PMC9289682 DOI: 10.3389/fmicb.2022.896718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sponges are among the most ancient animals harboring complex microbial communities with potential applications in biotechnology. The Arabian Gulf is a thermally stressed enclosed body of water located in an arid region where sponges and their halobionts are understudied. This study combined 16S rRNA next-generation gene amplicon sequencing and cultivation techniques to explore the abundance and diversity of sponge-associated bacteria. Culture-independent techniques showed the associations of more than 25 bacterial phyla with Amphimedon sp., Chondrilla australiensis, Haliclona sp., and Niphates spp. Regarding cultivable bacteria, 315 bacterial isolates associated with the sponge Haliclona sp. were cultivated; these isolates were affiliated with the phyla Proteobacteria and Firmicutes and were distributed among six bacterial genera. Selected strains of Bacillus, Ferrimonas, Pseudovibrio, Shewanella, Spongiobacter, and Vibrio were tested for antimicrobial activity against indicator microorganisms and protease enzyme production. Seven Bacillus strains exhibited weak to moderate growth inhibition against Bacillus subtilis, Staphylococcus aureus, and Candida albicans. Furthermore, 29 different strains of Bacillus, Ferrimonas, Shewanella, and Vibrio exhibited different degrees of positive protease activity. In addition, cultivated strains of Bacillus, Shewanella, Pseudovibrio, and Vibrio were tested for their biomineralization abilities. Herein we report for the first time the isolation of biomineralizing bacteria from sponge tissue where eleven bacterial isolates produced different shapes of calcium carbonate crystals on agar. Our observations shed light on the diversity and biotechnological potentials of sponges-associated bacteria inhabiting one of the world’s hottest seas.
Collapse
|
5
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
González-Acosta B, Barraza A, Guadarrama-Analco C, Hernández-Guerrero CJ, Martínez-Díaz SF, Cardona-Félix CS, Aguila-Ramírez RN. Depth effect on the prokaryotic community assemblage associated with sponges from different rocky reefs. PeerJ 2022; 10:e13133. [PMID: 35411254 PMCID: PMC8994493 DOI: 10.7717/peerj.13133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/26/2022] [Indexed: 01/12/2023] Open
Abstract
Background Sponge microbiomes are essential for the function and survival of their host and produce biologically active metabolites, therefore, they are ideal candidates for ecological, pharmacologic and clinical research. Next-generation sequencing (NGS) has revealed that many factors, including the environment and host, determine the composition and structure of these symbiotic communities but the controls of this variation are not well described. This study assessed the microbial communities associated with two marine sponges of the genera Aplysina (Nardo, 1834) and Ircinia (Nardo, 1833) in rocky reefs from Punta Arena de la Ventana (Gulf of California) and Pichilingue (La Paz Bay) in the coast of Baja California Sur, México to determine the relative importance of environment and host in structuring the microbiome of sponges. Methods Specimens of Aplysina sp were collected by scuba diving at 10 m and 2 m; Ircinia sp samples were collected at 2 m. DNA of sponge-associated prokaryotes was extracted from 1 cm3 of tissue, purified and sent for 16S amplicon sequencing. Primer trimmed pair-ended microbial 16S rDNA gene sequences were merged using Ribosomal Database Project (RDP) Paired-end Reads Assembler. Chao1, Shannon and Simpson (alpha) biodiversity indices were estimated, as well permutational analysis of variance (PERMANOVA), and Bray-Curtis distances. Results The most abundant phyla differed between hosts. Those phyla were: Proteobacteria, Acidobacteria, Cyanobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes. In Ircinia sp the dominant phylum was Acidobacteria. Depth was the main factor influencing the microbial community, as analysis of similarities (ANOSIM) showed a significant difference between the microbial communities from different depths. Conclusion Microbial diversity analysis showed that depth was more important than host in structuring the Aplysina sp and Ircinia sp microbiome. This observation contrast with previous reports that the sponge microbiome is highly host specific.
Collapse
Affiliation(s)
- Bárbara González-Acosta
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, México
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - César Guadarrama-Analco
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, México
| | | | | | | | - Ruth Noemí Aguila-Ramírez
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, México
| |
Collapse
|
7
|
Cheun-Arom T, Chuanasa T. An Efficient DNA Extraction for a Blue Xestospongia sp. Sponge and Its Associated Microorganisms Containing Cytotoxic Substances. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:917-927. [PMID: 34714444 DOI: 10.1007/s10126-021-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Extraction of high quantity and quality DNAs from marine sponges, which contain diverse and abundant microbial communities, is important to molecular biology techniques for the analysis of nucleic acids. Several marine sponges and their associated microorganisms have been known to produce cytotoxic natural products on several cancer cell lines via DNA damage mechanisms. These marine cytotoxic substances might be one of the factors that cause the low quantity and quality of DNAs during the DNA extraction from its living origin. Therefore, the extraction of DNA of a Thai blue marine sponge Xestospongia sp. with sufficient purity and quantity for molecular study can be challenging. In this study, we developed an efficient extraction method to prepare DNAs from a Thai blue marine sponge Xestospongia sp. which accumulated a highly potent cytotoxic alkaloid with DNA-damaging activity, named Renieramycin M (RM), as a major constituent in high quantity. We demonstrated that removal of RM from the sponge samples by a simple methanolic extraction before DNA extraction dramatically increased the yield and purity of DNAs compared to the RM-unremoved sponge samples. High molecular weight (HMW) genomic DNA was obtained from sponge samples with 8 times of RM elimination by using modified NaOAc salting-out extraction method. The quantity and quality of the prepared DNAs were comparatively determined via spectrophotometry, electrophoresis, and 16S rRNA gene amplification. Our result suggests that the removal of DNA-damaging constituents from the samples is a crucial step and must be seriously taken as the necessary consideration for the practical protocol of DNA extraction.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Kelly JB, Carlson DE, Low JS, Rice T, Thacker RW. The Relationship Between Microbiomes and Selective Regimes in the Sponge Genus Ircinia. Front Microbiol 2021; 12:607289. [PMID: 33776953 PMCID: PMC7990798 DOI: 10.3389/fmicb.2021.607289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023] Open
Abstract
Sponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges' genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an F ST -outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia. Our analyses identified balancing selection in immunity genes that have implications for the hosts' tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species.
Collapse
Affiliation(s)
- Joseph B. Kelly
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - David E. Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Tyler Rice
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
11
|
de Oliveira BFR, Freitas-Silva J, Sánchez-Robinet C, Laport MS. Transmission of the sponge microbiome: moving towards a unified model. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:619-638. [PMID: 33048474 DOI: 10.1111/1758-2229.12896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Claudia Sánchez-Robinet
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Easson CG, Chaves-Fonnegra A, Thacker RW, Lopez JV. Host population genetics and biogeography structure the microbiome of the sponge Cliona delitrix. Ecol Evol 2020; 10:2007-2020. [PMID: 32128133 PMCID: PMC7042757 DOI: 10.1002/ece3.6033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina-based high-throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance-decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation.
Collapse
Affiliation(s)
- Cole G. Easson
- Department of BiologyMiddle Tennessee State UniversityMurfreesboroTN
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFL
| | - Andia Chaves-Fonnegra
- Harriet L. Wilkes Honors CollegeHarbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFL
| | - Robert W. Thacker
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNY
| | - Jose V. Lopez
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFL
| |
Collapse
|
13
|
Griffiths SM, Antwis RE, Lenzi L, Lucaci A, Behringer DC, Butler MJ, Preziosi RF. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J Anim Ecol 2019; 88:1684-1695. [PMID: 31325164 PMCID: PMC6899969 DOI: 10.1111/1365-2656.13065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Marine sponges are hosts to large, diverse communities of microorganisms. These microbiomes are distinct among sponge species and from seawater bacterial communities, indicating a key role of host identity in shaping its resident microbial community. However, the factors governing intraspecific microbiome variability are underexplored and may shed light on the evolutionary and ecological relationships between host and microbiome. Here, we examined the influence of genetic variation and geographic location on the composition of the Ircinia campana microbiome. We developed new microsatellite markers to genotype I. campana from two locations in the Florida Keys, USA, and characterized their microbiomes using V4 16S rRNA amplicon sequencing. We show that microbial community composition and diversity is influenced by host genotype, with more genetically similar sponges hosting more similar microbial communities. We also found that although I. campana was not genetically differentiated between sites, microbiome composition differed by location. Our results demonstrate that both host genetics and geography influence the composition of the sponge microbiome. Host genotypic influence on microbiome composition may be due to stable vertical transmission of the microbial community from parent to offspring, making microbiomes more similar by descent. Alternatively, sponge genotypic variation may reflect variation in functional traits that influence the acquisition of environmental microbes. This study reveals drivers of microbiome variation within and among locations, and shows the importance of intraspecific variability in mediating eco-evolutionary dynamics of host-associated microbiomes.
Collapse
Affiliation(s)
- Sarah M. Griffiths
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Rachael E. Antwis
- School of Environment and Life SciencesUniversity of SalfordSalfordUK
| | - Luca Lenzi
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Anita Lucaci
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Donald C. Behringer
- Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Mark J. Butler
- Department of Biological SciencesOld Dominion UniversityNorfolkVAUSA
| | - Richard F. Preziosi
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
14
|
Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol 2019; 3:1172-1183. [PMID: 31285574 DOI: 10.1038/s41559-019-0935-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/29/2019] [Indexed: 01/18/2023]
Abstract
Co-evolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between parent and offspring microbiomes and high partner fidelity between host species and their vertically transmitted microbes. Here, we test these ideas in multiple coexisting host species with highly diverse microbiota, leveraging known parent-offspring pairs sampled from eight species of wild marine sponges (Porifera). We found that the processes governing vertical transmission were both neutral and selective. A neutral model was a better fit to larval (R2 = 0.66) than to the adult microbiota (R2 = 0.27), suggesting that the importance of non-neutral processes increases as the sponge host matures. Microbes that are enriched above neutral expectations in adults were disproportionately transferred to offspring. Patterns of vertical transmission were, however, incomplete: larval sponges shared, on average, 44.8% of microbes with their parents, which was not higher than the fraction they shared with nearby non-parental adults. Vertical transmission was also inconsistent across siblings, as larval sponges from the same parent shared only 17% of microbes. Finally, we found no evidence that vertically transmitted microbes are faithful to a single sponge host species. Surprisingly, larvae were as likely to share vertically transmitted microbes with larvae from other sponge species as they were with their own species. Our study demonstrates that common predictions of vertical transmission that stem from species-poor systems are not necessarily true when scaling up to diverse and complex microbiomes.
Collapse
|
15
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
16
|
Sacristán‐Soriano O, Winkler M, Erwin P, Weisz J, Harriott O, Heussler G, Bauer E, West Marsden B, Hill A, Hill M. Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:249-261. [PMID: 30761773 PMCID: PMC6850349 DOI: 10.1111/1758-2229.12739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Marine sponges harbour diverse communities of microbes. Mechanisms used to establish microbial symbioses in sponges are poorly understood, and the relative contributions of horizontal and vertical transmission are unknown for most species. We examined microbial communities in adults and larvae of carotenoid-rich Clathria prolifera and Halichondria bowerbanki from the mid-Atlantic region of the eastern United States. We sequenced microbiomes from larvae and their mothers and seawater (16S rRNA gene sequencing), and compared microbial community characteristics between species and ambient seawater. The microbial communities in sponges were significantly different than those found in seawater, and each species harboured a distinctive microbiome. Larval microbiomes exhibited significantly lower richness compared with adults, with both sponges appearing to transfer to larvae a particular subset of the adult microbiome. We also surveyed culturable bacteria isolated from larvae of both species. Due to conspicuous coloration of adults and larvae, we focused on pigmented heterotrophic bacteria. We found that the densities of bacteria, in terms of colony-forming units and pigmented heterotrophic bacteria, were higher in larvae than in seawater. We identified a common mode of transmission (vertical and horizontal) of microbes in both sponges that might differ between species.
Collapse
Affiliation(s)
- Oriol Sacristán‐Soriano
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Marine Ecology DepartmentCentro de Estudios Avanzados de Blanes (CEAB, CSIC)BlanesSpain
| | - Marina Winkler
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Patrick Erwin
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North CarolinaWilmingtonNCUSA
| | - Jeremy Weisz
- Department of BiologyLinfield CollegeMcMinnvilleORUSA
| | | | - Gary Heussler
- Department of BiologyFairfield UniversityFairfieldCTUSA
| | - Emily Bauer
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | | | - April Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Malcolm Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| |
Collapse
|
17
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
18
|
Turon M, Cáliz J, Garate L, Casamayor EO, Uriz MJ. Showcasing the role of seawater in bacteria recruitment and microbiome stability in sponges. Sci Rep 2018; 8:15201. [PMID: 30315194 PMCID: PMC6185911 DOI: 10.1038/s41598-018-33545-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023] Open
Abstract
We studied the core bacterial communities of 19 sponge species from Nha Trang Bay (Central Vietnam), with particular emphasis on the contribution of planktonic seawater bacteria to the sponge core microbiomes. To ensure consistent sponge-microbe associations and accurate identification of planktonic bacteria transmitted from seawater, we were very restrictive with the definition of the sponge core microbiomes (present in all the replicates), and with the identification of valid biological 16S rRNA gene sequences (100% sequence identity) that belonged to potentially different bacterial taxa. We found a high overlap (>50% relative abundance) between the sponge species core microbiome and the seawater bacterial core in ca. a half of the studied species, including representatives of both, HMA and LMA sponges. From our restrictive analysis, we point to horizontal transmission as a relevant way of symbiont acquisition in sponges. Some species-specific recognition mechanisms may act in sponges to enrich specific seawater bacteria in their tissues. These mechanisms would allow the maintenance of bacterial communities in a species across geographical ranges. Moreover, besides contrasting preferences in bacteria selection from seawater, divergent physiological traits may also account for the different microbiomes in species of HMA and LMA sponges.
Collapse
Affiliation(s)
- Marta Turon
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain.
| | - Joan Cáliz
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Leire Garate
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Emilio O Casamayor
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Maria J Uriz
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain.
| |
Collapse
|
19
|
Björk JR, Diéz-vives C, Astudillo-garcía C, Archie EA, Montoya JM. Vertical transmission of sponge microbiota is inconsistent and unfaithful.. [PMID: 31285574 PMCID: PMC6914380 DOI: 10.1101/425009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Classic evolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between parent and offspring microbiomes, and high partner fidelity between host species and their vertically transmitted microbes. Here, we test these ideas for the first time in multiple host species with highly diverse microbiota, leveraging known-parent offspring pairs sampled from eight species of wild marine sponges (Porifera). Contrary to the hypothesis that vertical transmission is an adaptation that allows sponges to faithfully transmit intact microbial consortia to offspring, we found that vertical transmission is weak and incomplete. Further, we found no evidence that siblings consistently receive the same microbes from their parents, nor that vertically transmitted microbes show high degrees of host species fidelity. Finally, while we show that monophyletic groups of microbes with known symbiotic features and capabilities are more common among vertically transmitted microbes than in the consortia of horizontally acquired microbes, the signature of this vertical transmission is only detectable on the level of Porifera as a whole. Our study demonstrates that common predictions of vertical transmission that stem from species-poor systems are not necessarily true when scaling up to diverse and complex microbiomes.
Collapse
|
20
|
Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol Ecol 2018; 94:4985835. [DOI: 10.1093/femsec/fiy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elham Karimi
- Centre of Marine Sciences (CCMAR), Faculty of Science and Technology (FCT), Algarve University, 8005-139 Faro, Portugal
| | - Beate M Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - André R Soares
- Institute of Geography and Earth Sciences, Aberystwyth University, SY23 3DB Aberystwyth, Wales, UK
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
- Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences (CCMAR), Faculty of Science and Technology (FCT), Algarve University, 8005-139 Faro, Portugal
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
21
|
BluePharmTrain: Biology and Biotechnology of Marine Sponges. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Tout J, Astudillo-García C, Taylor MW, Tyson GW, Stocker R, Ralph PJ, Seymour JR, Webster NS. Redefining the sponge-symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards host-derived compounds. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:750-755. [PMID: 28892304 DOI: 10.1111/1758-2229.12591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Marine sponges host stable and species-specific microbial symbionts that are thought to be acquired and maintained by the host through a combination of vertical transmission and filtration from the surrounding seawater. To assess whether the microbial symbionts also actively contribute to the establishment of these symbioses, we performed in situ experiments on Orpheus Island, Great Barrier Reef, to quantify the chemotactic responses of natural populations of seawater microorganisms towards cellular extracts of the reef sponge Rhopaloeides odorabile. Flow cytometry analysis revealed significant levels of microbial chemotaxis towards R. odorabile extracts and 16S rRNA gene amplicon sequencing showed enrichment of 'sponge-specific' microbial phylotypes, including a cluster within the Gemmatimonadetes and another within the Actinobacteria. These findings infer a potential mechanism for how sponges can acquire bacterial symbionts from the surrounding environment and suggest an active role of the symbionts in finding their host.
Collapse
Affiliation(s)
- Jessica Tout
- Plant Functional Biology & Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | | | - Michael W Taylor
- School of Biological Sciences, University of Auckland, New Zealand
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter J Ralph
- Plant Functional Biology & Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Justin R Seymour
- Plant Functional Biology & Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
23
|
An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040040] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.
Collapse
|
24
|
Abstract
Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont—that an individual's biology is best understood as a composite of the ‘host organism’ and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity—the direct passage of microbes from parent to offspring—is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted—and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
25
|
Matobole RM, van Zyl LJ, Parker-Nance S, Davies-Coleman MT, Trindade M. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa. Mar Drugs 2017; 15:E47. [PMID: 28218694 PMCID: PMC5334627 DOI: 10.3390/md15020047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 11/16/2022] Open
Abstract
Due to the rise in multi-drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge-associated bacterial isolates were cultured and screened for antibacterial activity. Thirty-five isolates showed antibacterial activity, twelve of which exhibited activity against the multi-drug resistant Escherichia coli 1699, implying that some of the bioactive compounds could be novel. Genome sequencing of two of these isolates confirmed that they harbour uncharacterized biosynthetic pathways that may encode novel chemical structures.
Collapse
Affiliation(s)
- Relebohile Matthew Matobole
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Shirley Parker-Nance
- Department of Zoology, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031, South Africa.
- South African Institute for Aquatic Biodiversity (SAIAB), Somerset Street, Grahamstown 6139, South Africa.
| | - Michael T Davies-Coleman
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
26
|
Abstract
A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont.
Collapse
|
27
|
Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress? J Helminthol 2016; 90:647-657. [PMID: 26754963 DOI: 10.1017/s0022149x15001066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Symbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate-bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth-bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.
Collapse
|
28
|
Sipkema D, de Caralt S, Morillo JA, Al-Soud WA, Sørensen SJ, Smidt H, Uriz MJ. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol 2015; 17:3807-21. [PMID: 25732544 DOI: 10.1111/1462-2920.12827] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 11/29/2022]
Abstract
Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by polymerase chain reaction-denaturing gradient gel electrophoresis and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbour their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different phylogenetic signature. In addition, nearly 50% of the reads obtained from P. ficiformis were most closely related to bacteria that were previously reported to be vertically transmitted in other sponges and comprised vertical-horizontal transmission phylogenetic clusters (VHT clusters). Therefore, our results provide evidence for the hypothesis that similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission.
Collapse
Affiliation(s)
- Detmer Sipkema
- Centre d'Estudis Avançats de Blanes (CEAB), CSIC, Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Sònia de Caralt
- Centre d'Estudis Avançats de Blanes (CEAB), CSIC, Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Jose A Morillo
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.,Institute of Water Research, Department of Microbiology, University of Granada, c/Ramon y Cajal 4, 18071, Granada, Spain
| | - Waleed Abu Al-Soud
- Molecular Microbial Ecology Group, University of Copenhagen, Sølvgade 83H, 1307K, Copenhagen, Denmark
| | - Søren J Sørensen
- Molecular Microbial Ecology Group, University of Copenhagen, Sølvgade 83H, 1307K, Copenhagen, Denmark
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - María J Uriz
- Centre d'Estudis Avançats de Blanes (CEAB), CSIC, Accés a la Cala Sant Francesc 14, 17300, Blanes, Spain
| |
Collapse
|
29
|
Noyer C, Casamayor EO, Becerro MA. Environmental heterogeneity and microbial inheritance influence sponge-associated bacterial composition of Spongia lamella. MICROBIAL ECOLOGY 2014; 68:611-620. [PMID: 24801965 DOI: 10.1007/s00248-014-0428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.
Collapse
Affiliation(s)
- Charlotte Noyer
- Department of Marine Biology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Accés a la Cala St. Francesc 14, 17300, Blanes, Girona, Spain
| | | | | |
Collapse
|
30
|
Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review. Mar Drugs 2014; 12:5089-122. [PMID: 25272328 PMCID: PMC4210886 DOI: 10.3390/md12105089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022] Open
Abstract
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.
Collapse
|
31
|
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. THE BIOLOGICAL BULLETIN 2014; 227:78-88. [PMID: 25216505 DOI: 10.1086/bblv227n1p78] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been long recognized. In the present study, 56 sponge species from three geographic regions (greater Caribbean, Mediterranean, Red Sea) were investigated by transmission electron microscopy for the presence of microorganisms in the mesohyl matrix. Additionally, bacterial enumeration by DAPI-counting was performed on a subset of samples. Of the 56 species investigated, 28 were identified as belonging to the HMA and 28 to the LMA category. The sponge orders Agelasida and Verongida consisted exclusively of HMA species, and the Poecilosclerida were composed only of LMA sponges. Other taxa contained both types of microbial associations (e.g., marine Haplosclerida, Homoscleromorpha, Dictyoceratida), and a clear phylogenetic pattern could not be identified. For a few sponge species, an intermediate microbial load was determined, and the microscopy data did not suffice to reliably determine HMA or LMA status. To experimentally determine the HMA or LMA status of a sponge species, we therefore recommend a combination of transmission electron microscopy and 16S rRNA gene sequence data. This study significantly expands previous reports on microbial abundances in sponge tissues and contributes to a better understanding of the HMA-LMA dichotomy in sponge-microbe symbioses.
Collapse
Affiliation(s)
- Volker Gloeckner
- Julius-von-Sachs Institute for Biological Sciences, Department of Botany II, University of Wuerzburg, Julius-von-Sachs Platz 3, 97082 Wuerzburg, Germany
| | - Markus Wehrl
- Julius-von-Sachs Institute for Biological Sciences, Department of Botany II, University of Wuerzburg, Julius-von-Sachs Platz 3, 97082 Wuerzburg, Germany
| | - Lucas Moitinho-Silva
- Julius-von-Sachs Institute for Biological Sciences, Department of Botany II, University of Wuerzburg, Julius-von-Sachs Platz 3, 97082 Wuerzburg, Germany
| | - Christine Gernert
- Julius-von-Sachs Institute for Biological Sciences, Department of Botany II, University of Wuerzburg, Julius-von-Sachs Platz 3, 97082 Wuerzburg, Germany
| | - Peter Schupp
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Joseph R Pawlik
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, North Carolina, USA
| | - Niels L Lindquist
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany; and
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany; and SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Ute Hentschel
- Julius-von-Sachs Institute for Biological Sciences, Department of Botany II, University of Wuerzburg, Julius-von-Sachs Platz 3, 97082 Wuerzburg, Germany;
| |
Collapse
|
32
|
Fuerst JA. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 2014; 98:7331-47. [DOI: 10.1007/s00253-014-5861-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
|
33
|
Bayer K, Kamke J, Hentschel U. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiol Ecol 2014; 89:679-90. [PMID: 24942664 DOI: 10.1111/1574-6941.12369] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy.
Collapse
Affiliation(s)
- Kristina Bayer
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| | | | | |
Collapse
|
34
|
Keller-Costa T, Jousset A, van Overbeek L, van Elsas JD, Costa R. The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLoS One 2014; 9:e88429. [PMID: 24533086 PMCID: PMC3922812 DOI: 10.1371/journal.pone.0088429] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction--Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Leo van Overbeek
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Rodrigo Costa
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal
| |
Collapse
|
35
|
Affiliation(s)
- Lisa J. Funkhouser
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (LF); (SB)
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (LF); (SB)
| |
Collapse
|
36
|
Pita L, López-Legentil S, Erwin PM. Biogeography and host fidelity of bacterial communities in Ircinia spp. from the Bahamas. MICROBIAL ECOLOGY 2013; 66:437-447. [PMID: 23529652 DOI: 10.1007/s00248-013-0215-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge-bacteria relationships in Ircinia species from the Bahamas.
Collapse
Affiliation(s)
- Lucía Pita
- Department of Animal Biology, University of Barcelona, Diagonal Avenue 643, 08028, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Pita L, Turon X, López-Legentil S, Erwin PM. Host rules: spatial stability of bacterial communities associated with marine sponges (Irciniaspp.) in the Western Mediterranean Sea. FEMS Microbiol Ecol 2013; 86:268-76. [DOI: 10.1111/1574-6941.12159] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/26/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lucía Pita
- Department de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio); Universitat de Barcelona (UB); Barcelona; Spain
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB-CSIC); Blanes; Girona; Spain
| | | | | |
Collapse
|
38
|
Karlep L, Reintamm T, Kelve M. Intragenomic Profiling Using Multicopy Genes: The rDNA Internal Transcribed Spacer Sequences of the Freshwater Sponge Ephydatia fluviatilis. PLoS One 2013; 8:e66601. [PMID: 23825547 PMCID: PMC3688955 DOI: 10.1371/journal.pone.0066601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Multicopy genes, like ribosomal RNA genes (rDNA), are widely used to describe and distinguish individuals. Despite concerted evolution that homogenizes a large number of rDNA gene copies, the presence of different gene variants within a genome has been reported. Characterization of an organism by defining every single variant of tens to thousands of rDNA repeat units present in a eukaryotic genome would be quite unreasonable. Here we provide an alternative approach for the characterization of a set of internal transcribed spacer sequences found within every rDNA repeat unit by implementing direct sequencing methodology. The prominent allelic variants and their relative amounts characterizing an individual can be described by a single sequencing electropherogram of the mixed amplicon containing the variants present within the genome. We propose a method for rational analysis of heterogeneity of multicopy genes by compiling a profile based on quantification of different sequence variants of the internal transcribed spacers of the freshwater sponge Ephydatia fluviatilis as an example. In addition to using conventional substitution analysis, we have developed a mathematical method, the proportion model method, to quantify the relative amounts of allelic variants of different length using data from direct sequencing of the heterogeneous amplicon. This method is based on determining the expected signal intensity values (corresponding to peak heights from the sequencing electropherogram) by sequencing clones from the same or highly similar amplicon and comparing hypothesized combinations against the values obtained by direct sequencing of the heterogeneous amplicon. This method allowed to differentiate between all specimens analysed.
Collapse
Affiliation(s)
- Liisi Karlep
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnu Reintamm
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Merike Kelve
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
39
|
Cleary DF, Becking LE, de Voogd NJ, Pires AC, Polónia AR, Egas C, Gomes NC. Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol Ecol 2013; 85:465-82. [DOI: 10.1111/1574-6941.12135] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniel F.R. Cleary
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Leontine E. Becking
- Naturalis Biodiversity Center; Leiden The Netherlands
- Institute for Marine Resources and Ecosystem Studies (IMARES); Wageningen UR; Den Helder The Netherlands
| | | | - Ana C.C. Pires
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Ana R.M. Polónia
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Conceição Egas
- Biocant-Biotechnology Innovation Center; Cantanhede Portugal
| | - Newton C.M. Gomes
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| |
Collapse
|
40
|
Esteves AI, Hardoim CC, Xavier JR, Gonçalves JM, Costa R. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 2013; 85:519-36. [DOI: 10.1111/1574-6941.12140] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ana I.S. Esteves
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| | - Cristiane C.P. Hardoim
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| | - Joana R. Xavier
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Pólo dos Açores - Departamento de Biologia da Universidade dos Açores; Ponta Delgada Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC); Blanes (Girona) Spain
| | - Jorge M.S. Gonçalves
- Fisheries; Biodiversity and Conservation Research Group; Centre of Marine Sciences; University of Algarve; Faro Portugal
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group; Centre of Marine Sciences; Universidade do Algarve; Faro Portugal
| |
Collapse
|
41
|
Olson JB, Gao X. Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol Ecol 2013; 85:74-84. [DOI: 10.1111/1574-6941.12099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Julie B. Olson
- Department of Biological Sciences; The University of Alabama; Tuscaloosa; AL; USA
| | - Xumin Gao
- Department of Biological Sciences; The University of Alabama; Tuscaloosa; AL; USA
| |
Collapse
|
42
|
Schöttner S, Hoffmann F, Cárdenas P, Rapp HT, Boetius A, Ramette A. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One 2013; 8:e55505. [PMID: 23393586 PMCID: PMC3564759 DOI: 10.1371/journal.pone.0055505] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level), as well as sponge type (high versus low microbial abundance), and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that as many as 345 (79%) of the 437 different bacterial operational taxonomic units (OTUs) detected in the dataset were shared between sponges and sediments, while only 70 (16%) appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation), sponge family (52%) or sponge type (30%), whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each). In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems.
Collapse
Affiliation(s)
- Sandra Schöttner
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Gloeckner V, Lindquist N, Schmitt S, Hentschel U. Ectyoplasia ferox, an experimentally tractable model for vertical microbial transmission in marine sponges. MICROBIAL ECOLOGY 2013; 65:462-474. [PMID: 23263235 DOI: 10.1007/s00248-012-0142-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
The oviparous sponge Ectyoplasia ferox is commonly found in Florida and the Bahamas. Every year in August and/or September about 6 days after a full moon, E. ferox will shed embryo-containing spawning material into the seawater from which hundreds to thousands of larvae will hatch per host individual. In order to investigate vertical microbial transmission in E. ferox, 16S rRNA gene library construction and denaturing gradient gel electrophoresis was employed. Microbial symbionts from six phyla and the unknown lineage SAUL were shown to be vertically transmitted. The identification of 21 VT clusters, of which 19 were situated within sponge-specific or sponge-coral-specific clusters, indicated that a large fraction of the symbiotic microbial consortium was present in the sexual reproductive stages. Spawning led to a 50 % reduction of microbial numbers in the adult sponge mesohyl. We furthermore provide the first evidence that the symbiotic microbial consortia of E. ferox were generally metabolically active within the reproductive stages. Finally, we propose E. ferox as a model system for vertical transmission owing to the ease of experimental access to all sexual reproductive stages, and to experimental tractability in the laboratory including the possibility of rearing symbiont-free juvenile sponges.
Collapse
Affiliation(s)
- Volker Gloeckner
- Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|
44
|
Webster NS, Luter HM, Soo RM, Botté ES, Simister RL, Abdo D, Whalan S. Same, same but different: symbiotic bacterial associations in GBR sponges. Front Microbiol 2013; 3:444. [PMID: 23346080 PMCID: PMC3548243 DOI: 10.3389/fmicb.2012.00444] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/31/2012] [Indexed: 02/01/2023] Open
Abstract
Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR) sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65–100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira, and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs) common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral) specific sequence clusters (SC). These SC spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira, and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0 to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental perturbation.
Collapse
Affiliation(s)
- N S Webster
- Australian Institute of Marine Science Townsville, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Hardoim CCP, Esteves AIS, Pires FR, Gonçalves JMS, Cox CJ, Xavier JR, Costa R. Phylogenetically and spatially close marine sponges harbour divergent bacterial communities. PLoS One 2012; 7:e53029. [PMID: 23300853 PMCID: PMC3531450 DOI: 10.1371/journal.pone.0053029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023] Open
Abstract
Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family--Sarcotragus spinosulus and Ircinia variabilis--in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other--with higher number of ribotypes observed in S. spinosulus--and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.
Collapse
Affiliation(s)
- Cristiane C. P. Hardoim
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve, Faro, Algarve, Portugal
| | - Ana I. S. Esteves
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve, Faro, Algarve, Portugal
| | - Francisco R. Pires
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Pólo dos Açores, Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Açores, Portugal
| | - Jorge M. S. Gonçalves
- Fisheries, Biodiversity and Conservation Research Group, Centre of Marine Sciences, University of Algarve, Faro, Algarve, Portugal
| | - Cymon J. Cox
- Plant Systematics and Bioinformatics, Centre of Marine Sciences, University of Algarve, Faro, Algarve, Portugal
| | - Joana R. Xavier
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Pólo dos Açores, Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Açores, Portugal
- Centre for Advanced Studies of Blanes, Girona, Spain
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of Algarve, Faro, Algarve, Portugal
| |
Collapse
|
46
|
Erwin PM, Pita L, López-Legentil S, Turon X. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl Environ Microbiol 2012; 78:7358-68. [PMID: 22885741 PMCID: PMC3457113 DOI: 10.1128/aem.02035-12] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/01/2012] [Indexed: 11/20/2022] Open
Abstract
Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health.
Collapse
Affiliation(s)
- Patrick M Erwin
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain.
| | | | | | | |
Collapse
|
47
|
Sharp KH, Ritchie KB. Multi-partner interactions in corals in the face of climate change. THE BIOLOGICAL BULLETIN 2012; 223:66-77. [PMID: 22983033 DOI: 10.1086/bblv223n1p66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent research has explored the possibility that increased sea-surface temperatures and decreasing pH (ocean acidification) contribute to the ongoing decline of coral reef ecosystems. Within corals, a diverse microbiome exerts significant influence on biogeochemical and ecological processes, including food webs, organismal life cycles, and chemical and nutrient cycling. Microbes on coral reefs play a critical role in regulating larval recruitment, bacterial colonization, and pathogen abundance under ambient conditions, ultimately governing the overall resilience of coral reef systems. As a result, microbial processes may be involved in reef ecosystem-level responses to climate change. Developments of new molecular technologies, in addition to multidisciplinary collaborative research on coral reefs, have led to the rapid advancement in our understanding of bacterially mediated reef responses to environmental change. Here we review new discoveries regarding (1) the onset of coral-bacterial associations; (2) the functional roles that bacteria play in healthy corals; and (3) how bacteria influence coral reef response to environmental change, leading to a model describing how reef microbiota direct ecosystem-level response to a changing global climate.
Collapse
Affiliation(s)
- Koty H Sharp
- Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711, USA.
| | | |
Collapse
|
48
|
Abstract
Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.
Collapse
|
49
|
ROUNDS MEGANA, CROWDER CHRISTOPHERD, MATTHEWS HEATHERE, PHILIPSON CURTISA, SCOLES GLENA, ECKER DAVIDJ, SCHUTZER STEVENE, ESHOO MARKW. Identification of endosymbionts in ticks by broad-range polymerase chain reaction and electrospray ionization mass spectrometry. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:843-850. [PMID: 22897044 PMCID: PMC3535486 DOI: 10.1603/me12038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many organisms, such as insects, filarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used a polymerase chain reaction/electrospray ionization-mass spectrometry assay designed to detect a wide range of vectorborne microorganisms to characterize endosymbiont genetic signatures from Amblyomma americanum (L.), Amblyomma maculatum Koch, Dermacentor andersoni Stiles, Dermacentor occidentalis Marx, Dermacentor variabilis (Say), Ixodes scapularis Say, Ixodes pacificus Cooley & Kohls, Ixodes ricinus (L.), and Rhipicephalus sanguineus (Latreille) ticks collected at various sites and of different stages and both sexes. The assay combines the abilities to simultaneously detect pathogens and closely related endosymbionts and to identify tick species via characterization of their respective unique endosymbionts in a single test.
Collapse
Affiliation(s)
- MEGAN A. ROUNDS
- Ibis Biosciences, Inc., an Abbott Company, Carlsbad, CA 92008
| | | | | | | | - GLEN A. SCOLES
- USDA–ARS, Animal Disease Research Unit, 3003 ADBF, Washington State University, P.O. Box 646630 Pullman, WA 99164
| | - DAVID J. ECKER
- Ibis Biosciences, Inc., an Abbott Company, Carlsbad, CA 92008
| | - STEVEN E. SCHUTZER
- Department of Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103
| | - MARK W. ESHOO
- Ibis Biosciences, Inc., an Abbott Company, Carlsbad, CA 92008
| |
Collapse
|
50
|
Richardson C, Hill M, Marks C, Runyen-Janecky L, Hill A. Experimental manipulation of sponge/bacterial symbiont community composition with antibiotics: sponge cell aggregates as a unique tool to study animal/microorganism symbiosis. FEMS Microbiol Ecol 2012; 81:407-18. [DOI: 10.1111/j.1574-6941.2012.01365.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Malcolm Hill
- Department of Biology; University of Richmond; Richmond; VA; USA
| | - Carolyn Marks
- Department of Biology; University of Richmond; Richmond; VA; USA
| | | | - April Hill
- Department of Biology; University of Richmond; Richmond; VA; USA
| |
Collapse
|