1
|
Rabiu AG, Marcus AJ, Olaitan MO, Falodun OI. Systematic review and meta-analyses of the role of drinking water sources in the environmental dissemination of antibiotic-resistant Escherichia coli in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3720-3734. [PMID: 38379376 DOI: 10.1080/09603123.2024.2320934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Escherichia coli are pathogenic and antibiotic-resistant organisms that can spread to humans through water. However, there is sparse synthesised information on the dissemination of antibiotic-resistant E. coli through drinking water in Africa. This review provides an overview of the environmental spread of antimicrobial-resistant E. coli through drinking water in Africa. We performed a systematic review based on PRISMA guidelines, and 40 eligible studies from 12 countries were identified until June 2023. Four electronic databases (PubMed, Elsevier, AJOL, and DOAJ) were searched. Studies that employed phenotypic tests (n = 24/40) in identifying the bacterium outstripped those that utilised genome-based methods (n = 13). Of the 40 studies, nine and five, respectively, assessed the bacterium for antimicrobial resistance (AMR) phenotype and genotype. Multiple antibiotic resistance indices of 0.04-0.1 revealed a low level of antibiotic resistance. The detection of multidrug-resistant E. coli carrying resistance genes in certain water sources suggests that AMR-surveillance expansion should include drinking water.
Collapse
Affiliation(s)
- Akeem Ganiyu Rabiu
- Department of Microbiology, Federal University of Health Sciences, Ila-Orangun, Nigeria
| | | | | | | |
Collapse
|
2
|
Gutema FD, Okoth B, Agira J, Amondi CS, Busienei PJ, Simiyu S, Mberu B, Sewell D, Baker KK. Spatial-Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1351. [PMID: 39457324 PMCID: PMC11506941 DOI: 10.3390/ijerph21101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Public spaces in countries with limited societal development can be contaminated with feces containing pathogenic microbes from animals and people. Data on contamination levels, spatial distribution, and the diversity of enteric pathogens in the public settings of low- and middle-income neighborhoods are crucial for devising strategies that minimize the enteric infection burden. The objective of this study was to compare spatial-temporal differences in the detection rate and diversity of enteric pathogens in the public spaces of low- and middle-income neighborhoods of Nairobi, Kenya. TaqMan array card (TAC) molecular assays were employed to analyze soil samples for 19 enteropathogens, along with a selective bacterial culture for pathogenic Enterobacteriaceae. An observational assessment was conducted during every site visit to document the hygienic infrastructure and sanitation conditions at the sites. We detected at least one pathogen in 79% (127/160) and ≥2 pathogens in 67.5% (108/160) of the soil samples tested. The four most frequently detected pathogens were EAEC (67.5%), ETEC (59%), EPEC (57.5%), and STEC (31%). The detection rate (91% vs. 66%) and mean number of enteric pathogens (5 vs. 4.7) were higher in low-income Kibera than in middle-income Jericho. The more extensive spatial distribution of pathogens in Kibera resulted in increases in the detection of different enteric pathogens from within-site (area < 50 m2) and across-site (across-neighborhood) movements compared to Jericho. The pathogen detection rates fluctuated seasonally in Jericho but remained at sustained high levels in Kibera. While better neighborhood conditions were linked with lower pathogen detection rates, pathogenic E. coli remained prevalent in the public environment across both neighborhoods. Future studies should focus on identifying how the sources of pathogen contamination are modified by improved environmental sanitation and hygiene and the role of these contaminated public environments in enteric infections in children.
Collapse
Affiliation(s)
- Fanta D. Gutema
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology, Immunology and Veterinary Public Health, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Bonphace Okoth
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - John Agira
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Christine S. Amondi
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Phylis J. Busienei
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Blessing Mberu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Daniel Sewell
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
3
|
Peroutka-Bigus N, Nielsen DW, Trachsel J, Mou KT, Sharma VK, Kudva IT, Loving CL. Phenotypic and genomic comparison of three human outbreak and one cattle-associated Shiga toxin-producing Escherichia coli O157:H7. Microbiol Spectr 2024; 12:e0414023. [PMID: 39254337 PMCID: PMC11451603 DOI: 10.1128/spectrum.04140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Escherichia coli O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for E. coli O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental E. coli O157:H7 isolates from those associated with human illness. The objective of this study was to compare the genotypes and phenotypes of a diverse set of E. coli O157:H7 isolates, with the intent of identifying differences that could inform cattle colonization and fecal shedding, along with virulence potential in humans. Isolates differed in attachment phenotypes on human Caco-2 cells and bovine-derived recto-anal junction squamous epithelial cells, with curli having a strong impact on attachment to the human-derived cell line. The prototypical E. coli O157 isolate EDL933 had the greatest expression of the adhesin gene iha, yet it had decreased expression of the virulence genes stx2, eae, and ehxA compared the lineage I/II isolates RM6067W and/or FRIK1989. Strong or weak biofilm production was not associated with significant differences in cattle colonization or shedding, suggesting biofilms may not play a major role in cattle colonization. No significant differences in cattle colonization and fecal shedding were detected, despite genomic and in vitro phenotypic differences. The outbreak isolate associated with the greatest incidence of hemolytic uremic syndrome, RM6067W, induced the greatest Vero cell cytotoxicity and had the greatest stx2 gene expression. IMPORTANCE Foodborne illness has major impacts on global health and imposes financial hardships on food industries. Escherichia coli serotype O157:H7 is associated with foodborne illness. Cattle feces are a source of E. coli O157:H7, and routine surveillance has led to an abundance of E. coli O157:H7 genomic data. The relationship between E. coli O157:H7 genome and phenotype is not clearly discerned for cattle colonization/shedding and improved understanding could lead to additional strategies to limit E. coli O157:H7 in the food chain. The goal of the research was to evaluate genomic and phenotypic attributes of E. coli O157:H7 associated with cattle colonization and shedding, environmental persistence, and human illness. Our results indicate variations in biofilm formation and in vitro cellular adherence was not associated with differences in cattle colonization or shedding. Overall, processes involved in cattle colonization and various phenotypes in relation to genotype are complex and remain not well understood.
Collapse
Affiliation(s)
- Nathan Peroutka-Bigus
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Daniel W. Nielsen
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Julian Trachsel
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Kathy T. Mou
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Vijay K. Sharma
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| |
Collapse
|
4
|
Abstract
Escherichia coli contain a high level of genetic diversity and are generally associated with the guts of warm-blooded animals but have also been isolated from secondary habitats outside hosts. We used E. coli isolates from previous in situ microcosm experiments conducted under actual beach conditions and performed population-level genomic analysis to identify accessory genes associated with survival within the beach sand environment. E. coli strains capable of surviving had been selected for by seeding isolates originating from sand, sewage, and gull waste (n = 528; 176 from each source) into sand, which was sealed in microcosm chambers and buried for 45 days in the backshore beach of Lake Michigan. In the current work, survival-associated genes were identified by comparing the pangenome of viable E. coli populations at the end of the microcosm experiment with the original isolate collection and identifying loci enriched in the out put samples. We found that environmental survival was associated with a wide variety of genetic factors, with the majority corresponding to metabolism enzymes and transport proteins. Of the 414 unique functions identified, most were present across E. coli phylogroups, except B2 which is often associated with human pathogens. Gene modules that were enriched in surviving populations included a betaine biosynthesis pathway, which produces an osmoprotectant, and the GABA (gamma-aminobutyrate) biosynthesis pathway, which aids in pH homeostasis and nutrient use versatility. Overall, these results demonstrate that the genetic flexibility within this species allows for survival in the environment for extended periods. IMPORTANCE Escherichia coli is commonly used as an indicator of recent fecal pollution in recreational water despite its known ability to survive in secondary environments, such as beach sand. These long-term survivors from sand reservoirs can be introduced into the water column through wave action or runoff during precipitation events, thereby impacting the perception of local water quality. Current beach monitoring methods cannot differentiate long-term environmental survivors from E. coli derived from recent fecal input, resulting in inaccurate monitoring results and unnecessary beach closures. This work identified the genetic factors that are associated with long-term survivors, providing insight into the mechanistic basis for E. coli accumulation in beach sand. A greater understanding of the intrinsic ability of E. coli to survive long-term and conditions that promote such survival will provide evidence of the limitations of beach water quality assessments using this indicator.
Collapse
|
5
|
Behruznia M, Gordon DM. Molecular and metabolic characteristics of wastewater associated Escherichia coli strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:646-654. [PMID: 35638456 PMCID: PMC9543349 DOI: 10.1111/1758-2229.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/04/2023]
Abstract
We previously characterized the genetic diversity of Escherichia coli strains isolated from septic tanks in the Canberra region, Australia. In this study, we used repetitive element palindromic (REP) PCR fingerprinting to identify dominant REP-types belonging to phylogroups A and B1 strains across septic tanks. Subsequently, 76 E. coli strains were selected for whole-genome sequencing and phenotype microarrays. Comparative genome analysis was performed to compare septic tank E. coli genomes with a collection of 433 E. coli isolates from different hosts and freshwater. Clonal complexes (CCs) 10 (n = 15) and 399 (n = 10) along with sequence type (ST) 401 (n = 9) were the common lineages in septic tanks. CC10 strains have been detected from animal hosts and freshwater, whereas CC399 and ST401 strains appeared to be associated with septic tanks as they were uncommon in isolates from other sources. Comparative genome analysis revealed that CC399 and ST401 were genetically distinct from other isolates and carried an abundance of niche-specific traits involved in environmental adaptation. These strains also showed distinct metabolic characteristics, such as the ability to utilize pectin, which may provide a fitness advantage under nutrient-limited conditions. The results of this study characterized the adaptive mechanisms allowing E. coli to persist in wastewater.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - David M. Gordon
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
6
|
Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100093. [PMID: 35005658 PMCID: PMC8718834 DOI: 10.1016/j.crmicr.2021.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
Analysis of Escherichia coli taxonomy has expanded into a species-complex with the identification of divergent cryptic clades. A key question is the evolutionary trajectory of these clades and their relationship to isolates of clinical or veterinary importance. Since they have some environmental association, we screened a collection of E. coli isolated from a long-term spring barley field trial for their presence. While most isolates clustered into the enteric-clade, four of them clustered into Clade-V, and one in Clade-IV. The Clade -V isolates shared >96% intra-clade average nucleotide sequence identity but <91% with other clades. Although pan-genomics analysis confirmed their taxonomy as Clade -V (E. marmotae), retrospective phylogroup PCR did not discriminate them correctly. Differences in metabolic and adherence gene alleles occurred in the Clade -V isolates compared to E. coli sensu scricto. They also encoded the bacteriophage phage-associated cyto-lethal distending toxin (CDT) and antimicrobial resistance (AMR) genes, including an ESBL, blaOXA-453. Thus, the isolate collection encompassed a genetic diversity, and included cryptic clade isolates that encode potential virulence factors. The analysis has determined the phylogenetic relationship of cryptic clade isolates with E. coli sensu scricto and indicates a potential for horizontal transfer of virulence factors.
Collapse
|
7
|
Nag R, Nolan S, O'Flaherty V, Fenton O, Richards KG, Markey BK, Whyte P, Bolton D, Cummins E. Quantitative microbial human exposure model for faecal indicator bacteria and risk assessment of pathogenic Escherichia coli in surface runoff following application of dairy cattle slurry and co-digestate to grassland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113627. [PMID: 34467857 DOI: 10.1016/j.jenvman.2021.113627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Animal waste contains high numbers of microorganisms and therefore can present a potential biological threat to human health. During episodic rainfall events resulting in runoff, microorganisms in the waste and soil may migrate into surface runoff, contaminating surface water resources. A probabilistic human exposure (HE) model was created to determine exposure to faecal indicator bacteria (FIB): total coliforms (TC), E. coli and enterococci following application of bio-based fertiliser (dairy cattle slurry, digestate) to grassland; using a combination of experimental field results and literature-based data. This step was followed by a quantitative microbial risk assessment (QMRA) model for pathogenic E. coli based on a literature-based dose-response model. The results showed that the maximum daily HE (HEdaily) is associated with E. coli for unprocessed slurry (treatment T1) on day 1, the worst-case scenario where the simulated mean HEdaily was calculated as 2.84 CFU day -1. The results indicate that the overall annual probability of risk (Pannual) of illness from E. coli is very low or low based on the WHO safe-limit of Pannual as 10 -6. In the worst-case scenario, a moderate risk was estimated with simulated mean Pannual as 1.0 × 10 -5. Unpasteurised digestate application showed low risk on day 1 and 2 (1.651 × 10 -6, 1.167 × 10 -6, respectively). Pasteurised digestate showed very low risk in all scenarios. These results support the restriction imposed on applying bio-based fertiliser if there is any rain forecast within 48 h from the application time. This study proposes a future extension of the probabilistic model to include time, intensity, discharge, and distance-dependant dilution factor. The information generated from this model can help policymakers ensure the safety of surface water sources through the quality monitoring of FIB levels in bio-based fertiliser.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland; TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
NandaKafle G, Huegen T, Potgieter SC, Steenkamp E, Venter SN, Brözel VS. Niche Preference of Escherichia coli in a Peri-Urban Pond Ecosystem. Life (Basel) 2021; 11:life11101020. [PMID: 34685391 PMCID: PMC8538306 DOI: 10.3390/life11101020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli comprises diverse strains with a large accessory genome, indicating functional diversity and the ability to adapt to a range of niches. Specific strains would display greatest fitness in niches matching their combination of phenotypic traits. Given this hypothesis, we sought to determine whether E. coli in a peri-urban pond and associated cattle pasture display niche preference. Samples were collected from water, sediment, aquatic plants, water snails associated with the pond, as well as bovine feces from cattle in an adjacent pasture. Isolates (120) were obtained after plating on Membrane Lactose Glucuronide Agar (MLGA). We used the uidA and mutS sequences for all isolates to determine phylogeny by maximum likelihood, and population structure through gene flow analysis. PCR was used to allocate isolates to phylogroups and to determine the presence of pathogenicity/virulence genes (stxI, stxII, eaeA, hlyA, ST, and LT). Antimicrobial resistance was determined using a disk diffusion assay for Tetracycline, Gentamicin, Ciprofloxacin, Meropenem, Ceftriaxone, and Azithromycin. Our results showed that isolates from water, sediment, and water plants were similar by phylogroup distribution, virulence gene distribution, and antibiotic resistance while both snail and feces populations were significantly different. Few of the feces isolates were significantly similar to aquatic ones, and most of the snail isolates were also different. Population structure analysis indicated three genetic backgrounds associated with bovine, snail, and aquatic environments. Collectively these data support niche preference of E. coli isolates occurring in this ecosystem.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
| | - Taylor Huegen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
| | - Sarah C. Potgieter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
- Correspondence:
| |
Collapse
|
9
|
Tropea E, Hynds P, McDermott K, Brown RS, Majury A. Environmental adaptation of E. coli within private groundwater sources in southeastern Ontario: Implications for groundwater quality monitoring and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117263. [PMID: 33940229 DOI: 10.1016/j.envpol.2021.117263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Groundwater quality monitoring typically employs testing for the presence of E. coli as a fecal indicator of recent ingress of human or animal fecal material. The efficacy of fecal indicator organisms is based on the primary criteria that the organism does not reproduce in the aquatic environment. However, recent studies have reported that E. coli may proliferate (i.e., has adapted to) in the external environment, including soil and surface water. To date, the presence of environmentally-adapted E. coli in groundwater has not been examined. The current study employed Clermont phylotyping and the presence of six accessory genes to identify the likely presence of adapted E. coli in private groundwater sources. E. coli isolates (n = 325) from 76 contaminated private water wells located in a southeastern Ontario watershed were compared with geographically analogous human and animal fecal E. coli isolates (n = 234). Cryptic clades III-V, a well-described environmentally-adapted Escherichia population, were identified in three separate groundwater wells, one of which exclusively comprised this adapted population. Dimensionality reduction (via Principal Component Analysis) was used to develop an "E. coli adaptation model", comprising three distinct components (groundwater, animal feces, human feces) and suggests adaptation occurs frequently in the groundwater environment. Model findings indicate that 23/76 (30.3%) wells had an entirely adapted community. Accordingly, the use of E. coli as a FIO returned a false positive result in these instances, while an additional 23/76 (30.3%) wells exhibited some evidence of adaptation (i.e., not all isolates were adapted) representing an over-estimate of the magnitude (concentration) of contamination. Study findings highlight the need to further characterize environmentally-adapted E. coli in the groundwater environment and the potential implications with respect to water quality policy, legislation and determinants of human health risk both regionally and internationally.
Collapse
Affiliation(s)
- Erica Tropea
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | | | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
11
|
Hao J, Chai YN, Lopes LD, Ordóñez RA, Wright EE, Archontoulis S, Schachtman DP. The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa, USA. Appl Environ Microbiol 2021; 87:AEM.02673-20. [PMID: 33310710 PMCID: PMC7851703 DOI: 10.1128/aem.02673-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 02/03/2023] Open
Abstract
This study investigated the differences in microbial community abundance, composition and diversity throughout the depth profiles in soils collected from corn and soybean fields in lowa, USA using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors including soil organic matter, soil bulk density and the length of time that deep soils were saturated with water were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil which is a precious resource for food security.IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile, will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and in providing nutrients and water for plants. In the most productive agricultural systems in the USA where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (> 100 cm), but little is known about the taxonomic diversity or the factors that shape deep soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep soil communities and reveal more detailed information on taxa that exist in deep agricultural soils.
Collapse
Affiliation(s)
- Jingjie Hao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Yen Ning Chai
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Lucas Dantas Lopes
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Raziel A Ordóñez
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, Iowa, USA
- Department of Plant Science and Industries Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily E Wright
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, Iowa, USA
| | | | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
12
|
Merget B, Dobrindt U, Forbes KJ, Strachan NJC, Brennan F, Holden NJ. Variability in growth responses of non-O157 EHEC isolates in leafy vegetables, sprouted seeds and soil extracts occurs at the isolate level. FEMS Microbiol Lett 2020; 367:5739917. [DOI: 10.1093/femsle/fnaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Foods of plant origin are recognised as a major source of foodborne pathogens, in particular for Shigatoxigenic Escherichia coli (STEC). Most work for STEC and plant-based fresh produce has focused on the most prevalent outbreak serogroup, O157. However, non-O157 STEC is an emerging hazard, and as such it is important to characterise aspects within this group that reflect their ability to colonise alternative hosts and habitats relevant to horticultural production. Growth kinetics were quantified for a diverse set of clinical enterohaemorrhagic E. coli isolates in extracts made from different tissues of spinach, lettuce or sprouted seeds, or from soil, to represent association with ready-to-eat fresh produce production. For leafy vegetables, spinach apoplast supported the fastest rates of growth and lettuce root extracts generated the slowest growth rates. Growth rates were similar for the majority of isolates in fenugreek or alfalfa sprouted seed extracts. Monosaccharides were the major driver of bacterial growth. No correlations were found for growth rates between different serotypes or for Shigatoxin gene carriage. Thus, growth rates varied in a plant-dependent and isolate-dependent manner, for all plant or soil extracts tested, indicative of isolate-specific differences in metabolic flexibility. These findings are relevant for risk assessment of non-O157 STEC.
Collapse
Affiliation(s)
- Bernhard Merget
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Ulrich Dobrindt
- Institute for Hygiene, University of Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Ken J Forbes
- School of Medicine and Dentistry, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Norval J C Strachan
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Fiona Brennan
- Teagasc, Johnstown Castle, Wexford, Y35 Y521, Republic of Ireland
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
13
|
Jokinen CC, Hillman E, Tymensen L. Sources of generic Escherichia coli and factors impacting guideline exceedances for food safety in an irrigation reservoir outlet and two canals. WATER RESEARCH 2019; 156:148-158. [PMID: 30913418 DOI: 10.1016/j.watres.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Nearly half of all cases of foodborne illness are associated with plant-based foods such as leafy greens and raw flour. An important potential source of pathogen contamination along the food-production continuum is irrigation water, which has led to the implementation of increasingly stringent agricultural irrigation water quality requirements. To better understand factors impacting irrigation water quality, we investigated sources of generic Escherichia coli and how they varied temporally among different sampling sites. Precipitation, Campylobacter species distribution, and physicochemical water quality parameters were also investigated to substantiate microbial source tracking findings. Biweekly sampling was conducted at a reservoir outlet and two downstream canals in southern Alberta, Canada, throughout two irrigation seasons, the latter of which was notable for drought conditions. Overall, 50% of canal samples exceeded Alberta's irrigation guideline for E. coli (100 E. coli per 100 ml), whereas all reservoir samples were below guideline limits. Collectively, E. coli source apportionment, Campylobacter species distribution, and physicochemical water quality data suggest runoff from surrounding agricultural land was a contributing factor to E. coli guideline exceedances in Year 1 only. In Year 2, the majority of exceedances occurred later in the season when there was little precipitation and were largely attributed to cosmopolitan E. coli from wild birds and cattle. Similarities in E. coli host-source and Campylobacter species distributions between the reservoir and canals when the guideline was exceeded suggest the reservoir could be a primary source of E. coli during drought. Increased bacterial concentrations in canals were likely due to environmental conditions that promoted bacterial survival and in-situ proliferation. Our findings support previous accounts that many E. coli isolates possess enhanced survival capabilities, which has implications to bacterial water quality assessments and risk mitigation, particularly under drought conditions.
Collapse
Affiliation(s)
- Cassandra C Jokinen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada
| | - Evan Hillman
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, 100, 5401 - 1st Ave S, Lethbridge, Alberta, T1J 4V6, Canada.
| |
Collapse
|
14
|
Thorn CE, Bergesch C, Joyce A, Sambrano G, McDonnell K, Brennan F, Heyer R, Benndorf D, Abram F. A robust, cost-effective method for DNA, RNA and protein co-extraction from soil, other complex microbiomes and pure cultures. Mol Ecol Resour 2019; 19:439-455. [PMID: 30565880 DOI: 10.1111/1755-0998.12979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022]
Abstract
The soil microbiome is inherently complex with high biological diversity, and spatial heterogeneity typically occurring on the submillimetre scale. To study the microbial ecology of soils, and other microbiomes, biomolecules, that is, nucleic acids and proteins, must be efficiently and reliably co-recovered from the same biological samples. Commercial kits are currently available for the co-extraction of DNA, RNA and proteins but none has been developed for soil samples. We present a new protocol drawing on existing phenol-chloroform-based methods for nucleic acids co-extraction but incorporating targeted precipitation of proteins from the phenol phase. The protocol is cost-effective and robust, and easily implemented using reagents commonly available in laboratories. The method is estimated to be eight times cheaper than using disparate commercial kits for the isolation of DNA and/or RNA, and proteins, from soil. The method is effective, providing good quality biomolecules from a diverse range of soil types, with clay contents varying from 9.5% to 35.1%, which we successfully used for downstream, high-throughput gene sequencing and metaproteomics. Additionally, we demonstrate that the protocol can also be easily implemented for biomolecule co-extraction from other complex microbiome samples, including cattle slurry and microbial communities recovered from anaerobic bioreactors, as well as from Gram-positive and Gram-negative pure cultures.
Collapse
Affiliation(s)
- Camilla E Thorn
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Christian Bergesch
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gustavo Sambrano
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Kevin McDonnell
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Fiona Brennan
- Department of Environment, Soils and Land-use, Teagasc, Wexford, Ireland
| | - Robert Heyer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Otto von Guericke University, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Otto von Guericke University, Magdeburg, Germany
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Survival of Escherichia coli in Manure-Amended Soils Is Affected by Spatiotemporal, Agricultural, and Weather Factors in the Mid-Atlantic United States. Appl Environ Microbiol 2019; 85:AEM.02392-18. [PMID: 30552193 DOI: 10.1128/aem.02392-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Untreated biological soil amendments of animal origin (BSAAO), such as manure, are commonly used to fertilize soils for growing fruit and vegetable crops and can contain enteric bacterial foodborne pathogens. Little is known about the comparative longitudinal survival of pathogens in agricultural fields containing different types of BSAAO, and field data may be useful to determine intervals between manure application and harvest of produce intended for human consumption to minimize foodborne illness. This study generated 324 survival profiles from 12 different field trials at three different sites (UMES, PA, and BARC) in the Mid-Atlantic United States from 2011 to 2015 of inoculated nonpathogenic Escherichia coli (gEc) and attenuated O157 E. coli (attO157) in soils which were unamended (UN) or amended with untreated poultry litter (PL), horse manure (HM), or dairy manure solids (DMS) or liquids (DML). Site, season, inoculum level (low/high), amendment type, management (organic/conventional), and depth (surface/tilled) all significantly (P < 0.0001) influenced survival duration (dpi100mort). Spatiotemporal factors (site, year, and season) in which the field trial was conducted influenced survival durations of gEc and attO157 to a greater extent than weather effects (average daily temperature and rainfall). Initial soil moisture content was the individual factor that accounted for the greatest percentage of variability in survival duration. PL supported greater survival durations of gEc and attO157, followed by HM, UN, and DMS in amended soils. The majority of survival profiles for gEc and attO157 which survived for more than 90 days came from a specific year (i.e., 2013). The effect of management and depth on dpi100mort were dependent on the amendment type evaluated.IMPORTANCE Current language in the Food Safety Modernization Act Produce Safety Rule states no objection to a 90- or 120-day interval between application of untreated BSAAO and harvest of crops to minimize transfer of pathogens to produce intended for human consumption with the intent to limit potential cases of foodborne illness. This regional multiple season, multiple location field trial determined survival durations of Escherichia coli in soils amended with manure to determine whether this interval is appropriate. Spatiotemporal factors influence survival durations of E. coli more than amendment type, total amount of E. coli present, organic or conventional soil management, and depth of manure application. Overall, these data show poultry litter may support extended survival of E. coli compared to horse manure or dairy manure, but spatiotemporal factors like site and season may have more influence than manure type in supporting survival of E. coli beyond 90 days in amended soils in the Mid-Atlantic United States.
Collapse
|
16
|
Nowicki S, Lapworth DJ, Ward JST, Thomson P, Charles K. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:782-791. [PMID: 30064104 DOI: 10.1016/j.scitotenv.2018.07.274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Microbial water quality is frequently assessed with a risk indicator approach that relies on Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource settings, and we argue that risk assessments could be improved by a complementary parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and thermotolerant coliforms (total n = 1082). Using three World Health Organization defined classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly different from risk indicated by E. coli (p = 0.85). However, the TLF and E. coli risk classifications did show disagreement, with TLF indicating higher risk for 14% of samples and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated that precision is higher for TLF (average relative percent difference of duplicates = 14%) compared to culture-based methods (average RPD of duplicates ≥ 26%). Additionally, TLF sampling is more practical because it requires less time and resources. Precision and practicality make TLF well-suited to high-frequency sampling in low resource contexts. Interpretation and interference challenges are minimised when TLF is measured in groundwaters, which typically have low dissolved organic carbon, relatively consistent temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for E. coli on an individual sample basis, but it can add value to groundwater risk assessments by improving prioritization of sampling and by increasing understanding of spatiotemporal variability.
Collapse
Affiliation(s)
- Saskia Nowicki
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK.
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - Jade S T Ward
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK; University of Surrey, Department of Civil and Environmental Engineering, Guildford GU2 7XH, UK
| | - Patrick Thomson
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| | - Katrina Charles
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| |
Collapse
|
17
|
Schifano E, Marazzato M, Ammendolia MG, Zanni E, Ricci M, Comanducci A, Goldoni P, Conte MP, Uccelletti D, Longhi C. Virulence behavior of uropathogenic Escherichia coli strains in the host model Caenorhabditis elegans. Microbiologyopen 2018; 8:e00756. [PMID: 30381890 PMCID: PMC6562141 DOI: 10.1002/mbo3.756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Although a number of bacteria can cause UTIs, most cases are due to infection by uropathogenic Escherichia coli (UPEC). UPEC are a genetically heterogeneous group that exhibit several virulence factors associated with colonization and persistence of bacteria in the urinary tract. Caenorhabditis elegans is a tiny, free-living nematode found worldwide. Because many biological pathways are conserved in C. elegans and humans, the nematode has been increasingly used as a model organism to study virulence mechanisms of microbial infections and innate immunity. The virulence of UPEC strains, characterized for antimicrobial resistance, pathogenicity-related genes associated with virulence and phylogenetic group belonging was evaluated by measuring the survival of C. elegans exposed to pure cultures of these strains. Our results showed that urinary strains can kill the nematode and that the clinical isolate ECP110 was able to efficiently colonize the gut and to inhibit the host oxidative response to infection. Our data support that C. elegans, a free-living nematode found worldwide, could serve as an in vivo model to distinguish, among uropathogenic E. coli, different virulence behavior.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
| | - Elena Zanni
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Marta Ricci
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Antonella Comanducci
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Paola Goldoni
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Liu H, Zhou H, Li Q, Peng Q, Zhao Q, Wang J, Liu X. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from the rivers and lakes in Northwest China. BMC Microbiol 2018; 18:125. [PMID: 30286725 PMCID: PMC6172723 DOI: 10.1186/s12866-018-1270-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli (E. coli) isolates in environment water become progressively a potential threat to public health, while the detailed information about the ESBL-producing E. coli isolates in the rivers and lakes in Northwest China is scarce. In the present study, it was aimed to characterize the ESBL-producing E. coli isolated from the surface waters in Northwest China. RESULTS A total of 2686 E. coli isolates were obtained from eleven rivers and lakes in Northwest China to screen for ESBL producers. Seventy-six (2.8%) isolates were classified as ESBL producers, and phylogenic groups D and A accounted for 59.2% of the ESBL producers. CTX-Ms were the predominant ESBLs genotype, and they were represented by seven blaCTX-M subtypes. blaCTX-M-14 was the most prevalent specific CTX-M gene, followed by blaCTX-M-9, blaCTX-M-123, blaCTX-M-15, blaCTX-M-27, blaCTX-M-1 and blaCTX-M-65. Moreover, 54 of the 76 ESBL producers carried at least one plasmid-mediated quinolone resistance (PMQR) gene, and aac(6')-Ib-cr was predominant. The overall occurrence of virulence factors ranged from 1.3% (eae) to 48.7% (traT). Thirty-seven sequence types (STs) were confirmed among the 76 ESBL producers, and the predominant was ST10, which was represented by 10 isolates; importantly, clone B2-ST131, associated with severe infections in humans and animals, was detected three times. CONCLUSION The prevalence of ESBL-producing E. coli from the rivers and lakes in Northwest China was low (2.8%), and the extraintestinal pathogenic E. coli (ExPEC) pathotype was the most commonly detected on the basis of the virulence factor profiles. 76.3% of ESBL producers harbored more than one β-lactamase gene, and blaCTX-M-14 was the predominant genotype. Notably, one ST131 isolate from Gaogan Canal simultaneously harbored blaCTX-M-9, blaCTX-M-15, blaCTX-M-123, blaKPC-2, blaNDM-1, blaOXA-2 as well as the PMQR genes qnrA, qnrS and aac(6')-Ib-cr.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongchao Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinfan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Peng
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Zhao
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin Wang
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqiang Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Wang D, Huber A, Dunfield K, Murray K, Wu F, Warriner K. Comparative persistence of Salmonella and Escherichia coli O157:H7 in loam or sandy loam soil amended with bovine or swine manure. Can J Microbiol 2018; 64:979-991. [PMID: 30148968 DOI: 10.1139/cjm-2018-0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fate of Salmonella and Escherichia coli O157:H7 in swine or dairy manure amended into sandy loam or loam soil under field conditions was studied. Soil was amended with manure inoculated with a Salmonella or E. coli O157:H7 cocktail, then transferred to 0.22 μm pore size membrane walled vials. The vials were then placed on the surface or at 15 cm depth in the test plots. Pathogen numbers, soil moisture, rainfall, and temperature were measured throughout the three trials (20-47 weeks duration) representing spring or fall application. Survival curves were characterized by having an initial rapid decline in pathogen numbers followed by a slower inactivation phase with an occasional increase in culturable cells. The CT99.9 values (time to reach a 3 log CFU reduction) varied from 2 to 120 days, with the most rapid decrease being observed on the surface of sandy loam soil. The persistence of pathogens is primarily governed by variations in moisture and temperature, although season of application along with manure and soil type also contribute. To generate more accurate predictive pathogen models, there is a need for laboratory-based trials to mirror the dynamic variation in temperature and soil moisture encountered within the natural environment.
Collapse
Affiliation(s)
- D Wang
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Huber
- b Soil Research Group, Guelph, ON N1H 2Y5, Canada
| | - K Dunfield
- c School of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Murray
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F Wu
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Warriner
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Frick C, Vierheilig J, Linke R, Savio D, Zornig H, Antensteiner R, Baumgartner C, Bucher C, Blaschke AP, Derx J, Kirschner AKT, Ryzinska-Paier G, Mayer R, Seidl D, Nadiotis-Tsaka T, Sommer R, Farnleitner AH. Poikilothermic Animals as a Previously Unrecognized Source of Fecal Indicator Bacteria in a Backwater Ecosystem of a Large River. Appl Environ Microbiol 2018; 84:e00715-18. [PMID: 29884761 PMCID: PMC6070746 DOI: 10.1128/aem.00715-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Quantitative information regarding the presence of Escherichia coli, intestinal enterococci, and Clostridium perfringens in poikilotherms is notably scarce. Therefore, this study was designed to allow a systematic comparison of the occurrence of these standard fecal indicator bacteria (SFIB) in the excreta of wild homeothermic (ruminants, boars, carnivores, and birds) and poikilothermic (earthworms, gastropods, frogs, and fish) animals inhabiting an alluvial backwater area in eastern Austria. With the exception of earthworms, the average concentrations of E. coli and enterococci in the excreta of poikilotherms were equal to or only slightly lower than those observed in homeothermic excreta and were 1 to 4 orders of magnitude higher than the levels observed in the ambient soils and sediments. Enterococci reached extraordinarily high concentrations in gastropods. Additional estimates of the daily excreted SFIB (E. coli and enterococcus) loads (DESL) further supported the importance of poikilotherms as potential pollution sources. The newly established DESL metric also allowed comparison to the standing stock of SFIB in the sediment and soil of the investigated area. In agreement with its biological characteristics, the highest concentrations of C. perfringens were observed in carnivores. In conclusion, the long-standing hypothesis that only humans and homeothermic animals are primary sources of SFIB is challenged by the results of this study. It may be necessary to extend the fecal indicator concept by additionally considering poikilotherms as potential important primary habitats of SFIB. Further studies in other geographical areas are needed to evaluate the general significance of our results. We hypothesize that the importance of poikilotherms as sources of SFIB is strongly correlated with the ambient temperature and would therefore be of increased significance in subtropical and tropical habitats and water resources.IMPORTANCE The current fecal indicator concept is based on the assumption that the standard fecal indicator bacteria (SFIB) Escherichia coli, intestinal enterococci, and Clostridium perfringens multiply significantly only in the guts of humans and other homeothermic animals and can therefore indicate fecal pollution and the potential presence of pathogens from those groups. The findings of the present study showed that SFIB can also occur in high concentrations in poikilothermic animals (i.e., animals with body temperatures that vary with the ambient environmental temperature, such as fish, frogs, and snails) in an alluvial backwater area in a temperate region, indicating that a reconsideration of this long-standing indicator paradigm is needed. This study suggests that poikilotherms must be considered to be potential primary sources of SFIB in future studies.
Collapse
Affiliation(s)
- Christina Frick
- Vienna City Administration, Municipal Department 39, Vienna, Austria
- Centre for Water Resource Systems (CWRS), Vienna University of Technology, Vienna, Austria
| | - Julia Vierheilig
- Centre for Water Resource Systems (CWRS), Vienna University of Technology, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Vienna University of Technology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Vienna University of Technology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Domenico Savio
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | | | | | | | - Christian Bucher
- Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria
- Institute of Building Construction and Technology, Vienna University of Technology, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Alexander K T Kirschner
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, Austria
- Unit of Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Gabriela Ryzinska-Paier
- Vienna City Administration, Municipal Department 39, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Vienna University of Technology, Vienna, Austria
| | - René Mayer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Vienna University of Technology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Dagmar Seidl
- Vienna City Administration, Municipal Department 39, Vienna, Austria
| | | | - Regina Sommer
- Unit of Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Vienna University of Technology, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| |
Collapse
|
21
|
Ashekuzzaman SM, Richards K, Ellis S, Tyrrel S, O'Leary E, Griffiths B, Ritz K, Fenton O. Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Savio D, Stadler P, Reischer GH, Kirschner AK, Demeter K, Linke R, Blaschke AP, Sommer R, Szewzyk U, Wilhartitz IC, Mach RL, Stadler H, Farnleitner AH. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management. WIRES. WATER 2018; 5:e1282. [PMID: 29780584 PMCID: PMC5947618 DOI: 10.1002/wat2.1282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Over the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence. Apparently, hydrogeology has a strong impact on the concentration and size of the observed microbes, and total cell counts (TCC) were suggested as a useful means for spring type classification. Measurement of microbial activities at the NCA springs revealed extremely low microbial growth rates in the base flow component of the studied spring waters and indicated the importance of biofilm-associated microbial activities in sediments and on rock surfaces. Based on genetic analysis, the autochthonous microbial endokarst community (AMEC) versus transient microbial endokarst community (TMEC) concept was proposed for the NCA springs, and further details within this overview article are given to prompt its future evaluation. In this regard, it is well known that during high-discharge situations, surface-associated microbes and nutrients such as from soil habitats or human settlements-potentially containing fecal-associated pathogens as the most critical water-quality hazard-may be rapidly flushed into vulnerable karst aquifers. In this context, a framework for the comprehensive analysis of microbial pollution has been proposed for the NCA springs to support the sustainable management of drinking water safety in accordance with recent World Health Organization guidelines. Near-real-time online water quality monitoring, microbial source tracking (MST) and MST-guided quantitative microbial-risk assessment (QMRA) are examples of the proposed analytical tools. In this context, this overview article also provides a short introduction to recently emerging methodologies in microbiological diagnostics to support reading for the practitioner. Finally, the article highlights future research and development needs. This article is categorized under: 1Engineering Water > Water, Health, and Sanitation2Science of Water > Water Extremes3Water and Life > Nature of Freshwater Ecosystems.
Collapse
Affiliation(s)
- Domenico Savio
- Division Water Quality and HealthDepartment Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health SciencesKrems a. d. DonauAustria
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
| | - Philipp Stadler
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Institute for Water Quality, Resource and Waste ManagementTechnische Universität WienViennaAustria
| | - Georg H. Reischer
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| | - Alexander K.T. Kirschner
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Unit Water Hygiene, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Katalin Demeter
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
| | - Rita Linke
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| | - Alfred P. Blaschke
- Centre for Water Resource SystemsTechnische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Institute of Hydraulic Engineering and Water Resources ManagementTechnische Universität WienViennaAustria
| | - Regina Sommer
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
- Unit Water Hygiene, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Ulrich Szewzyk
- Department of Environmental TechnologyTechnical University of BerlinBerlinGermany
| | - Inés C. Wilhartitz
- Department of Environmental MicrobiologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Robert L. Mach
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
| | - Hermann Stadler
- Department for Water Resources Management and Environmental AnalyticsInstitute for Water, Energy and Sustainability, Joanneum Research, GrazAustria
| | - Andreas H. Farnleitner
- Division Water Quality and HealthDepartment Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health SciencesKrems a. d. DonauAustria
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics166/5/3, Technische Universität WienViennaAustria
- Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at
| |
Collapse
|
23
|
Landscape-Scale Factors Affecting the Prevalence of Escherichia coli in Surface Soil Include Land Cover Type, Edge Interactions, and Soil pH. Appl Environ Microbiol 2018. [PMID: 29523546 DOI: 10.1128/aem.02714-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is deposited into soil with feces and exhibits subsequent population decline with concomitant environmental selection. Environmentally persistent strains exhibit longer survival times during this selection process, and some strains have adapted to soil and sediments. A georeferenced collection of E. coli isolates was developed comprising 3,329 isolates from 1,428 soil samples that were collected from a landscape spanning the transition from the grasslands to the eastern deciduous forest biomes. The isolate collection and sample database were analyzed together to discover how land cover, site characteristics, and soil chemistry influence the prevalence of cultivable E. coli in surface soil. Soils from forests and pasture lands had equally high prevalences of E. coli Edge interactions were also observed among land cover types, with proximity to forests and pastures affecting the likelihood of E. coli isolation from surrounding soils. E. coli is thought to be more prevalent in sediments with high moisture, but this was observed only in grass- or crop-dominated lands in this study. Because differing E. coli phylogroups are thought to have differing ecology profiles, isolates were also typed using a novel single-nucleotide polymorphism (SNP) genotyping assay. Phylogroup B1 was the dominant group isolated from soil, as has been reported in all other surveys of environmental E. coli Although differences were small, isolates belonging to phylogroups B2 and D were associated with wooded areas, slightly more acidic soils, and soil sampling after rainfall events. In contrast, isolates from phylogroups B1 and E were associated with pasture lands.IMPORTANCE The consensus is that complex niches or life cycles should select for complex genomes in organisms. There is much unexplained biodiversity in E. coli, and its cycling through complex extrahost environments may be a cause. In order to understand the evolutionary processes that lead to adaptation for survival and growth in soil, an isolate collection that associates soil conditions and isolate genome sequences is required. An equally important question is whether traits selected in soil or other extrahost habitats can be transmitted to E. coli residing in hosts via gene flow. The new findings about the distribution of E. coli in soil at the landscape scale (i) enhance our capability to study how extrahost environments influence the evolution of E. coli and other bacteria, (ii) advance our knowledge of the environmental biology of this microbe, and (iii) further affirm the emerging scientific consensus that E. coli in waterways originates from nonpoint sources not associated with human activity or livestock farming.
Collapse
|
24
|
Procopio NA, Atherholt TB, Goodrow SM, Lester LA. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors. GROUND WATER 2017; 55:722-735. [PMID: 28369797 DOI: 10.1111/gwat.12518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 05/20/2023]
Abstract
The influence of precipitation on coliform bacteria detection rates in domestic wells was investigated using data collected through the New Jersey Private Well Testing Act. Measured precipitation data from the National Weather Service (NWS) monitoring stations was compared to estimated data from the Multisensor Precipitation Estimate (MPE) in order to determine which source of data to include in the analyses. A strong concordance existed between these two precipitations datasets; therefore, MPE data was utilized as it is geographically more specific to individual wells. Statewide, 10 days of cumulative precipitation prior to testing was found to be an optimal period influencing the likelihood of coliform detections in wells. A logistic regression model was developed to predict the likelihood of coliform occurrence in wells from 10 days of cumulative precipitation data and other predictive variables including geology, season, coliform bacteria analysis method, pH, and nitrate concentration. Total coliform (TC) and fecal coliform or Escherichia coli (FC/EC) were detected more frequently when the preceding 10 days of cumulative precipitation exceeded 34.5 and 54 mm, respectively. Furthermore, the likelihood of coliform detection was highest in wells located in the bedrock region, during summer and autumn, analyzed with the enzyme substrate method, with pH between 5 and 6.99, and (for FC/EC but not TC) nitrate greater than 10 mg/L. Thus, the likelihood of coliform presence in domestic wells can be predicted from readily available environmental factors including timing and magnitude of precipitation, offering outreach opportunities and potential changes to coliform testing recommendations.
Collapse
Affiliation(s)
- Nicholas A Procopio
- Division of Science, Research and Environmental Health, New Jersey Department of Environmental Protection, 428 East State St., Trenton, NJ, 08625-0420
| | - Thomas B Atherholt
- Division of Science, Research and Environmental Health, New Jersey Department of Environmental Protection, 428 East State St., Trenton, NJ, 08625-0420
| | - Sandra M Goodrow
- Division of Science, Research and Environmental Health, New Jersey Department of Environmental Protection, 428 East State St., Trenton, NJ, 08625-0420
| | - Lori A Lester
- Division of Science, Research and Environmental Health, New Jersey Department of Environmental Protection, 428 East State St., Trenton, NJ, 08625-0420
| |
Collapse
|
25
|
Tymensen L, Booker CW, Hannon SJ, Cook SR, Zaheer R, Read R, McAllister TA. Environmental Growth of Enterococci and Escherichia coli in Feedlot Catch Basins and a Constructed Wetland in the Absence of Fecal Input. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5386-5395. [PMID: 28430425 DOI: 10.1021/acs.est.6b06274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Population structures of fecal indicator bacteria (FIB) isolated from catch basins, a constructed wetland, and feces from a beef cattle feedlot were compared over a two-year period. Enterococcus hirae accounted for 92% of the fecal isolates, whereas secondary environments were characterized by greater relative abundance of environmentally adapted species including Enterococcus casseliflavus. While enterococci densities in the catch basins and wetland were similar under wet and drought conditions, E. hirae predominated during rainy periods, while E. casseliflavus predominated during drought conditions. Environmentally adapted species accounted for almost half of the erythromycin resistant enterococci isolated from the wetland. Densities of Escherichia coli were also comparable during wet versus drought conditions, and the relative abundance of strains from environmentally adapted clades was greater in secondary environments compared to feces. Unlike enterococci, fewer environmentally adapted E. coli strains were isolated on selective media containing ceftriaxone from the wetland compared to feces, suggesting resistance to this antibiotic may not be well maintained in the absence of selective pressure. Overall, these findings suggest that secondary environments select for environmentally adapted FIB. While these species and clades tend to be of limited clinical relevance, they could potentially serve as reservoirs of antimicrobial resistance.
Collapse
Affiliation(s)
- Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , 100, 5401 1st Avenue South, Lethbridge, Alberta, Canada , T1J 4 V6
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd. , Okotoks, Alberta, Canada , T1S 2A2
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd. , Okotoks, Alberta, Canada , T1S 2A2
| | - Shaun R Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , 100, 5401 1st Avenue South, Lethbridge, Alberta, Canada , T1J 4 V6
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary, Alberta, Canada , T1Y 6J4
| | - Tim A McAllister
- Agriculture and Agri-Food Canada , Lethbridge, Alberta, Canada , T1J 4B1
| |
Collapse
|
26
|
Boyte S, Quaife S, Horswell J, Siggins A. Survival of Escherichia coli in common garden mulches spiked with synthetic greywater. Lett Appl Microbiol 2017; 64:386-391. [PMID: 28276074 DOI: 10.1111/lam.12732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
Abstract
Reuse of domestic wastewater is increasingly practiced as a means to address global demands on fresh water. Greywater is primarily reused via subsurface irrigation of gardens, where the soil environment is seen to be an integral part of the treatment process. The fate of biological contaminants (i.e. pathogens) in the soil is reasonably well understood, but their persistence and survival in soil cover layers is largely unexplored. This study investigated the ability of Escherichia coli to survive in common soil cover layers. Three garden mulches were investigated: pea straw mulch, a bark-based mulch and a coconut husk mulch. Each mulch was treated with an E. coli solution, a synthetic greywater with E. coli, or a freshwater control. Escherichia coli was applied at 1 × 104 most probable number (MPN) per g dry weight mulch. Subsamples were temporally analysed for E. coli. The bark and coconut husk mulches showed a steady decline in E. coli numbers, while E. coli increased in the pea straw mulch for the duration of the 50 days experiment, peaking at 1·8 × 108 MPN per g dry weight mulch. This study highlighted the importance of selection of a suitable material for covering areas that are subsurface irrigated with greywater. SIGNIFICANCE AND IMPACT OF THE STUDY Potential for microbial contamination is one of the limiting factors for domestic greywater reuse. Although subsurface irrigation is considered to be one of the lowest risk applications, there is still a possibility of microbes reaching the soil surface if the environmental conditions are not favourable or if soil movement inadvertently exposes the irrigation line. In these circumstances, the soil cover layer may be contaminated by greywater microbes. This study assesses the survival rates of the pathogen indicator organism Escherichia coli in three soil cover materials commonly used worldwide and makes clear recommendations to facilitate the safe reuse of domestic greywater.
Collapse
Affiliation(s)
- S Boyte
- Environmental Science and Research (ESR), Porirua, New Zealand
| | - S Quaife
- Environmental Science and Research (ESR), Porirua, New Zealand
| | - J Horswell
- Environmental Science and Research (ESR), Porirua, New Zealand
| | - A Siggins
- Environmental Science and Research (ESR), Porirua, New Zealand
| |
Collapse
|
27
|
Marshall J, Rossez Y, Mainda G, Gally DL, Daniell TJ, Holden NJ. Alternate thermoregulation and functional binding ofEscherichia colitype 1 fimbriae in environmental and animal isolates. FEMS Microbiol Lett 2016; 363:fnw251. [DOI: 10.1093/femsle/fnw251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/24/2016] [Accepted: 11/02/2016] [Indexed: 11/14/2022] Open
|
28
|
Abberton CL, Bereschenko L, van der Wielen PWJJ, Smith CJ. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms. Appl Environ Microbiol 2016; 82:5320-31. [PMID: 27342552 PMCID: PMC4988207 DOI: 10.1128/aem.01569-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm(-2); BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate of E. coli on entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, if E. coli bacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains of E. coli in drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.
Collapse
Affiliation(s)
- Cathy L Abberton
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | - Cindy J Smith
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
29
|
Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.pfs-0010-2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic
Escherichia coli
(EHEC),
Salmonella
spp., and
Listeria
spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs—raw manure and composted manure (and other feedstocks)—and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.
Collapse
|
30
|
Olilo CO, Muia AW, Moturi WN, Onyando JO, Amber FR. The current state of knowledge on the interaction of Escherichia coli within vegetative filter strips as a sustainable best management practice to reduce fecal pathogen loading into surface waters. ENERGY, ECOLOGY & ENVIRONMENT 2016; 1:248-266. [PMID: 28042601 PMCID: PMC5199019 DOI: 10.1007/s40974-016-0026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agro-pastoral operations have the potential to threaten public health with loading of diverse pathogens into surface waters through overland flow; increasing awareness of the limitations of fecal indicators has led to development of a number of advancements in detection, source tracking and predictive modeling of public health risk. These tools and techniques are beginning to be integrated into management strategies. The objective of this review was to determine the status of current knowledge and challenges of the fate and transport of Escherichia coli in overland flow and their interaction within vegetative filter strip (VFS) as one of these implemented best management practices and to critically evaluate its use in that setting as an indicator organism. With few studies directly focusing on VFS removal of E. coli from overland flow, we critically evaluated the available data on movement of E. coil from fecal source loading to retention and decay or re-release for potential contamination of water ways and pointed out potential limitations in both pathogen-specific removal and its use as an indicator organisms within overland flow and VFS. Critical areas of focus for future studies to reduce gaps in knowledge were identified, and the integration of newer approaches in source tracking, alternative indicators and the use of non-pathogenic surrogates for field testing of existing VFS models was encouraged. With VFS as a growing field of interest as an economical conservation practice and as an avenue for conservation of resources for small-scale agro-pastoral operations, management strategies to reduce initial fecal load from either applied manure constituents or shedding from free-range animals will continue to test the limits in the applications of models to overland flow and VFS management strategies. Further studies at the microscale in understanding discrepancies between low and high pathogenicity strains of E. coil and between E. coil and other fecal pathogens in the context of VFS will be critical. However, nuanced studies are needed to understand either biological or environmental differences in the fate and transport of the diverse types of fecal pathogens within these settings.
Collapse
Affiliation(s)
| | | | | | | | - Ford Roegner Amber
- University of California, UC Davis School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
31
|
The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli. Appl Environ Microbiol 2016; 82:4628-4640. [PMID: 27235429 DOI: 10.1128/aem.01175-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although Escherichia coli is generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adaptations may be required to enable this transition. Several studies have shown a trade-off between growth and stress resistance in nutrient-poor environments, with lesions in the rpoS locus, which encodes the stress sigma factor RpoS (σ(S)). In this study, we investigated a unique collection of long-term soil-persistent E. coli isolates to determine whether the RpoS-controlled general stress response is altered during adaptation to a nutrient-poor extraintestinal environment. The sequence of the rpoS locus was found to be highly conserved in these isolates, and no nonsense or frameshift mutations were detected. Known RpoS-dependent phenotypes, including glycogen synthesis and γ-aminobutyrate production, were found to be conserved in all strains. All strains expressed the full-length RpoS protein, which was fully functional using the RpoS-dependent promoter reporter fusion PgadX::gfp RpoS was shown to be essential for long-term soil survival of E. coli, since mutants lacking rpoS lost viability rapidly in soil survival assays. Thus, despite some phenotypic heterogeneity, the soil-persistent strains all retained a fully functional RpoS-regulated general stress response, which we interpret to indicate that the stresses encountered in soil provide a strong selective pressure for maintaining stress resistance, despite limited nutrient availability. IMPORTANCE Escherichia coli has been, and continues to be, used as an important indicator species reflecting potential fecal contamination events in the environment. However, recent studies have questioned the validity of this, since E. coli has been found to be capable of long-term colonization of soils. This study investigated whether long-term soil-persistent E. coli strains have evolved altered stress resistance characteristics. In particular, the study investigated whether the main regulator of genes involved in stress protection, the sigma factor RpoS, has been altered in the soil-persistent strains. The results show that RpoS stress protection is fully conserved in soil-persistent strains of E. coli They also show that loss of the rpoS gene dramatically reduces the ability of this organism to survive in a soil environment. Overall, the results indicate that soil represents a stressful environment for E. coli, and their survival in it requires that they deploy a full stress protection response.
Collapse
|
32
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1088. [PMID: 27462311 PMCID: PMC4940412 DOI: 10.3389/fmicb.2016.01088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
Collapse
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of ReadingReading, UK
| | - Simon C. Andrews
- School of Biological Sciences, The University of ReadingReading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Nicola J. Holden
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
33
|
Titilawo Y, Obi L, Okoh A. Occurrence of virulence gene signatures associated with diarrhoeagenic and non-diarrhoeagenic pathovars of Escherichia coli isolates from some selected rivers in South-Western Nigeria. BMC Microbiol 2015; 15:204. [PMID: 26449767 PMCID: PMC4599032 DOI: 10.1186/s12866-015-0540-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diarrhoeal diseases are attributable to unsafe water stemming from improper sanitation and hygiene and are reportedly responsible for extensive morbidity and mortality particularly among children in developed and developing countries. METHODS Water samples from selected rivers in Osun State, South-Western Nigeria were collected and analyzed using standard procedures. Escherichia coli isolates (n=300) were screened for 10 virulence genes using polymerase chain reaction for pathotyping. RESULTS While the virulence gene (VG) lt for enterotoxigenic E. coli had the highest prevalence of 45%, the enteropathogenic E. coli genes eae and bfp were detected in 6 and 4% of the isolates respectively. The VGs stx1 and stx2 specific for the enterohemorrhagic E. coli pathotypes were detected in 7 and 1% of the isolates respectively. Also, the VG eagg harboured by enteroaggregative pathotype and diffusely-adherent E. coli VG daaE were detected in 2 and 4% of the isolates respectively and enteroinvasive E. coli VG ipaH was not detected. In addition, the VGs papC for uropathogenic and ibeA for neonatal meningitis were frequently detected in 19 and 3% of isolates respectively. CONCLUSIONS These findings reveal the presence of diarrhoeagenic and non-diarrhoeagenic E. coli in the selected rivers and a potential public health risk as the rivers are important resources for domestic, recreational and livelihood usage by their host communities.
Collapse
Affiliation(s)
- Yinka Titilawo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Larry Obi
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| |
Collapse
|
34
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
35
|
Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms. Appl Environ Microbiol 2015; 81:3604-11. [PMID: 25795670 DOI: 10.1128/aem.04252-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/28/2022] Open
Abstract
Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained bla(CTX-M-1), 18 contained bla(CTX-M-14), and 1 contained bla(CTX-M-9). ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.
Collapse
|
36
|
Poharkar KV, Kerkar S, Doijad SP, Barbuddhe SB. Prevalence and genetic profiles of Escherichia coli from mangroves and mangrove associated foods off Goa, India. MARINE POLLUTION BULLETIN 2014; 85:86-91. [PMID: 25001886 DOI: 10.1016/j.marpolbul.2014.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/06/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
A total of 120 samples comprising of water (45), sediment (45) and mangrove originated food (30) collected from mangrove ecosystems of Goa were screened for Escherichia coli employing ISO-16654 method. Seventy-one (59.16%) samples were positive for E. coli. The E. coli isolates were further characterized by serotyping, virulence gene profiling and pulsed field gel electrophoresis (PFGE). Water and sediment samples were analyzed for physico-chemical parameters. The serotypes reported were O1, O10, O13, O17, O36, O41, O50, O68, O105, O116, O141, O148, O159, O162 and rough types while, 23 strains could not be typed. The stx1 and stx2 genes were detected in 33(46.47%) and 16(22.53%) isolates, respectively. The XbaI restriction digestion patterns of the stx positive strains were diverse. Interestingly, few strains isolated from diarrheal patients and from water, sediment and food from mangrove sources were genetically similar. The study showed that the mangrove ecosystem could be a potential reservoir for pathogenic E. coli.
Collapse
Affiliation(s)
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Taleigaon Plateau, Goa 403 206, India
| | | | - S B Barbuddhe
- ICAR Research Complex for Goa, Old Goa 403 402, India.
| |
Collapse
|
37
|
Wang H, Ibekwe AM, Ma J, Wu L, Lou J, Wu Z, Liu R, Xu J, Yates SR. A glimpse of Escherichia coli O157:H7 survival in soils from eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:49-56. [PMID: 24463024 DOI: 10.1016/j.scitotenv.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is an important food-borne pathogen, which continues to be a major public health concern worldwide. It is known that E. coli O157:H7 survive in soil environment might result in the contamination of fresh produce or water source. To investigate how the soils and their properties affect E. coli O157:H7 survival, we studied E. coli O157:H7 survival dynamics in 14 soils collected in eastern China from the warm-temperate zone to subtropical zone. Results showed that E. coli O157:H7 survival as a function of time can be well described by the Weibull model. The calculated td values (survival time to reach the detection limit, 100 colony forming units per gram oven-dried weight of soil) for the test soils were between 1.4 and 25.8 days. A significantly longer survival time (td) was observed in neutral or alkaline soils from north-eastern China (the warm-temperate zone) than that in acidic soils from south-eastern China (the subtropical zone). Distinct E. coli O157:H7 survival dynamics was related to soil properties. Stepwise multiple regression analysis revealed that the td values were significantly enhanced by soil microbial biomass carbon and total nitrogen, but were significantly reduced by amorphous Al2O3 and relative abundance of Chloroflexi. It should pay more attention to E. coli O157:H7 long survival in soils and its potential environmental contamination risk.
Collapse
Affiliation(s)
- Haizhen Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - A Mark Ibekwe
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA
| | - Jincai Ma
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Laosheng Wu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jun Lou
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Scott R Yates
- USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA.
| |
Collapse
|
38
|
Wang H, Zhang T, Wei G, Wu L, Wu J, Xu J. Survival of Escherichia coli O157:H7 in soils under different land use types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:518-524. [PMID: 23812736 DOI: 10.1007/s11356-013-1938-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Laboratory studies on Escherichia coli O157:H7 survival in soils from four different land use types: forest, tea plantation, bamboo grove, and vegetable garden were investigated at 25 ± 1 °C with the field capacity (soil water content at -33 kPa). Results showed that E. coli O157:H7 declined quickly in the test soils, but its survival dynamics varied in the soils under different land use types. The survival time needed to reach the detection limit (t d) in the test soils ranged from 2.1 to 3.6 days, with slightly longer t d values being observed in soils from the bamboo grove. Stepwise multiple regression analysis revealed that the t d values were shorter in sandy, lower pH, and lower organic carbon content soils. Different E. coli O157:H7 survival time in the soils under different land uses suggests that it is important to adapt proper management practices for reducing the potential risks of pathogen contamination when diary manure is applied to agricultural land.
Collapse
Affiliation(s)
- Haizhen Wang
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
39
|
Holden N, Wright F, MacKenzie K, Marshall J, Mitchell S, Mahajan A, Wheatley R, Daniell T. Prevalence and diversity of Escherichia coli
isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry. Lett Appl Microbiol 2013; 58:205-12. [DOI: 10.1111/lam.12180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- N.J. Holden
- The James Hutton Institute; Invergowrie Dundee UK
| | - F. Wright
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - K. MacKenzie
- Biomathematics & Statistics Scotland; BioSS Office; Invergowrie Dundee UK
| | - J. Marshall
- The James Hutton Institute; Invergowrie Dundee UK
| | - S. Mitchell
- The James Hutton Institute; Invergowrie Dundee UK
| | - A. Mahajan
- The Roslin Institute; R(D)SVS; University of Edinburgh; Easter Bush Midlothian UK
| | - R. Wheatley
- The James Hutton Institute; Invergowrie Dundee UK
| | - T.J. Daniell
- The James Hutton Institute; Invergowrie Dundee UK
| |
Collapse
|
40
|
Brennan FP, Grant J, Botting CH, O'Flaherty V, Richards KG, Abram F. Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistentEscherichia coli. FEMS Microbiol Ecol 2012; 84:75-85. [DOI: 10.1111/1574-6941.12038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fiona P. Brennan
- Ecological Sciences Group; The James Hutton Institute; Craigiebucker, Aberdeen; Scotland
| | - Jim Grant
- Ashtown Research Centre; Teagasc; Dublin; Ireland
| | - Catherine H. Botting
- Biomedical Sciences Research Complex; University of St. Andrews; St. Andrews; Fife; UK
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory; Department of Microbiology; School of Natural Sciences and Ryan Institute; National University of Ireland, Galway; Galway; Ireland
| | | | - Florence Abram
- Functional Environmental Microbiology; Department of Microbiology; School of Natural Sciences; National University of Ireland, Galway; Galway; Ireland
| |
Collapse
|
41
|
Didelot X, Méric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 2012; 13:256. [PMID: 22712577 PMCID: PMC3505186 DOI: 10.1186/1471-2164-13-256] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Escherichia coli is an important species of bacteria that can live as a harmless inhabitant of the guts of many animals, as a pathogen causing life-threatening conditions or freely in the non-host environment. This diversity of lifestyles has made it a particular focus of interest for studies of genetic variation, mainly with the aim to understand how a commensal can become a deadly pathogen. Many whole genomes of E. coli have been fully sequenced in the past few years, which offer helpful data to help understand how this important species evolved. Results We compared 27 whole genomes encompassing four phylogroups of Escherichia coli (A, B1, B2 and E). From the core-genome we established the clonal relationships between the isolates as well as the role played by homologous recombination during their evolution from a common ancestor. We found strong evidence for sexual isolation between three lineages (A+B1, B2, E), which could be explained by the ecological structuring of E. coli and may represent on-going speciation. We identified three hotspots of homologous recombination, one of which had not been previously described and contains the aroC gene, involved in the essential shikimate metabolic pathway. We also described the role played by non-homologous recombination in the pan-genome, and showed that this process was highly heterogeneous. Our analyses revealed in particular that the genomes of three enterohaemorrhagic (EHEC) strains within phylogroup B1 have converged from originally separate backgrounds as a result of both homologous and non-homologous recombination. Conclusions Recombination is an important force shaping the genomic evolution and diversification of E. coli, both by replacing fragments of genes with an homologous sequence and also by introducing new genes. In this study, several non-random patterns of these events were identified which correlated with important changes in the lifestyle of the bacteria, and therefore provide additional evidence to explain the relationship between genomic variation and ecological adaptation.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London W2 1PG, UK.
| | | | | | | |
Collapse
|
42
|
Moreira S, Brown A, Ha R, Iserhoff K, Yim M, Yang J, Liao B, Pszczolko E, Qin W, Leung KT. Persistence of Escherichia coli in freshwater periphyton: biofilm-forming capacity as a selective advantage. FEMS Microbiol Ecol 2011; 79:608-18. [PMID: 22092551 DOI: 10.1111/j.1574-6941.2011.01244.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/28/2022] Open
Abstract
Recent research has shown that Escherichia coli can persist in aquatic environments, although the characteristics that contribute to their survival remain poorly understood. This study examines periphytic E. coli populations that were continuously present in three temperate freshwater lakes from June to October 2008 in numbers ranging from 2 to 2 × 10(2) CFU 100 cm(-2) . A crystal violet assay revealed that all tested periphytic E. coli isolates were superior biofilm formers and they formed, on average, 2.5 times as much biofilm as E. coli isolated from humans, 4.5 times as much biofilm as shiga-like toxin-producing E. coli, and 7.5 times as much biofilm as bovine E. coli isolates. Repetitive extragenic palindromic polymerase chain reaction (REP-PCR) DNA fingerprinting analysis demonstrated the genetically diverse nature of the periphytic isolates, with genetic similarity between strains ranging from 40% to 86%. Additionally, the role of curli fibers in biofilm formation was investigated by comparing biofilm formation with curli expression under optimal conditions, although little correlation (R(2) = 0.095, P = 0.005) was found. The high mean biofilm-forming capacity observed in E. coli isolated from the periphyton suggests that selective pressures may favor E. coli capable of forming biofilms in freshwater environments.
Collapse
Affiliation(s)
- Stefan Moreira
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii. Appl Environ Microbiol 2011; 77:3988-97. [PMID: 21515724 DOI: 10.1128/aem.02140-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring.
Collapse
|
44
|
Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Appl Environ Microbiol 2010; 77:211-9. [PMID: 21075897 DOI: 10.1128/aem.01880-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intestinal microbe Escherichia coli is subject to fecal deposition in secondary habitats, where it persists transiently, allowing for the opportunity to colonize new hosts. Selection in the secondary habitat can be postulated, but its impact on the genomic diversity of E. coli is unknown. Environmental selective pressure on extrahost E. coli can be revealed by landscape genetic analysis, which examines the influences of dispersal processes, landscape features, and the environment on the spatiotemporal distribution of genes in natural populations. We conducted multilocus sequence analysis of 353 E. coli isolates from soil and fecal samples obtained in a recreational meadow to examine the ecological processes controlling their distributions. Soil isolates, as a group, were not genetically distinct from fecal isolates, with only 0.8% of genetic variation and no fixed mutations attributed to the isolate source. Analysis of the landscape genetic structure of E. coli populations showed a patchy spatial structure consistent with patterns of fecal deposition. Controlling for the spatial pattern made it possible to detect environmental gradients of pH, moisture, and organic matter corresponding to the genetic structure of E. coli in soil. Ecological distinctions among E. coli subpopulations (i.e., E. coli reference collection [ECOR] groups) contributed to variation in subpopulation distributions. Therefore, while fecal deposition is the major predictor of E. coli distributions on the field scale, selection imposed by the soil environment has a significant impact on E. coli population structure and potentially amplifies the occasional introduction of stress-tolerant strains to new host individuals by transmission through water or food.
Collapse
|
45
|
Unno T, Jang J, Han D, Kim JH, Sadowsky MJ, Kim OS, Chun J, Hur HG. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7777-82. [PMID: 20853824 DOI: 10.1021/es101500z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.
Collapse
Affiliation(s)
- Tatsuya Unno
- Department of Environmental Science and Engineering and International Environmental Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|