1
|
Seersholm FV, Sjögren KG, Koelman J, Blank M, Svensson EM, Staring J, Fraser M, Pinotti T, McColl H, Gaunitz C, Ruiz-Bedoya T, Granehäll L, Villegas-Ramirez B, Fischer A, Price TD, Allentoft ME, Iversen AKN, Axelsson T, Ahlström T, Götherström A, Storå J, Kristiansen K, Willerslev E, Jakobsson M, Malmström H, Sikora M. Repeated plague infections across six generations of Neolithic Farmers. Nature 2024; 632:114-121. [PMID: 38987589 PMCID: PMC11291285 DOI: 10.1038/s41586-024-07651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.
Collapse
Affiliation(s)
- Frederik Valeur Seersholm
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Julia Koelman
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Malou Blank
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Emma M Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Magdalena Fraser
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thomaz Pinotti
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tatiana Ruiz-Bedoya
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Granehäll
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Institute for Mummy Studies Eurac Research, Bolzano, Italy
| | | | | | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tony Axelsson
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Torbjörn Ahlström
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University and the Swedish Museum of Natural History, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Krus CB, Patino C, Barrington GM, Burbick C. Yersinia pseudotuberculosis in an alpaca. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:37-41. [PMID: 38164383 PMCID: PMC10727155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A 6-year-old female huacaya alpaca was referred to the clinic for evaluation with a 1-month history of rapid weight loss, inappetence, lethargy, and severe leukocytosis refractory to medical management. Physical examination revealed a body condition score of 1 out of 5 and a large, firm structure palpable in the right caudoventral abdomen. Abdominal ultrasonographic examination revealed 3 masses with hyperechoic, swirling centers. The largest mass measured 15 cm in diameter with a 2-centimeter capsule, and extended from right of midline into the left inguinal region. Transrectal ultrasonography identified a small uterus and clear delineation between the abdominal masses. Complete blood (cell) count findings were consistent with marked systemic inflammation. Based on initial examination and laboratory findings, exploratory laparotomy was elected. Multiple mesenteric masses strongly adhered to the jejunum were observed within the abdomen. Due to the inoperable conditions and the poor long-term prognosis, the alpaca was euthanized under general anesthesia. Bacterial culture of fluid aspirated from the largest mass revealed Yersinia pseudotuberculosis. Key clinical message: Clinical progression and attempted treatment of Yersinia pseudotuberculosis in camelids have not been previously described and the bacterium should be considered as a differential diagnosis for abscessation and persistent leukocytosis. Yersinia pseudotuberculosis is also considered a zoonotic agent and proper precautions should be taken when handling cases of abdominal abscessation.
Collapse
Affiliation(s)
- Catherine B Krus
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Ft. Collins, Colorado 80523, USA (Krus); Department of Veterinary Clinical Sciences (Patino, Barrington) and Department of Veterinary Microbiology and Pathology (Burbick), Washington State University, Pullman, Washington 99164, USA
| | - Cristian Patino
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Ft. Collins, Colorado 80523, USA (Krus); Department of Veterinary Clinical Sciences (Patino, Barrington) and Department of Veterinary Microbiology and Pathology (Burbick), Washington State University, Pullman, Washington 99164, USA
| | - George M Barrington
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Ft. Collins, Colorado 80523, USA (Krus); Department of Veterinary Clinical Sciences (Patino, Barrington) and Department of Veterinary Microbiology and Pathology (Burbick), Washington State University, Pullman, Washington 99164, USA
| | - Claire Burbick
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Ft. Collins, Colorado 80523, USA (Krus); Department of Veterinary Clinical Sciences (Patino, Barrington) and Department of Veterinary Microbiology and Pathology (Burbick), Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
3
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus 2021; 9:eESP00142021. [PMID: 34910573 DOI: 10.1128/ecosalplus.esp-0014-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
Collapse
|
5
|
Analysis of Yersinia pseudotuberculosis Isolates Recovered from Deceased Mammals of a German Zoo Animal Collection. J Clin Microbiol 2021; 59:JCM.03125-20. [PMID: 33789956 PMCID: PMC8315957 DOI: 10.1128/jcm.03125-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis is an important pathogen for both humans and animals. It can infect livestock, as well as pets and wild animals. During recent years, a number of reports have described the isolation of Y. pseudotuberculosis from zoo animals, mainly birds and mammals, for which the infection was mostly lethal. Between 2005 and 2019, there were at least 17 cases of deceased mammals, belonging to five different species, which suffered from a Y. pseudotuberculosis infection at the Zoo Wuppertal, Germany. Since only scarce information exists on the properties of Y. pseudotuberculosis from zoo animals, we characterized eight isolates, covering all infected species, in detail. All isolates were members of biotype 1, but belonged to five serotypes, five sequence types (STs), and seven core-genome multilocus sequence types (cgMLSTs). Using pulsed-field gel electrophoresis (PFGE) analysis and whole-genome sequencing (WGS), the seven isolates could be discriminated from each other. They differed significantly regarding their virulence genes and mobile genetic elements. While the virulence plasmid pYV existed in all serotypes (five isolates), a complete high-pathogenicity island (HPI) was detected only in the serotypes O:1a, O:1b, and O:13 (four isolates), but not in O:2a and O:2b. Similarly, the content of other plasmids and prophages varied greatly between the isolates. The data demonstrate that the deceased mammals were infected by seven individual isolates and not by a single type predominating in the zoo animals.
Collapse
|
6
|
Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis. Genomics 2020; 113:238-244. [PMID: 33321204 DOI: 10.1016/j.ygeno.2020.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Yersinia pseudotuberculosis belongs to the family Enterobacteriaceae and is responsible for scarlatinoid fever, food poisoning, post-infectious complications like erythema nodosum/reactive arthritis as well as pseudoappendicitis in children. Genome sequences of the 23 whole genomes from NCBI were utilized for conducting the pan-genomic analysis. Essential proteins from the core region were obtained and drug targets were identified using a hierarchal in silico approach. Among these, multidrug resistance protein sub-unit mdtC was chosen for further analysis. This protein unit confers resistance to antibiotics upon forming a tripartite complex with units A and B in Escherichia coli. Details of the function have not yet been elucidated experimentally in Yersinia spp. Computational structure modeling and validation were followed by screening against phytochemical libraries of traditional Indian (Ayurveda), North African, and traditional Chinese flora using Molecular Operating Environment software version 2019.0102. ADMET profiling and descriptor study of best docked compounds was studied. Since phytotherapy is the best resort to antibiotic resistance so these compounds should be tested experimentally to further validate the results. The obtained information could aid wet-lab scientists to work on the scaffold of screened drug-like compounds from natural resources. This could be useful in our quest for antibiotic-resistant therapy against Y. pseudotuberculosis.
Collapse
|
7
|
Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, Holt KE. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4. [PMID: 29985125 PMCID: PMC6202445 DOI: 10.1099/mgen.0.000196] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements (MGEs) that frequently transfer within and between bacterial species play a critical role in bacterial evolution, and often carry key accessory genes that associate with a bacteria’s ability to cause disease. MGEs carrying antimicrobial resistance (AMR) and/or virulence determinants are common in the opportunistic pathogen Klebsiella pneumoniae, which is a leading cause of highly drug-resistant infections in hospitals. Well-characterised virulence determinants in K. pneumoniae include the polyketide synthesis loci ybt and clb (also known as pks), encoding the iron-scavenging siderophore yersiniabactin and genotoxin colibactin, respectively. These loci are located within an MGE called ICEKp, which is the most common virulence-associated MGE of K. pneumoniae, providing a mechanism for these virulence factors to spread within the population. Here we apply population genomics to investigate the prevalence, evolution and mobility of ybt and clb in K. pneumoniae populations through comparative analysis of 2498 whole-genome sequences. The ybt locus was detected in 40 % of K. pneumoniae genomes, particularly amongst those associated with invasive infections. We identified 17 distinct ybt lineages and 3 clb lineages, each associated with one of 14 different structural variants of ICEKp. Comparison with the wider population of the family Enterobacteriaceae revealed occasional ICEKp acquisition by other members. The clb locus was present in 14 % of all K. pneumoniae and 38.4 % of ybt+ genomes. Hundreds of independent ICEKp integration events were detected affecting hundreds of phylogenetically distinct K. pneumoniae lineages, including at least 19 in the globally-disseminated carbapenem-resistant clone CG258. A novel plasmid-encoded form of ybt was also identified, representing a new mechanism for ybt dispersal in K. pneumoniae populations. These data indicate that MGEs carrying ybt and clb circulate freely in the K. pneumoniae population, including among multidrug-resistant strains, and should be considered a target for genomic surveillance along with AMR determinants.
Collapse
Affiliation(s)
- Margaret M C Lam
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ryan R Wick
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L Wyres
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Claire L Gorrie
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M Judd
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Adam W J Jenney
- 2Department Infectious Diseases and Microbiology Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Sylvain Brisse
- 3Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Kathryn E Holt
- 4London School of Hygiene and Tropical Medicine, London, UK.,1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Williamson DA, Baines SL, Carter GP, da Silva AG, Ren X, Sherwood J, Dufour M, Schultz MB, French NP, Seemann T, Stinear TP, Howden BP. Genomic Insights into a Sustained National Outbreak of Yersinia pseudotuberculosis. Genome Biol Evol 2018; 8:3806-3814. [PMID: 28173076 PMCID: PMC5521734 DOI: 10.1093/gbe/evw285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally uncovered significant diversity in key determinants of virulence, which we speculate may help explain the high morbidity linked to this outbreak.
Collapse
Affiliation(s)
- Deborah A Williamson
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anders Gonçalves da Silva
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Xiaoyun Ren
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jill Sherwood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Muriel Dufour
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Mark B Schultz
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nigel P French
- Infectious Disease Research Centre, Massey University, Palmerston North, New Zealand
| | - Torsten Seemann
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Melbourne, Australia
| | - Timothy P Stinear
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P Howden
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Kenyon JJ, Cunneen MM, Reeves PR. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol Rev 2017; 41:200-217. [PMID: 28364730 PMCID: PMC5399914 DOI: 10.1093/femsre/fux002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5΄ end for side-branch modules or the 3΄ end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology. Brisbane, QLD 4001, Australia
| | - Monica M. Cunneen
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
11
|
Magistrali C, Cucco L, Pezzotti G, Farneti S, Cambiotti V, Catania S, Prati P, Fabbi M, Lollai S, Mangili P, Sebastiani C, Bano L, Dionisi A, Luzzi I. Characterisation of Yersinia pseudotuberculosis isolated from animals with yersiniosis during 1996–2013 indicates the presence of pathogenic and Far Eastern strains in Italy. Vet Microbiol 2015; 180:161-6. [DOI: 10.1016/j.vetmic.2015.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
|
12
|
Koskela KA, Mattinen L, Kalin-Mänttäri L, Vergnaud G, Gorgé O, Nikkari S, Skurnik M. Generation of a CRISPR database forYersinia pseudotuberculosiscomplex and role of CRISPR-based immunity in conjugation. Environ Microbiol 2015; 17:4306-21. [DOI: 10.1111/1462-2920.12816] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Katja A. Koskela
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
| | - Laura Mattinen
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
| | - Laura Kalin-Mänttäri
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
| | - Gilles Vergnaud
- Univ Paris-Sud; Institut de Génétique et Microbiologie; UMR8621; Orsay France
- CNRS; Orsay France
- ENSTA ParisTech; Palaiseau France
| | - Olivier Gorgé
- Univ Paris-Sud; Institut de Génétique et Microbiologie; UMR8621; Orsay France
- CNRS; Orsay France
- DGA/MNRBC; Vert le Petit France
| | - Simo Nikkari
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
- Helsinki University Central Hospital Laboratory Diagnostics; Helsinki Finland
| |
Collapse
|
13
|
Effect of thermolabile toxin from Yersinia pseudotuberculosis on functions of innate immunity cells. Bull Exp Biol Med 2014; 157:483-7. [PMID: 25110089 DOI: 10.1007/s10517-014-2597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 10/24/2022]
Abstract
The thermolabile toxin of Yersinia pseudotuberculosis produces a selective dose-dependent stimulating effect on functional activity of innate immunity cells. Prolonged apoptosis-inducing action of the toxin was associated with activation of enzymes of the oxygen-dependent system (LDH and myeloperoxidase) at the early terms of observation (up to 3 h). In turn, increased number of macrophages with apoptotic changes was noted at the early stages of contact with the thermolabile toxin (5 h), and its further growth was observed against the background of activation of mitochondrial enzymes and production of NO metabolites.
Collapse
|
14
|
Typing and clustering of Yersinia pseudotuberculosis isolates by restriction fragment length polymorphism analysis using insertion sequences. J Clin Microbiol 2014; 52:1978-89. [PMID: 24671793 DOI: 10.1128/jcm.00397-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis is an enteropathogen that has an animal reservoir and causes human infections, mostly in temperate and cold countries. Most of the methods previously used to subdivide Y. pseudotuberculosis were performed on small numbers of isolates from a specific geographical area. One aim of this study was to evaluate the typing efficiency of restriction fragment length polymorphism of insertion sequence hybridization patterns (IS-RFLP) compared to other typing methods, such as serotyping, ribotyping, and multilocus sequence typing (MLST), on the same set of 80 strains of Y. pseudotuberculosis of global origin. We found that IS100 was not adequate for IS-RFLP but that both IS285 and IS1541 efficiently subtyped Y. pseudotuberculosis. The discriminatory index (DI) of IS1541-RFLP (0.980) was superior to those of IS285-RFLP (0.939), ribotyping (0.944), MLST (0.861), and serotyping (0.857). The combination of the two IS (2IS-RFLP) further increased the DI to 0.998. Thus, IS-RFLP is a powerful tool for the molecular typing of Y. pseudotuberculosis and has the advantage of exhibiting well-resolved banding patterns that allow for a reliable comparison of strains of worldwide origin. The other aim of this study was to assess the clustering power of IS-RFLP. We found that 2IS-RFLP had a remarkable capacity to group strains with similar genotypic and phenotypic markers, thus identifying robust populations within Y. pseudotuberculosis. Our study thus demonstrates that 2IS- and even IS1541-RFLP alone might be valuable tools for the molecular typing of global isolates of Y. pseudotuberculosis and for the analysis of the population structure of this species.
Collapse
|
15
|
The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii. Int J Med Microbiol 2014; 304:452-63. [PMID: 24598372 DOI: 10.1016/j.ijmm.2014.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/24/2014] [Accepted: 02/02/2014] [Indexed: 01/17/2023] Open
Abstract
The genus Yersinia contains three species pathogenic for humans, one of which is the enteropathogen Yersinia pseudotuberculosis. A recent analysis by Multi Locus Sequence Typing (MLST) of the 'Y. pseudotuberculosis complex' revealed that this complex comprises three distinct populations: the Y. pestis/Y. pseudotuberculosis group, the recently described species Yersinia similis, and a third not yet characterized population designated 'Korean Group', because most strains were isolated in Korea. The aim of this study was to perform an in depth phenotypic and genetic characterization of the three populations composing the Y. pseudotuberculosis complex (excluding Y. pestis, which belonged to the Y. pseudotuberculosis cluster in the MLST analysis). Using a set of strains representative of each group, we found that the three populations had close metabolic properties, but were nonetheless distinguishable based on D-raffinose and D-melibiose fermentation, and on pyrazinamidase activity. Moreover, high-resolution electrospray mass spectrometry highlighted protein peaks characteristic of each population. Their 16S rRNA gene sequences shared high identity (≥99.5%), but specific nucleotide signatures for each group were identified. Multi-Locus Sequence Analysis also identified three genetically closely related but distinct populations. Finally, an Average Nucleotide Identity (ANI) analysis performed after sequencing the genomes of a subset of strains of each group also showed that intragroup identity (average for each group ≥99%) was higher than intergroup diversity (94.6-97.4%). Therefore, all phenotypic and genotypic traits studied concurred with the initial MLST data indicating that the Y. pseudotuberculosis complex comprises a third and clearly distinct population of strains forming a novel Yersinia species that we propose to designate Yersinia wautersii sp. nov. The isolation of some strains from humans, the detection of virulence genes (on the pYV and pVM82 plasmids, or encoding the superantigen ypmA) in some isolates, and the absence of pyrazinamidase activity (a hallmark of pathogenicity in the genus Yersinia) argue for the pathogenic potential of Y. wautersii.
Collapse
|
16
|
Kubicek-Sutherland JZ, Heithoff DM, Ersoy SC, Shimp WR, Mahan MJ. Immunization with a DNA adenine methylase over-producing Yersinia pseudotuberculosis vaccine confers robust cross-protection against heterologous pathogenic serotypes. Vaccine 2014; 32:1451-9. [PMID: 24508035 DOI: 10.1016/j.vaccine.2014.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/04/2014] [Accepted: 01/14/2014] [Indexed: 01/09/2023]
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that can cause serious human illness. Although the source and route of transmission often remain obscure, livestock have been implicated in some cases. The diversity of yersiniae present on farms and their widespread distribution in animal and environmental reservoirs necessitates the use of broad prophylactic strategies that are efficacious against many serotypes simultaneously. Herein, immunization of mice with a modified, live attenuated Y. pseudotuberculosis vaccine that overproduces the DNA adenine methylase (Dam(OP)) conferred robust protection against virulent challenge (150-fold LD50) with homologous and heterologous serotypes that have been associated with human disease (O:1, O:1a, O:3). Further, the dam gene was shown to be essential for cell viability in all (7 of 7) Y. pseudotuberculosis strains tested. Direct selection for the inheritance of dam mutant alleles in Y. pseudotuberculosis resulted in dam strain variants that contained compensatory (second-site suppressor) mutations in genes encoding methyl-directed mismatch repair proteins (mutHLS) that are involved in suppression of the non-viable cell phenotype in all (19/19) strains tested. Such dam mutH variants exhibited a significant increase in virulence and spontaneous mutation frequency relative to that of a Dam(OP) vaccine strain. These studies indicate that Y. pseudotuberculosis Dam(OP) strains conferred potent cross-protective efficacy as well as decreased virulence and spontaneous mutation frequency relative to those that lack Dam, which have compensatory mutations in mutHLS loci. These data suggest that development of yersiniae livestock vaccines based on Dam overproduction is a viable mitigation strategy to reduce these potential foodborne contaminants.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Douglas M Heithoff
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Selvi C Ersoy
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - William R Shimp
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Michael J Mahan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
17
|
Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet Microbiol 2014; 168:403-12. [DOI: 10.1016/j.vetmic.2013.11.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/27/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023]
|
18
|
Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J Clin Microbiol 2013; 52:20-9. [PMID: 24131695 DOI: 10.1128/jcm.02185-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominant Y. pestis sequence type 90 (ST90) was linked to Y. pseudotuberculosis ST43 by one locus difference, and 81.25% of the ST43 strains were from serotype O:1b, supporting the hypothesis that Y. pestis descended from the O:1b serotype of Y. pseudotuberculosis. We also found that the worldwide-prevalent serotypes O:1a, O:1b, and O:3 were predominated by specific STs. The second cluster consisted of pathogenic and nonpathogenic Y. enterocolitica strains, two of which may not have identical STs. The pathogenic Y. enterocolitica strains formed a relatively conserved group; most strains clustered within ST186 and ST187. Serotypes O:3, O:8, and O:9 were separated into three distinct blocks. Nonpathogenic Y. enterocolitica STs were more heterogeneous, reflecting genetic diversity through evolution. By providing a better and effective MLST procedure for use with the Yersinia community, valuable information and insights into the genetic evolutionary differences of these pathogens were obtained.
Collapse
|
19
|
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, Ahsan S, Reeves PR, Nair GB, Lan R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 2013; 8:e65342. [PMID: 23776471 PMCID: PMC3679125 DOI: 10.1371/journal.pone.0065342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/24/2013] [Indexed: 01/09/2023] Open
Abstract
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna Salim
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacob Kurniawan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Connie Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Queenie Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunjukta Ahsan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Apablaza P, Løland AD, Brevik ØJ, Ilardi P, Battaglia J, Nylund A. Genetic variation among Flavobacterium psychrophilum isolates from wild and farmed salmonids in Norway and Chile. J Appl Microbiol 2013; 114:934-46. [PMID: 23289591 DOI: 10.1111/jam.12121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
AIMS To aim of the study was to describe the genetic relationship between isolates of Flavobacterium psychrophilum with a main emphasis of samples from Chile and Norway. The isolates have been obtained from farmed salmonids in Norway and Chile, and from wild salmonids in Norway, but isolates from North America and European countries are also included in the analysis. METHODS AND RESULTS The study is based on phylogenetic analysis of 16S rRNA and seven housekeeping genes (HG), gyrB, atpA, dnaK, trpB, fumC, murG and tuf, and the use of a multilocus sequence typing (MLST) system, based on nucleotide polymorphism in the HG, as an alternative to the phylogenies. The variation within the selected genes was limited, and the phylogenetic analysis gave little resolution between the isolates. The MLST gave a much better resolution resulting in 53 sequence types where the same sequences types could be found in Chile, North America and European countries, and in different host species. CONCLUSIONS Multilocus sequence typing give a relatively good separation of different isolates of Fl. psychrophilum and show that there are no distinct geographical or host-specific isolates in the studied material from Chile, North America and Europe. Nor was it possible to separate between isolates from ulcers and systemic infections vs isolates from the surface of healthy salmonids. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows a wide geographical distribution of Fl. psychrophilum, indicating that the bacterium has a large potential for transmission over long distances, and between different salmonid hosts species. This knowledge will be important for future management of salmonids diseases connected to Fl. psychrophilum.
Collapse
Affiliation(s)
- P Apablaza
- Fish Diseases Research Group, Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2013; 16:38-53. [PMID: 23357583 DOI: 10.1016/j.meegid.2013.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data, analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect to whole genome sequence typing approaches that are moving into the research arena at an ever-increasing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to include enough references in a variety of key areas to introduce the reader to the broad applications and complications of MLST data.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | | | | | | |
Collapse
|
22
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
23
|
Souza RA, Falcão JP. A novel high-resolution melting analysis-based method for Yersinia pseudotuberculosis genotyping. J Microbiol Methods 2012; 91:329-35. [PMID: 23041267 DOI: 10.1016/j.mimet.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/25/2022]
Abstract
Yersinia pseudotuberculosis is an enteric pathogen that is environmentally widespread and is known to cause human and animal infections. The development of a fast and inexpensive typing system is necessary to facilitate epidemiological studies of Y. pseudotuberculosis infections. In this study, we aimed to develop a method of Y. pseudotuberculosis genotyping based on determining differences in single-nucleotide polymorphisms (SNPs) using a high-resolution melting analysis (HRMA). Using a set of nine primer pairs, ten SNPs were screened from sequences in the 16S rRNA, glnA, gyrB and recA sequences of 12 Y. pseudotuberculosis strains that were deposited in the GenBank database. The genetic diversity of a collection of 40 clinical Y. pseudotuberculosis strains was determined using the HRMA method and the multilocus sequence typing (MLST) technique was used for comparison. Different melting profiles were found in five out of a total of nine analyzed fragments. A phylogenetic tree was constructed from the nucleotides that were identified in the nine analyzed fragments, and the tree demonstrated that Y. pseudotuberculosis strains were separated into two groups. The first cluster was composed of strains from the 1/O:1a serogroup and the second of strains from the 2/O:3 serogroup. The separation into two clusters based on distinct bio-serogroups of Y. pseudotuberculosis was consistent with the results in the MLST database. The simple and highly reproducible HRMA assay developed by us may be used as a rapid and cost-effective method to genotype Y. pseudotuberculosis strains of O:1 and O:3 serogroups and it can complement sequence-based methods facilitating epidemiological studies of this Yersinia species.
Collapse
Affiliation(s)
- Roberto A Souza
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
24
|
Laukkanen-Ninios R, Didelot X, Jolley KA, Morelli G, Sangal V, Kristo P, Imori PFM, Fukushima H, Siitonen A, Tseneva G, Voskressenskaya E, Falcao JP, Korkeala H, Maiden MCJ, Mazzoni C, Carniel E, Skurnik M, Achtman M. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. Environ Microbiol 2011; 13:3114-27. [PMID: 21951486 PMCID: PMC3988354 DOI: 10.1111/j.1462-2920.2011.02588.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y. pseudotuberculosis s.s. as well as imports from Y. similis and the Korean group. The sources of genetic diversification within Y. pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y. pestis, which is also much more genetically monomorphic than is Y. pseudotuberculosis s.s. Most Y. pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia similis corresponds to the previously identified Y. pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y. pseudotuberculosis s.s. In contrast, Y. pseudotuberculosis s.s., the Korean group and Y. pestis can all cause disease in humans.
Collapse
Affiliation(s)
- Riikka Laukkanen-Ninios
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014, University of Helsinki, Finland
| | - Xavier Didelot
- Department of Statistics, University of Oxford, Oxford OX1 3TG, UK
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Giovanna Morelli
- Max-Planck-Institut für Infektionsbiologie, 10117 Berlin, Germany
| | - Vartul Sangal
- Max-Planck-Institut für Infektionsbiologie, 10117 Berlin, Germany
| | - Paula Kristo
- Sequencing Core Facility, Haartman Institute, P.O. Box 21, FI-00014 University of Helsinki, Finland
| | - Priscilla F. M. Imori
- Department of Clinical, Toxicological, and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Hiroshi Fukushima
- Shimane Prefectural Institute of Public Health and Environmental Science, 582-1 Nishihamasada, Matsue, Shimane 699-0122, Japan
| | - Anja Siitonen
- Bacteriology Unit, National Institute for Health and Welfare (THL), P.O. Box 30, FI-00271 Helsinki, Finland
| | | | | | - Juliana P. Falcao
- Department of Clinical, Toxicological, and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014, University of Helsinki, Finland
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Camila Mazzoni
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - Elisabeth Carniel
- Institut Pasteur, Yersinia research Unit, Yersinia National Reference Laboratory, Paris France
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, P.O. Box 21, FI-00014, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Mark Achtman
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|