1
|
Akbar Aly AB, Thashanamoorthi G, Shanmugaraj B, Ramalingam S. In silico analysis and gene expression patterns of lignin peroxidase isozymes in Phanerochaete chrysosporium. Int J Biol Macromol 2025; 295:139579. [PMID: 39778842 DOI: 10.1016/j.ijbiomac.2025.139579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/22/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P. chrysosporium enzymes, the number of PcLiP isozymes remains unexplored. In the present study, ten PcLiP sequences were identified by the RedoXiBase and BLAST survey, displaying putative glycosylated extracellular protein which was approximately 38 to 39 kDa. Different domains of the protein included putative binding sites for stress, nutrient components, metal ions, peroxidase motifs, ligninase motifs, and also secretory signal peptides. Molecular docking analysis of all the PcLiPs, showed that the PcLiP4 had strong binding affinity towards hydrogen peroxide (H2O2), manganese (II) sulfate (MnSO4), and veratryl alcohol (VA) as compared to other PcLiPs. In order to analyze the PcLiPs gene expression, the fungus was incubated in potato dextrose broth medium (PDB). Notably, high expression levels of PcLiPs were observed during the 48-h growth stage of the fungus and there was variable gene expression under conditions of incubation with different stress factors and co-factors, such as H2O2, MnSO4, VA, and heat stress. Among the ten PcLiPs characterized, isozymes, such as, PcLiP4, PcLiP9, PcLiP10, and PcLiP8 exhibited varying concentrations of nutritional elements and stress levels together with high expression. Present study employing in silico analysis, molecular docking studies, and gene expression analysis demonstrated that the PcLiP4 could be an ideal candidate for lignin biodegradation. Results showed the operation of specific regulatory mechanisms which govern PcLiPs expression. As an outcome, regulatory factors towards obtaining high yield of PcLiPs and the best isozyme for heterologous gene expression were identified. These findings would contribute to enhancing the efficiency of biodegradation of lignocelluloses and related recalcitrant waste products.
Collapse
Affiliation(s)
- Abdul Basith Akbar Aly
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Gayathri Thashanamoorthi
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Balamurugan Shanmugaraj
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Kato H, Miura D, Kato M, Shimizu M. Metabolic mechanism of lignin-derived aromatics in white-rot fungi. Appl Microbiol Biotechnol 2024; 108:532. [PMID: 39661194 PMCID: PMC11634970 DOI: 10.1007/s00253-024-13371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
White-rot fungi, such as Phanerochaete chrysosporium, play a crucial role in biodegrading lignocellulosic biomass including cellulose, hemicellulose, and lignin. These fungi utilise various extracellular and intracellular enzymes, such as lignin peroxidases, manganese peroxidases, versatile peroxidases, monooxygenases, and dioxygenases, to degrade lignin and lignin-derived aromatics, thereby significantly contributing to the global carbon cycle with potential applications in industrial bioprocessing and bioremediation. Although the metabolism of lignin fragments in P. chrysosporium has been studied extensively, the enzymes involved in fragment conversion remain largely unknown. This review provides an overview of the current knowledge regarding the metabolic pathways of lignin and its fragments by white-rot fungi. Recent studies have elucidated the intricate metabolic pathways and regulatory mechanisms of lignin-derived aromatic degradation by focusing on flavoprotein monooxygenases, intradiol dioxygenases, homogentisate dioxygenase-like proteins, and cytochrome P450 monooxygenases. Metabolic regulation of these enzymes demonstrates the adaptability of white-rot fungi in degrading lignin and lignin-derived aromatics. The interplay between the central metabolic pathways, haem biosynthesis, and haem-dependent NAD(P)H regeneration highlights the complexity of lignin degradation in white-rot fungi. These insights improve our understanding of fungal metabolism and pave the way for future studies aimed at leveraging these fungi for sustainable biotechnological applications. KEY POINTS: • White-rot fungi use enzymes to degrade lignin, and play a role in the carbon cycle. • Oxygenases are key enzymes for converting lignin-derived aromatics. • White-rot fungi adapt to metabolic changes by controlling the TCA/glyoxylate bicycle.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| | - Daisuke Miura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masashi Kato
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
3
|
Sánchez-Ruiz MI, Santillana E, Linde D, Romero A, Martínez AT, Ruiz-Dueñas FJ. Structure-function characterization of two enzymes from novel subfamilies of manganese peroxidases secreted by the lignocellulose-degrading Agaricales fungi Agrocybe pediades and Cyathus striatus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:74. [PMID: 38824538 PMCID: PMC11144326 DOI: 10.1186/s13068-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule. RESULTS Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation. CONCLUSIONS Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
Collapse
Affiliation(s)
- María Isabel Sánchez-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Santillana
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | |
Collapse
|
4
|
Zhang W, Li Q, Wang J, Wang Z, Zhan H, Yu X, Zheng Y, Xiao T, Zhou LW. Biodegradation of Benzo[a]pyrene by a White-Rot Fungus Phlebia acerina: Surfactant-Enhanced Degradation and Possible Genes Involved. J Fungi (Basel) 2023; 9:978. [PMID: 37888234 PMCID: PMC10607704 DOI: 10.3390/jof9100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants that pose a threat to human health. Among these PAHs, benzo[a]pyrene (BaP), a five-ring compound, exhibits high resistance to biodegradation. White-rot fungus Phlebia acerina S-LWZ20190614-6 has demonstrated higher BaP degradation capabilities compared with Phanerochaete chrysosporium and P. sordida YK-624, achieving a degradation rate of 57.7% after 32 days of incubation under a ligninolytic condition. To further enhance the biodegradation rate, three nonionic surfactants were used, and the addition of 1 or 2 g·L-1 of polyethylene glycol monododecyl ether (Brij 30) resulted in nearly complete BaP biodegradation by P. acerina S-LWZ20190614-6. Interestingly, Brij 30 did not significantly affect the activity of manganese peroxidase and lignin peroxidase, but it did decrease laccase activity. Furthermore, the impact of cytochrome P450 on BaP degradation by P. acerina S-LWZ20190614-6 was found to be relatively mild. Transcriptomic analysis provided insights into the degradation mechanism of BaP, revealing the involvement of genes related to energy production and the synthesis of active enzymes crucial for BaP degradation. The addition of Brij 30 significantly upregulated various transferase and binding protein genes in P. acerina S-LWZ20190614-6. Hence, the bioremediation potential of BaP by the white-rot fungus P. acerina S-LWZ20190614-6 holds promise and warrants further exploration.
Collapse
Affiliation(s)
- Wenquan Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaoyu Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ziyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongjie Zhan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Yu J, Lai J, Neal BM, White BJ, Banik MT, Dai SY. Genomic Diversity and Phenotypic Variation in Fungal Decomposers Involved in Bioremediation of Persistent Organic Pollutants. J Fungi (Basel) 2023; 9:418. [PMID: 37108874 PMCID: PMC10145412 DOI: 10.3390/jof9040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Fungi work as decomposers to break down organic carbon, deposit recalcitrant carbon, and transform other elements such as nitrogen. The decomposition of biomass is a key function of wood-decaying basidiomycetes and ascomycetes, which have the potential for the bioremediation of hazardous chemicals present in the environment. Due to their adaptation to different environments, fungal strains have a diverse set of phenotypic traits. This study evaluated 320 basidiomycetes isolates across 74 species for their rate and efficiency of degrading organic dye. We found that dye-decolorization capacity varies among and within species. Among the top rapid dye-decolorizing fungi isolates, we further performed genome-wide gene family analysis and investigated the genomic mechanism for their most capable dye-degradation capacity. Class II peroxidase and DyP-type peroxidase were enriched in the fast-decomposer genomes. Gene families including lignin decomposition genes, reduction-oxidation genes, hydrophobin, and secreted peptidases were expanded in the fast-decomposer species. This work provides new insights into persistent organic pollutant removal by fungal isolates at both phenotypic and genotypic levels.
Collapse
Affiliation(s)
- Jiali Yu
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jingru Lai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Brian M. Neal
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Bert J. White
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
| | - Mark T. Banik
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI 53726, USA
| | - Susie Y. Dai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Marinovíc M, Di Falco M, Aguilar Pontes MV, Gorzsás A, Tsang A, de Vries RP, Mäkelä MR, Hildén K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules 2022; 12:biom12081017. [PMID: 35892327 PMCID: PMC9330253 DOI: 10.3390/biom12081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Mila Marinovíc
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - András Gorzsás
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - Miia R. Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
- Correspondence:
| |
Collapse
|
7
|
Sosa-Martínez J, Balagurusamy N, Benavente-Valdés JR, Montañez J, Morales-Oyervides L. Process performance improvement for the simultaneous production of ligninolytic enzymes in solid culture using agricultural wastes through the Taguchi method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112966. [PMID: 34098354 DOI: 10.1016/j.jenvman.2021.112966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Despite a large amount of published research on the production of ligninolytic enzymes, the latter are not yet being applied to combat environmental pollution. No cost-effective process has been developed to date. This study describes an improvement of the solid-state fermentation procedure for the production of ligninolytic enzymes via Phanerochaete chrysosporium ATX by applying the Taguchi method and using an agro-industrial waste as substrate. The production of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) were simultaneously increased within a packed-bed column. The factors and levels studied were humidity (A: 60, 70, 80%), inoculum concentration (B: 7.5, 10.0, 12.5 × 105 spores/mL), packed density (C: 0.14, 0.16, 0.18 g/mL), and time (D: 6, 8, 10 days). The results showed that humidity was the factor with a higher effect upon LiP and Lac's production, while time was for MnP. Humidity exerted the greatest influence on the global desirability of the process. Improved conditions (A, 60%; B, 1.0 × 106 spores/mL; C, 0.17 g/mL; D, 8 days) were further validated: the results revealed an overall desirability increase of 237% over the unoptimized process. Process performance was likewise maintained at a higher scale (1:10). The results contribute to establishing a cost-effective bioprocess to produce ligninolytic enzymes by reducing the cost associated with raw materials and purification steps.
Collapse
Affiliation(s)
- Jazel Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Libramiento Torreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Juan Roberto Benavente-Valdés
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
8
|
Ijoma GN, Heri SM, Matambo TS, Tekere M. Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi. J Fungi (Basel) 2021; 7:700. [PMID: 34575737 PMCID: PMC8464691 DOI: 10.3390/jof7090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation.
Collapse
Affiliation(s)
- Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Sylvie M. Heri
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Memory Tekere
- Department of Environmental Science, College of Agricultural and Environmental Science, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa;
| |
Collapse
|
9
|
Manavalan T, Stepnov AA, Hegnar OA, Eijsink VGH. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story? Carbohydr Res 2021; 505:108350. [PMID: 34049079 DOI: 10.1016/j.carres.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides such as chitin and cellulose and their discovery has revolutionized our understanding of enzymatic biomass conversion. The discovery of LPMOs raises interesting new questions regarding the roles of other oxidoreductases and abiotic redox processes in biomass conversion. LPMOs need reducing power and an oxygen co-substrate and biomass degrading ecosystems contain a multitude of redox enzymes that affect the availability of both. For example, biomass degrading fungi produce multiple sugar oxidoreductases whose biological functions so far have remained somewhat enigmatic. It is now conceivable that these redox enzymes, in particular H2O2-producing sugar oxidases, could play a role in fueling and controlling LPMO reactions. Here, we shortly review contemporary issues in the LPMO field, paying particular attention to the possible roles of sugar oxidoreductases.
Collapse
Affiliation(s)
- Tamilvendan Manavalan
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway.
| |
Collapse
|
10
|
A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material. J Fungi (Basel) 2021; 7:jof7060426. [PMID: 34071235 PMCID: PMC8227661 DOI: 10.3390/jof7060426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pleurotus eryngii is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat–straw transformation. Up-regulated and constitutive glycoside–hydrolases, polysaccharide–lyases, and carbohydrate–esterases active on polysaccharides, laccases active on lignin, and a surprisingly high amount of constitutive/inducible aryl–alcohol oxidases (AAOs) constituted the suite of extracellular enzymes at early fungal growth. Higher enzyme diversity and abundance characterized the longer-term growth, with an array of oxidoreductases involved in depolymerization of both cellulose and lignin, which were often up-regulated since initial growth. These oxidative enzymes included lytic polysaccharide monooxygenases (LPMOs) acting on crystalline polysaccharides, cellobiose dehydrogenase involved in LPMO activation, and ligninolytic peroxidases (mainly manganese-oxidizing peroxidases), together with highly abundant H2O2-producing AAOs. Interestingly, some of the most relevant enzymes acting on polysaccharides were appended to a cellulose-binding module. This is potentially related to the non-woody habitat of P. eryngii (in contrast to the wood habitat of many basidiomycetes). Additionally, insights into the intracellular catabolism of aromatic compounds, which is a neglected area of study in lignin degradation by basidiomycetes, were also provided. The multiomic approach reveals that although non-woody decay does not result in dramatic modifications, as revealed by detailed 2D-NMR and other analyses, it implies activation of the complete set of hydrolytic and oxidative enzymes characterizing lignocellulose-decaying basidiomycetes.
Collapse
|
11
|
Hage H, Miyauchi S, Virágh M, Drula E, Min B, Chaduli D, Navarro D, Favel A, Norest M, Lesage-Meessen L, Bálint B, Merényi Z, de Eugenio L, Morin E, Martínez AT, Baldrian P, Štursová M, Martínez MJ, Novotny C, Magnuson JK, Spatafora JW, Maurice S, Pangilinan J, Andreopoulos W, LaButti K, Hundley H, Na H, Kuo A, Barry K, Lipzen A, Henrissat B, Riley R, Ahrendt S, Nagy LG, Grigoriev IV, Martin F, Rosso MN. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol 2021; 23:5716-5732. [PMID: 33538380 PMCID: PMC8596683 DOI: 10.1111/1462-2920.15423] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Because they comprise some of the most efficient wood‐decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin‐like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.
Collapse
Affiliation(s)
- Hayat Hage
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Shingo Miyauchi
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Köln, Germany
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Elodie Drula
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, USC1408, AFMB, Marseille, 13009, France
| | - Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Delphine Chaduli
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - David Navarro
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Anne Favel
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Manon Norest
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Laurence Lesage-Meessen
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Cenek Novotny
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic.,University of Ostrava, Ostrava, 701 03, Czech Republic
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joey W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, 0316, Norway
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Willian Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary.,Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| |
Collapse
|
12
|
Vos AM, Bleichrodt R, Herman KC, Ohm RA, Scholtmeijer K, Schmitt H, Lugones LG, Wösten HAB. Cycling in degradation of organic polymers and uptake of nutrients by a litter-degrading fungus. Environ Microbiol 2021; 23:224-238. [PMID: 33140552 PMCID: PMC7894533 DOI: 10.1111/1462-2920.15297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022]
Abstract
Wood and litter degrading fungi are the main decomposers of lignocellulose and thus play a key role in carbon cycling in nature. Here, we provide evidence for a novel lignocellulose degradation strategy employed by the litter degrading fungus Agaricus bisporus (known as the white button mushroom). Fusion of hyphae allows this fungus to synchronize the activity of its mycelium over large distances (50 cm). The synchronized activity has a 13-h interval that increases to 20 h before becoming irregular and it is associated with a 3.5-fold increase in respiration, while compost temperature increases up to 2°C. Transcriptomic analysis of this burst-like phenomenon supports a cyclic degradation of lignin, deconstruction of (hemi-) cellulose and microbial cell wall polymers, and uptake of degradation products during vegetative growth of A. bisporus. Cycling in expression of the ligninolytic system, of enzymes involved in saccharification, and of proteins involved in nutrient uptake is proposed to provide an efficient way for degradation of substrates such as litter.
Collapse
Affiliation(s)
- Aurin M. Vos
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
- Wageningen Plant ResearchWageningen URWageningenthe Netherlands
| | | | - Koen C. Herman
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Robin A. Ohm
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Karin Scholtmeijer
- Plant BreedingWageningen University and ResearchWageningenthe Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtthe Netherlands
| | - Luis G. Lugones
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Han A. B. Wösten
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
13
|
Mäkelä MR, Hildén K, Kowalczyk JE, Hatakka A. Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Abstract
Fungi dominate the turnover of wood, Earth’s largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot “shortcut” often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches. Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among “white rot” fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates—“brown rot.” The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of “decay-stage-dependent” ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.
Collapse
|
15
|
Effect on growth, sugar consumption, and aerobic ethanol fermentation of homologous expression of the sugar transporter gene Pshxt1 in the white rot fungus Phanerochaete sordida YK-624. J Biosci Bioeng 2019; 128:537-543. [DOI: 10.1016/j.jbiosc.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
|
16
|
Wang X, Qin X, Hao Z, Luo H, Yao B, Su X. Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins (Basel) 2019; 11:E566. [PMID: 31569657 PMCID: PMC6833064 DOI: 10.3390/toxins11100566] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023] Open
Abstract
Enzymatic treatment is an attractive method for mycotoxin detoxification, which ideally prefers the use of one or a few enzymes. However, this is challenged by the diverse structures and co-contamination of multiple mycotoxins in food and feed. Lignin-degrading fungi have been discovered to detoxify organics including mycotoxins. Manganese peroxidase (MnP) is a major enzyme responsible for lignin oxidative depolymerization in such fungi. Here, we demonstrate that eight MnPs from different lignocellulose-degrading fungi (five from Irpex lacteus, one from Phanerochaete chrysosporium, one from Ceriporiopsis subvermispora, and another from Nematoloma frowardii) could all degrade four major mycotoxins (aflatoxin B1, AFB1; zearalenone, ZEN; deoxynivalenol, DON; fumonisin B1, FB1) only in the presence of a dicarboxylic acid malonate, in which free radicals play an important role. The I. lacteus and C. subvermispora MnPs behaved similarly in mycotoxins transformation, outperforming the P. chrysosporium and N. frowardii MnPs. The large evolutionary diversity of these MnPs suggests that mycotoxin degradation tends to be a common feature shared by MnPs. MnP can, therefore, serve as a candidate enzyme for the degradation of multiple mycotoxins in food and feed if careful surveillance of the residual toxicity of degradation products is properly carried out.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Mori T, Kondo O, Sumiya T, Kawagishi H, Hirai H. Self-fusion and fusion cell isolation of transformants derived from white rot fungus Phanerochaete sordida YK-624 by simple visual method. J Biosci Bioeng 2019; 129:146-149. [PMID: 31506244 DOI: 10.1016/j.jbiosc.2019.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
In order to develop a simple method for crossing two transformants, we first attempted to elucidate the fusion type (self-compatibility or -incompatible) of Phanerochaete sordida YK-624. Two transformants expressing green or red fluorescent protein derived from an auxotrophic mutant were constructed. Each recombinant protein fluoresced by expression as a fused protein with glyceraldehyde-3-phosphate dehydrogenase. On co-culture of both transformants, a number of sequential hyphal cells emitting dual fluorescence were formed at the contact areas of both hyphae. Some of the single cells isolated as protoplasts and chlamydospore from the co-cultures also expressed these fluorescent proteins. These results suggest that P. sordida YK-624 possesses a self-compatible fusion system. In addition, transformant strains with different fluorescence derived from this fungus can readily undergo self-fusion and nuclear interchange events by confrontational and mixed cultivation, and we developed a simple method that allows fused cells to be isolated as chlamydospores.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan
| | - Ojiro Kondo
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan
| | - Tomoki Sumiya
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 522-8529, Japan.
| |
Collapse
|
18
|
Sugawara K, Igeta E, Amano Y, Hyuga M, Sugano Y. Degradation of antifungal anthraquinone compounds is a probable physiological role of DyP secreted by Bjerkandera adusta. AMB Express 2019; 9:56. [PMID: 31016483 PMCID: PMC6478788 DOI: 10.1186/s13568-019-0779-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/16/2019] [Indexed: 11/28/2022] Open
Abstract
Alizarin is an anti-fungal compound produced by the plant, Rubia tinctorum. The parasitic fungus Bjerkandera adusta Dec 1 was cultured in potato dextrose (PD) medium with or without alizarin. Alizarin was a good substrate for the dye-decolorizing peroxidase (DyP) from B. adusta Dec 1 and hampered B. adusta growth at the early stage of plate culture. During liquid shaking culture, DyP activity in cultures supplemented with 100 μM alizarin was greater than that in controls cultured without alizarin. In particular, DyP activity per dry cell mass increased approximately 3.5-, 3.1-, and 2.9-fold at 24, 30, and 36 h after inoculation, respectively, compared with control cultures. These data suggest that alizarin stimulates the expression of DyP. Interestingly, alizarin rapidly decomposed at an early stage in culture (24–42 h) in PD medium supplemented with 100 μM alizarin. Thus, alizarin appears to induce DyP expression in B. adusta Dec 1, and this DyP, in turn, rapidly degrades alizarin. Collectively, our findings suggest that the physiological role of DyP is to degrade antifungal compounds produced by plants.
Collapse
|
19
|
Zhang J, Mitchell HD, Markillie LM, Gaffrey MJ, Orr G, Schilling J. Reference genes for accurate normalization of gene expression in wood-decomposing fungi. Fungal Genet Biol 2018; 123:33-40. [PMID: 30529285 DOI: 10.1016/j.fgb.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022]
Abstract
Wood-decomposing fungi efficiently decompose plant lignocellulose, and there is increasing interest in characterizing and perhaps harnessing the fungal gene regulation strategies that enable wood decomposition. Proper interpretation of these fungal mechanisms relies on accurate quantification of gene expression, demanding reliable internal control genes (ICGs) as references. Commonly used ICGs such as actin, however, fluctuate among wood-decomposing fungi under defined conditions. In this study, by mining RNA-seq data in silico and validating ICGs in vitro using qRT-PCR, we targeted more reliable ICGs for studying transcriptional responses in wood-decomposing fungi, particularly responses to changing environments (e.g., carbon sources, decomposition stages) in various culture conditions. Using the model brown rot fungus Postia placenta in a first-pass study, our mining efforts yielded 15 constitutively-expressed genes robust in variable carbon sources (e.g., no carbon, glucose, cellobiose, aspen) and cultivation stages (e.g., 15 h, 72 h) in submerged cultures. Of these, we found 7 genes as most suitable ICGs. Expression stabilities of these newly selected ICGs were better than commonly used ICGs, analyzed by NormFinder algorithm and qRT-PCR. In a second-pass, multi-species study in solid wood, our RNA-seq mining efforts revealed hundreds of highly constitutively expressed genes among four wood-decomposing fungi with varying nutritional modes (brown rot, white rot), including a shared core set of ICGs numbering 11 genes. Together, the newly selected ICGs highlighted here will increase reliability when studying gene regulatory mechanisms of wood-decomposing fungi.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Hugh D Mitchell
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Lye Meng Markillie
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
20
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
21
|
Jurak E, Suzuki H, van Erven G, Gandier JA, Wong P, Chan K, Ho CY, Gong Y, Tillier E, Rosso MN, Kabel MA, Miyauchi S, Master ER. Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. BMC Genomics 2018; 19:815. [PMID: 30424733 PMCID: PMC6234650 DOI: 10.1186/s12864-018-5210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The basidiomycete Phanerochaete carnosa is a white-rot species that has been mainly isolated from coniferous softwood. Given the particular recalcitrance of softwoods to bioconversion, we conducted a comparative transcriptomic analysis of P. carnosa following growth on wood powder from one softwood (spruce; Picea glauca) and one hardwood (aspen; Populus tremuloides). P. carnosa was grown on each substrate for over one month, and mycelia were harvested at five time points for total RNA sequencing. Residual wood powder was also analyzed for total sugar and lignin composition. RESULTS Following a slightly longer lag phase of growth on spruce, radial expansion of the P. carnosa colony was similar on spruce and aspen. Consistent with this observation, the pattern of gene expression by P. carnosa on each substrate converged following the initial adaptation. On both substrates, highest transcript abundances were attributed to genes predicted to encode manganese peroxidases (MnP), along with auxiliary activities from carbohydrate-active enzyme (CAZy) families AA3 and AA5. In addition, a lytic polysaccharide monooxygenase from family AA9 was steadily expressed throughout growth on both substrates. P450 sequences from clans CPY52 and CYP64 accounted for 50% or more of the most highly expressed P450s, which were also the P450 clans that were expanded in the P. carnosa genome relative to other white-rot fungi. CONCLUSIONS The inclusion of five growth points and two wood substrates was important to revealing differences in the expression profiles of specific sequences within large glycoside hydrolase families (e.g., GH5 and GH16), and permitted co-expression analyses that identified new targets for study, including non-catalytic proteins and proteins with unknown function.
Collapse
Affiliation(s)
- E Jurak
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Department of Aquatic Biotechnology and Bioproduct Engineering, Groningen, The Netherlands
| | - H Suzuki
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - G van Erven
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - J A Gandier
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - P Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K Chan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - C Y Ho
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Y Gong
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - E Tillier
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - M-N Rosso
- Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - M A Kabel
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - S Miyauchi
- Laboratory of Excellence ARBRE, INRA, Nancy, Lorraine, France.,Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - E R Master
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVDC. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 2018; 6:151. [PMID: 30406095 PMCID: PMC6204389 DOI: 10.3389/fbioe.2018.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
23
|
Fernández-González AJ, Valette N, Kohler A, Dumarçay S, Sormani R, Gelhaye E, Morel-Rouhier M. Oak extractive-induced stress reveals the involvement of new enzymes in the early detoxification response of Phanerochaete chrysosporium. Environ Microbiol 2018; 20:3890-3901. [DOI: 10.1111/1462-2920.14409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio José Fernández-González
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| | - Nicolas Valette
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| | - Annegret Kohler
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| | - Stéphane Dumarçay
- Université de Lorraine; EA4370 USC INRA 1445 Laboratoire d'Etudes et de Recherches sur le Matériau Bois; Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy Cedex France
| | - Rodnay Sormani
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| | - Eric Gelhaye
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| | - Mélanie Morel-Rouhier
- Université de Lorraine, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy Cedex France
- INRA, UMR1136 INRA-Université de Lorraine "Interactions Arbres/Micro-organismes"; Faculté des Sciences et Technologies BP; Vandoeuvre-lès-Nancy Cedex France
| |
Collapse
|
24
|
Mäkinen MA, Risulainen N, Mattila H, Lundell TK. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata. Appl Microbiol Biotechnol 2018; 102:5657-5672. [PMID: 29728725 DOI: 10.1007/s00253-018-9045-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/30/2022]
Abstract
Previously identified twelve plant cell wall degradation-associated genes of the white rot fungus Phlebia radiata were studied by RT-qPCR in semi-aerobic solid-state cultures on lignocellulose waste material, and on glucose-containing reference medium. Wood-decay-involved enzyme activities and ethanol production were followed to elucidate both the degradative and fermentative processes. On the waste lignocellulose substrate, P. radiata carbohydrate-active enzyme (CAZy) genes encoding cellulolytic and hemicellulolytic activities were significantly upregulated whereas genes involved in lignin modification displayed a more complex response. Two lignin peroxidase genes were differentially expressed on waste lignocellulose compared to glucose medium, whereas three manganese peroxidase-encoding genes were less affected. On the contrary, highly significant difference was noticed for three cellulolytic genes (cbhI_1, eg1, bgl1) with higher expression levels on the lignocellulose substrate than on glucose. This indicates expression of the wood-attacking degradative enzyme system by the fungus also on the recycled, waste core board material. During the second week of cultivation, ethanol production increased on the core board to 0.24 g/L, and extracellular activities against cellulose, xylan, and lignin were detected. Sugar release from the solid lignocellulose resulted with concomitant accumulation of ethanol as fermentation product. Our findings confirm that the fungus activates its white rot decay system also on industrially processed lignocellulose adopted as growth substrate, and under semi-aerobic cultivation conditions. Thus, P. radiata is a good candidate for lignocellulose-based renewable biotechnology to make biofuels and biocompounds from materials with less value for recycling or manufacturing.
Collapse
Affiliation(s)
- Mari A Mäkinen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland.
| | - Netta Risulainen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Hans Mattila
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Taina K Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| |
Collapse
|
25
|
Houtman CJ, Maligaspe E, Hunt CG, Fernández-Fueyo E, Martínez AT, Hammel KE. Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. J Biol Chem 2018; 293:4702-4712. [PMID: 29462790 DOI: 10.1074/jbc.ra117.001153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecular-weight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA+•), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated from TMB by horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction-diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA+•, it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA+• and that a different mechanism produces small ligninolytic oxidants during white rot.
Collapse
Affiliation(s)
- Carl J Houtman
- United States Forest Products Laboratory, Madison, Wisconsin 53726
| | - Eranda Maligaspe
- United States Forest Products Laboratory, Madison, Wisconsin 53726
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kenneth E Hammel
- United States Forest Products Laboratory, Madison, Wisconsin 53726; Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
26
|
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:58. [PMID: 29507610 PMCID: PMC5833081 DOI: 10.1186/s13068-018-1060-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. RESULTS Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. CONCLUSIONS The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.
Collapse
Affiliation(s)
- Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
27
|
Sista Kameshwar AK, Qin W. Analyzing Phanerochaete chrysosporium gene expression patterns controlling the molecular fate of lignocellulose degrading enzymes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Transcriptome Sequencing and Comparative Analysis of Piptoporus betulinus in Response to Birch Sawdust Induction. FORESTS 2017. [DOI: 10.3390/f8100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Marinović M, Aguilar-Pontes MV, Zhou M, Miettinen O, de Vries RP, Mäkelä MR, Hildén K. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet Biol 2017; 112:47-54. [PMID: 28754284 DOI: 10.1016/j.fgb.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers.
Collapse
Affiliation(s)
- Mila Marinović
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Maria Victoria Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Kristiina Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
30
|
Manganese-enhanced degradation of lignocellulosic waste by Phanerochaete chrysosporium: evidence of enzyme activity and gene transcription. Appl Microbiol Biotechnol 2017; 101:6541-6549. [DOI: 10.1007/s00253-017-8371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
|
31
|
Miyauchi S, Navarro D, Grisel S, Chevret D, Berrin JG, Rosso MN. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS One 2017; 12:e0175528. [PMID: 28394946 PMCID: PMC5386290 DOI: 10.1371/journal.pone.0175528] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials. Using the saprotrophic white-rot fungus Pycnoporus coccineus as a fungal model, we examined the dynamics of transcriptomic and secretomic responses to different types of lignocellulosic substrates at two time points. Our integrative omics pipeline (SHIN+GO) enabled us to compress layers of biological information into simple heatmaps, allowing for visual inspection of the data. We identified co-regulated genes with corresponding co-secreted enzymes, and the biological roles were extrapolated with the enriched Carbohydrate-Active Enzyme (CAZymes) and functional annotations. We observed the fungal early responses for the degradation of lignocellulosic substrates including; 1) simultaneous expression of CAZy genes and secretion of the enzymes acting on diverse glycosidic bonds in cellulose, hemicelluloses and their side chains or lignin (i.e. hydrolases, esterases and oxido-reductases); 2) the key role of lytic polysaccharide monooxygenases (LPMO); 3) the early transcriptional regulation of lignin active peroxidases; 4) the induction of detoxification processes dealing with biomass-derived compounds; and 5) the frequent attachments of the carbohydrate binding module 1 (CBM1) to enzymes from the lignocellulose-responsive genes. Our omics combining methods and related biological findings may contribute to the knowledge of fungal systems biology and facilitate the optimization of fungal enzyme cocktails for various industrial applications.
Collapse
Affiliation(s)
- Shingo Miyauchi
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - David Navarro
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Sacha Grisel
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Didier Chevret
- PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Guy Berrin
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Marie-Noelle Rosso
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- * E-mail:
| |
Collapse
|
32
|
Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV. Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 2017; 12:e0173813. [PMID: 28301519 PMCID: PMC5354401 DOI: 10.1371/journal.pone.0173813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle.
Collapse
Affiliation(s)
- Daria V. Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| | - Konstantin V. Moiseenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
- * E-mail:
| | - Tatiana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| | - Tatiana V. Tyazhelova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| |
Collapse
|
33
|
Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives. Curr Genet 2017; 63:877-894. [PMID: 28275822 DOI: 10.1007/s00294-017-0686-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.
Collapse
|
34
|
Kameshwar AKS, Qin W. Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation. Int J Biol Sci 2017; 13:85-99. [PMID: 28123349 PMCID: PMC5264264 DOI: 10.7150/ijbs.17390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
35
|
Nagy LG, Riley R, Bergmann PJ, Krizsán K, Martin FM, Grigoriev IV, Cullen D, Hibbett DS. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Mol Biol Evol 2016; 34:35-44. [DOI: 10.1093/molbev/msw238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci U S A 2016; 113:10968-73. [PMID: 27621450 PMCID: PMC5047196 DOI: 10.1073/pnas.1608454113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Kenneth E Hammel
- Institute for Microbial and Biochemical Technology, US Forest Products Laboratory, Madison, WI 53726; Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Jae-San Ryu
- Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea
| | - Jon R Menke
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108
| | - Dehong Hu
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Galya Orr
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108;
| |
Collapse
|
37
|
Chen L, Gong Y, Cai Y, Liu W, Zhou Y, Xiao Y, Xu Z, Liu Y, Lei X, Wang G, Guo M, Ma X, Bian Y. Genome Sequence of the Edible Cultivated Mushroom Lentinula edodes (Shiitake) Reveals Insights into Lignocellulose Degradation. PLoS One 2016; 11:e0160336. [PMID: 27500531 PMCID: PMC4976891 DOI: 10.1371/journal.pone.0160336] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023] Open
Abstract
Lentinula edodes, one of the most popular, edible mushroom species with a high content of proteins and polysaccharides as well as unique aroma, is widely cultivated in many Asian countries, especially in China, Japan and Korea. As a white rot fungus with lignocellulose degradation ability, L. edodes has the potential for application in the utilization of agriculture straw resources. Here, we report its 41.8-Mb genome, encoding 14,889 predicted genes. Through a phylogenetic analysis with model species of fungi, the evolutionary divergence time of L. edodes and Gymnopus luxurians was estimated to be 39 MYA. The carbohydrate-active enzyme genes in L. edodes were compared with those of the other 25 fungal species, and 101 lignocellulolytic enzymes were identified in L. edodes, similar to other white rot fungi. Transcriptome analysis showed that the expression of genes encoding two cellulases and 16 transcription factor was up-regulated when mycelia were cultivated for 120 minutes in cellulose medium versus glucose medium. Our results will foster a better understanding of the molecular mechanism of lignocellulose degradation and provide the basis for partial replacement of wood sawdust with agricultural wastes in L. edodes cultivation.
Collapse
Affiliation(s)
- Lianfu Chen
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuhua Gong
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingli Cai
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Liu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Zhou
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Xiao
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhangyi Xu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yin Liu
- Food Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyu Lei
- Food Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gangzheng Wang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mengpei Guo
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaolong Ma
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
38
|
Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus. Appl Environ Microbiol 2016; 82:4867-75. [PMID: 27260365 PMCID: PMC4968546 DOI: 10.1128/aem.00304-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022] Open
Abstract
The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium. The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.
IMPORTANCE This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.
Collapse
|
39
|
Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:192. [PMID: 27602055 PMCID: PMC5011852 DOI: 10.1186/s13068-016-0608-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. RESULTS According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. CONCLUSIONS Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Collapse
Affiliation(s)
- Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Mari Häkkinen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Fitsum Tamene
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sini Miettinen
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| |
Collapse
|