1
|
Vanharanta M, Santoro M, Villena-Alemany C, Piiparinen J, Piwosz K, Grossart HP, Labrenz M, Spilling K. Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea. FEMS Microbiol Ecol 2024; 100:fiae103. [PMID: 39039015 DOI: 10.1093/femsec/fiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Mari Vanharanta
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Mariano Santoro
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 379 01 Třeboň, Czech Republic
| | - Jonna Piiparinen
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany
- Institute of Biology and Biochemistry, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
| | - Kristian Spilling
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
- Centre for Coastal Research, University of Agder, Universitetsveien 25, 4604 Kristiansand, Norway
| |
Collapse
|
2
|
Dang YR, Cha QQ, Liu SS, Wang SY, Li PY, Li CY, Wang P, Chen XL, Tian JW, Xin Y, Chen Y, Zhang YZ, Qin QL. Phytoplankton-derived polysaccharides and microbial peptidoglycans are key nutrients for deep-sea microbes in the Mariana Trench. MICROBIOME 2024; 12:77. [PMID: 38664737 PMCID: PMC11044484 DOI: 10.1186/s40168-024-01789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.
Collapse
Affiliation(s)
- Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Yan Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ji-Wei Tian
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu Xin
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yin Chen
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Yu-Zhong Zhang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Balmonte JP, Giebel HA, Arnosti C, Simon M, Wietz M. Distinct bacterial succession and functional response to alginate in the South, Equatorial, and North Pacific Ocean. Environ Microbiol 2024; 26:e16594. [PMID: 38418376 DOI: 10.1111/1462-2920.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
The availability of alginate, an abundant macroalgal polysaccharide, induces compositional and functional responses among marine microbes, but these dynamics have not been characterized across the Pacific Ocean. We investigated alginate-induced compositional and functional shifts (e.g., heterotrophic production, glucose turnover, hydrolytic enzyme activities) of microbial communities in the South Subtropical, Equatorial, and Polar Frontal North Pacific in mesocosms. We observed that shifts in response to alginate were site-specific. In the South Subtropical Pacific, prokaryotic cell counts, glucose turnover, and peptidase activities changed the most with alginate addition, along with the enrichment of the widest range of particle-associated taxa (161 amplicon sequence variants; ASVs) belonging to Alteromonadaceae, Rhodobacteraceae, Phormidiaceae, and Pseudoalteromonadaceae. Some of these taxa were detected at other sites but only enriched in the South Pacific. In the Equatorial Pacific, glucose turnover and heterotrophic prokaryotic production increased most rapidly; a single Alteromonas taxon dominated (60% of the community) but remained low (<2%) elsewhere. In the North Pacific, the particle-associated community response to alginate was gradual, with a more limited range of alginate-enriched taxa (82 ASVs). Thus, alginate-related ecological and biogeochemical shifts depend on a combination of factors that include the ability to utilize alginate, environmental conditions, and microbial interactions.
Collapse
Affiliation(s)
- John Paul Balmonte
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, USA
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Carol Arnosti
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
4
|
Wang X, Li J, Zheng J, Zhao L, Ruan C, Zhang D, Pan X. Polysaccharide preferred minority-dominant community assembly and exoenzyme enrichment in transparent exopolymer particles: Implication for global carbon cycle in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169976. [PMID: 38199380 DOI: 10.1016/j.scitotenv.2024.169976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The ubiquitous transparent exopolymer particles (TEPs) are an important organic carbon pool and an ideal microhabitat for bacteria in aquatic environments. They play a crucial role in the global carbon cycle. Organic matter transformation and carbon turnover in TEPs strongly depend on the assembly of their associated bacterial communities and enzyme activity. However, the mechanisms of bacterial community assembly and their potential effects on the organic carbon cycle in TEPs are still unclear. In this study, we comparatively explored the community assembly of TEP-associated bacteria and bacterioplankton from surface freshwater using metagenomics. It was found that the bacterial community assembly in TEPs followed a minority-dominant rule and was governed by homogeneous selection. Pseudomonadota and Actinomycetota, which are responsible for polysaccharide degradation, serve as taxon-specific biomarkers among the abundant and diverse bacteria in TEPs. The network of TEP-associated bacteria displayed stronger robustness than that of bacterioplankton. Bin 76 (majorly Acinetobacter) was the overwhelmingly dominant taxa in TEPs, whereas there was no clearly dominant taxa in TEP-free water. Exoenzyme analysis showed that 64 out of 71 identified polysaccharide hydrolases were markedly linked with the dominant bin 76 in TEPs, while no such linkage was observed for bacterioplankton. Generally, Acinetobacter, which is capable of utilizing polysaccharides, is preferred to be assembled in TEPs together with high polysaccharide hydrolase activity. This may significantly accelerate the turnover of organic carbon in the giant global TEP pool. These findings are important for a deep understanding of the carbon cycle in water.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jieyan Zheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lanxin Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenghao Ruan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Marschmann GL, Tang J, Zhalnina K, Karaoz U, Cho H, Le B, Pett-Ridge J, Brodie EL. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024; 9:421-433. [PMID: 38316928 PMCID: PMC10847045 DOI: 10.1038/s41564-023-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.
Collapse
Affiliation(s)
- Gianna L Marschmann
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinyun Tang
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kateryna Zhalnina
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Heejung Cho
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Beatrice Le
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Brown S, Lloyd CC, Giljan G, Ghobrial S, Amann R, Arnosti C. Pulsed inputs of high molecular weight organic matter shift the mechanisms of substrate utilisation in marine bacterial communities. Environ Microbiol 2024; 26:e16580. [PMID: 38254313 DOI: 10.1111/1462-2920.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Heterotrophic bacteria hydrolyze high molecular weight (HMW) organic matter extracellularly prior to uptake, resulting in diffusive loss of hydrolysis products. An alternative 'selfish' uptake mechanism that minimises this loss has recently been found to be common in the ocean. We investigated how HMW organic matter addition affects these two processing mechanisms in surface and bottom waters at three stations in the North Atlantic Ocean. A pulse of HMW organic matter increased cell numbers, as well as the rate and spectrum of extracellular enzymatic activities at both depths. The effects on selfish uptake were more differentiated: in Gulf Stream surface waters and productive surface waters south of Newfoundland, selfish uptake of structurally simple polysaccharides increased upon HMW organic matter addition. The number of selfish bacteria taking up structurally complex polysaccharides, however, was largely unchanged. In contrast, in the oligotrophic North Atlantic gyre, despite high external hydrolysis rates, the number of selfish bacteria was unchanged, irrespective of polysaccharide structure. In deep bottom waters (> 4000 m), structurally complex substrates were processed only by selfish bacteria. Mechanisms of substrate processing-and the extent to which hydrolysis products are released to the external environment-depend on substrate structural complexity and the resident bacterial community.
Collapse
Affiliation(s)
- Sarah Brown
- Environment, Ecology, and Energy Program, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - C Chad Lloyd
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Greta Giljan
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sherif Ghobrial
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
7
|
Zhang H, Hu W, Liu R, Bartlam M, Wang Y. Low and high nucleic acid content bacteria play discrepant roles in response to various carbon supply modes. Environ Microbiol 2023; 25:3703-3718. [PMID: 37964717 DOI: 10.1111/1462-2920.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Planktonic bacteria can be grouped into 'high nucleic acid content (HNA) bacteria' and 'low nucleic acid content (LNA) bacteria.' Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell-1 ) than the continuous-treated LNA (0.00014, 0.00014 ng cell-1 ), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
8
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Giljan G, Brown S, Lloyd CC, Ghobrial S, Amann R, Arnosti C. Selfish bacteria are active throughout the water column of the ocean. ISME COMMUNICATIONS 2023; 3:11. [PMID: 36739317 PMCID: PMC9899235 DOI: 10.1038/s43705-023-00219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023]
Abstract
Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Selfish bacteria change the odds in their favor by binding, partially hydrolyzing, and transporting polysaccharides into the periplasmic space without loss of hydrolysis products. We expected selfish bacteria to be most common in the upper ocean, where phytoplankton produce abundant fresh organic matter, including complex polysaccharides. We, therefore, sampled water in the western North Atlantic Ocean at four depths from three stations differing in physiochemical conditions; these stations and depths also differed considerably in microbial community composition. To our surprise, we found that selfish bacteria are common throughout the water column of the ocean, including at depths greater than 5500 m. Selfish uptake as a strategy thus appears to be geographically-and phylogenetically-widespread. Since processing and uptake of polysaccharides require enzymes that are highly sensitive to substrate structure, the activities of these bacteria might not be reflected by measurements relying on uptake only of low molecular weight substrates. Moreover, even at the bottom of the ocean, the supply of structurally-intact polysaccharides, and therefore the return on enzymatic investment, must be sufficient to maintain these organisms.
Collapse
Affiliation(s)
- Greta Giljan
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sarah Brown
- Environment, Ecology, and Energy Program, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - C Chad Lloyd
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Sherif Ghobrial
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Khan T, Alzahrani OM, Sohail M, Hasan KA, Gulzar S, Rehman AU, Mahmoud SF, Alswat AS, Abdel-Gawad SA. Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum. Microorganisms 2022; 10:microorganisms10112112. [PMID: 36363704 PMCID: PMC9698051 DOI: 10.3390/microorganisms10112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.
Collapse
Affiliation(s)
- Tooba Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Salman Gulzar
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Ammad Ur Rehman
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shebl Abdallah Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment Institute Agriculture Research Center, Giza 12112, Egypt
| |
Collapse
|
11
|
Duteil T, Bourillot R, Braissant O, Grégoire B, Leloup M, Portier E, Brigaud B, Féniès H, Svahn I, Henry A, Yokoyama Y, Visscher PT. Preservation of exopolymeric substances in estuarine sediments. Front Microbiol 2022; 13:921154. [PMID: 36060749 PMCID: PMC9434125 DOI: 10.3389/fmicb.2022.921154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
The surface of intertidal estuarine sediments is covered with diatom biofilms excreting exopolymeric substances (EPSs) through photosynthesis. These EPSs are highly reactive and increase sediment cohesiveness notably through organo-mineral interactions. In most sedimentary environments, EPSs are partly to fully degraded by heterotrophic bacteria in the uppermost millimeters of the sediment and so they are thought to be virtually absent deeper in the sedimentary column. Here, we present the first evidence of the preservation of EPSs and EPS-mineral aggregates in a 6-m-long sedimentary core obtained from an estuarine point bar in the Gironde Estuary. EPSs were extracted from 18 depth intervals along the core, and their physicochemical properties were characterized by (i) wet chemical assays to measure the concentrations of polysaccharides and proteins, and EPS deprotonation of functional groups, (ii) acid–base titrations, and (iii) Fourier transform infrared spectroscopy. EPS-sediment complexes were also imaged using cryo-scanning electron microscopy. EPS results were analyzed in the context of sediment properties including facies, grain size, and total organic carbon, and of metabolic and enzymatic activities. Our results showed a predictable decrease in EPS concentrations (proteins and polysaccharides) and reactivity from the surface biofilm to a depth of 0.5 m, possibly linked to heterotrophic degradation. Concentrations remained relatively low down to ca. 4.3 m deep. Surprisingly, at that depth EPSs abundance was comparable to the surface and showed a downward decrease to 6.08 m. cryo-scanning electron microscopy (Cryo-SEM) showed that the EPS complexes with sediment were abundant at all studied depth and potentially protected EPSs from degradation. EPS composition did not change substantially from the surface to the bottom of the core. EPS concentrations and acidity were anti-correlated with metabolic activity, but showed no statistical correlation with grain size, TOC, depth or enzymatic activity. Maximum EPS concentrations were found at the top of tide-dominated sedimentary sequences, and very low concentrations were found in river flood-dominated sedimentary sequences. Based on this observation, we propose a scenario where biofilm development and EPS production are maximal when (i) the point bar and the intertidal areas were the most extensive, i.e., tide-dominated sequences and (ii) the tide-dominated deposit were succeeded by rapid burial beneath sediments, potentially decreasing the probability of encounter between bacterial cells and EPSs.
Collapse
Affiliation(s)
- Thibault Duteil
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France
- *Correspondence: Thibault Duteil,
| | | | - Olivier Braissant
- Department Biomedical Engineering (DBE), Center for Biomechanics and Biocalorimetry, University of Basel, Allschwil, Switzerland
| | - Brian Grégoire
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Centre National de la Recherche Scientifique (CNRS), Université de Poitiers, Poitiers, France
| | - Maud Leloup
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Centre National de la Recherche Scientifique (CNRS), Université de Poitiers, Poitiers, France
| | | | | | - Hugues Féniès
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France
| | - Isabelle Svahn
- Bordeaux Imaging Center (BIC), CNRS, Université de Bordeaux, Bordeaux, France
| | - Adrien Henry
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France
| | - Yusuke Yokoyama
- Department of Earth and Planetary Sciences, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwanoha, Chiba, Japan
| | - Pieter T. Visscher
- Department of Marine Sciences and Geosciences, University of Connecticut, Groton, CT, United States
- CNRS, Biogéosciences, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Manna V, Zoccarato L, Banchi E, Arnosti C, Grossart H, Celussi M. Linking lifestyle and foraging strategies of marine bacteria: selfish behaviour of particle-attached bacteria in the northern Adriatic Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:549-558. [PMID: 35362215 PMCID: PMC9546125 DOI: 10.1111/1758-2229.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.
Collapse
Affiliation(s)
- Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| | - Luca Zoccarato
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB)Department of Experimental LimnologyZur alten Fischerhuette 2, D‐16775 StechlinGermany
| | - Elisa Banchi
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| | - Carol Arnosti
- University of North Carolina – Chapel HillDepartment of Earth, Marine, and Environmental SciencesChapel HillNC27599USA
| | - Hans‐Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB)Department of Experimental LimnologyZur alten Fischerhuette 2, D‐16775 StechlinGermany
- Potsdam UniversityInstitute for Biochemistry and BiologyMaulbeeralle 2, D‐14469 PotsdamGermany
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics – OGSDepartment of OceanographyTriesteItaly
| |
Collapse
|
13
|
Giljan G, Arnosti C, Kirstein IV, Amann R, Fuchs BM. Strong seasonal differences of bacterial polysaccharide utilization in the North Seas over an annual cycle. Environ Microbiol 2022; 24:2333-2347. [PMID: 35384240 DOI: 10.1111/1462-2920.15997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan, and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Greta Giljan
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Inga V Kirstein
- Alfred-Wegner-Institute Helmholtz-Center for Polar and Marine Research, Biological Station Helgoland, Helgoland, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
14
|
Potentials of Endophytic Fungi in the Biosynthesis of Versatile Secondary Metabolites and Enzymes. FORESTS 2021. [DOI: 10.3390/f12121784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
World population growth and modernization have engendered multiple environmental problems: the propagation of humans and crop diseases and the development of multi-drug-resistant fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on endophytic fungi and their biotechnological potentials are in high demand due to their substantial, cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites. For this review, we provide a brief overview of plant–endophytic fungi interactions and we also state the history of the discovery of the untapped potentialities of fungal secondary metabolites. Then, we highlight the huge importance of the discovered metabolites and their versatile applications in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation. We then focus on the challenges and on the possible methods and techniques that can be used to help in the discovery of novel secondary metabolites. The latter range from endophytic selection and culture media optimization to more in-depth strategies such as omics, ribosome engineering and epigenetic remodeling.
Collapse
|
15
|
Enriching Lactobacilli from Fermented Pulse Dal Flour-Analyzing its Efficacy in Utilizing Carbohydrates and Production of α-galactosidase Enzyme During Pigeon Pea Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pigeon peas are an excellent source of carbohydrates, proteins and other nutrients. Many traditional fermented foods are prepared from cereals and combinations of cereals and pulses that usually contain Lactic acid bacteria (LAB), Bacillus, Enterococcus and yeast. Lactobacillus can be used as a starter culture for such fermentation using pulses, as very few reports are available on fermented pulse-based products. Hence, pulse dal flour was used as a source for isolation of Lactobacillus to maintain their functionality, growth characteristics and activity during food processing. In this study, we investigated the potential of lactobacilli from fermented pigeon pea to utilize carbohydrates, the ability to degrade non-digestible oligosaccharides and the production of the α-galactosidase enzyme. Lactobacillus isolated from six different pulse dal flour grew well during fermentation with carbohydrates in mMRS medium. Among Lactobacillus species, only Lactobacillus brevis displayed the highest α-galactosidase activity (1.24 U/ml), where raffinose was added as the sole carbohydrate source in the medium. The isolate was further tested in pigeon pea fermentation, where it showed maximum activity (1.86 U/ml) and complete hydrolysis of non-digestible oligosaccharides was observed. Overall, usage of Lactobacilli could be an excellent opportunity to design and develop a novel pulse-based fermented product contributing to beneficial bioactive compounds and improving the properties of food.
Collapse
|
16
|
Dukovski I, Bajić D, Chacón JM, Quintin M, Vila JCC, Sulheim S, Pacheco AR, Bernstein DB, Riehl WJ, Korolev KS, Sanchez A, Harcombe WR, Segrè D. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat Protoc 2021; 16:5030-5082. [PMID: 34635859 PMCID: PMC10824140 DOI: 10.1038/s41596-021-00593-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Genome-scale stoichiometric modeling of metabolism has become a standard systems biology tool for modeling cellular physiology and growth. Extensions of this approach are emerging as a valuable avenue for predicting, understanding and designing microbial communities. Computation of microbial ecosystems in time and space (COMETS) extends dynamic flux balance analysis to generate simulations of multiple microbial species in molecularly complex and spatially structured environments. Here we describe how to best use and apply the most recent version of COMETS, which incorporates a more accurate biophysical model of microbial biomass expansion upon growth, evolutionary dynamics and extracellular enzyme activity modules. In addition to a command-line option, COMETS includes user-friendly Python and MATLAB interfaces compatible with the well-established COBRA models and methods, as well as comprehensive documentation and tutorials. This protocol provides a detailed guideline for installing, testing and applying COMETS to different scenarios, generating simulations that take from a few minutes to several days to run, with broad applicability to microbial communities across biomes and scales.
Collapse
Affiliation(s)
- Ilija Dukovski
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Djordje Bajić
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Jeremy M Chacón
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Michael Quintin
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Snorre Sulheim
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Alan R Pacheco
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - David B Bernstein
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - William J Riehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kirill S Korolev
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Physics, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Schmidt JM, Royalty TM, Lloyd KG, Steen AD. Potential Activities and Long Lifetimes of Organic Carbon-Degrading Extracellular Enzymes in Deep Subsurface Sediments of the Baltic Sea. Front Microbiol 2021; 12:702015. [PMID: 34603228 PMCID: PMC8485070 DOI: 10.3389/fmicb.2021.702015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Heterotrophic microorganisms in marine sediments produce extracellular enzymes to hydrolyze organic macromolecules, so their products can be transported inside the cell and used for energy and growth. Therefore, extracellular enzymes may mediate the fate of organic carbon in sediments. The Baltic Sea Basin is a primarily depositional environment with high potential for organic matter preservation. The potential activities of multiple organic carbon-degrading enzymes were measured in samples obtained by the International Ocean Discovery Program Expedition 347 from the Little Belt Strait, Denmark, core M0059C. Potential maximum hydrolysis rates (Vmax) were measured at depths down to 77.9mbsf for the following enzymes: alkaline phosphatase, β-d-xylosidase, β-d-cellobiohydrolase, N-acetyl-β-d-glucosaminidase, β-glucosidase, α-glucosidase, leucyl aminopeptidase, arginyl aminopeptidase, prolyl aminopeptidase, gingipain, and clostripain. Extracellular peptidase activities were detectable at depths shallower than 54.95mbsf, and alkaline phosphatase activity was detectable throughout the core, albeit against a relatively high activity in autoclaved sediments. β-glucosidase activities were detected above 30mbsf; however, activities of other glycosyl hydrolases (β-xylosidase, β-cellobiohydrolase, N-acetyl-β-glucosaminidase, and α-glucosidase) were generally indistinguishable from zero at all depths. These extracellular enzymes appear to be extremely stable: Among all enzymes, a median of 51.3% of enzyme activity was retained after autoclaving for an hour. We show that enzyme turnover times scale with the inverse of community metabolic rates, such that enzyme lifetimes in subsurface sediments, in which metabolic rates are very slow, are likely to be extraordinarily long. A back-of-the-envelope calculation suggests enzyme lifetimes are, at minimum, on the order of 230days, and may be substantially longer. These results lend empirical support to the hypothesis that a population of subsurface microbes persist by using extracellular enzymes to slowly metabolize old, highly degraded organic carbon.
Collapse
Affiliation(s)
- Jenna M Schmidt
- Department of Earth and Planetary Sciences, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
| | - Taylor M Royalty
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, United States
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, United States
| | - Andrew D Steen
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, United States.,Department of Earth and Planetary Sciences, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
18
|
Abstract
In view of high energy cost and water consumption in microalgae cultivation, microalgal-biofilm-based cultivation system has been advocated as a solution toward a more sustainable and resource friendlier system for microalgal biomass production. Algal-derived extracellular polymeric substances (EPS) form cohesive network to interconnect the cells and substrates; however, their interactions within the biofilm are poorly understood. This scenario impedes the biofilm process development toward resource recovery. Herein, this review elucidates on various biofilm cultivation modes and contribution of EPS toward biofilm adhesion. Immobilized microalgae can be envisioned by the colloid interactions in terms of a balance of both dispersive and polar interactions among three interfaces (cells, mediums and substrates). Last portion of this review is dedicated to the future perspectives and challenges on the EPS; with regard to the biopolymers extraction, biopolymers’ functional description and cross-referencing between model biofilms and full-scale biofilm systems are evaluated. This review will serve as an informative reference for readers having interest in microalgal biofilm phenomenon by incorporating the three main players in attached cultivation systems: microalgae, EPS and supporting materials. The ability to mass produce these miniature cellular biochemical factories via immobilized biofilm technology will lay the groundwork for a more sustainable and feasible production.
Collapse
Affiliation(s)
- Yi Tong Cheah
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
19
|
McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:559-581. [PMID: 34036727 DOI: 10.1111/1758-2229.12980] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.
Collapse
Affiliation(s)
- Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
| | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
20
|
Liang J, Liu J, Zhan Y, Zhou S, Xue CX, Sun C, Lin Y, Luo C, Wang X, Zhang XH. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter. ENVIRONMENT INTERNATIONAL 2021; 155:106687. [PMID: 34144477 DOI: 10.1016/j.envint.2021.106687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Increasing macroalgal blooms as a consequence of climate warming and coastal eutrophication have profound effects on the marine environment. The outbreaks of Ulva prolifera in the Yellow Sea of China occurring every summer since 2007 to present have formed the world's largest green tide. The green tide releases huge amounts of dissolved organic matter (DOM) to the seawater, causing an organic overload. However, how marine bacteria respond to this issue and the potential impact on the marine environment are still unclear. Here, we monitored the highly temporally resolved dynamics of marine bacterial community that occur in response to Ulva prolifera-derived DOM by performing a 168-h microcosm incubation experiment. DOM inputs significantly increased bacterial abundances within 6 h, decreased bacterial diversity and triggered clear community successions during the whole period of incubation. Vibrio of Gammaproteobacteria robustly and rapidly grew over short timescales (6-24 h), with its relative abundance accounting for up to 52.5% of active bacteria. From 24 to 48 h, some genera of Flavobacteriia grew rapidly, which was more conspicuous at a higher DOM concentration than at a lower concentration. The genus Donghicola of Alphaproteobacteria was predominant at later time points (>48 h). This bacterial community succession was accompanied by significant variations in the activity of 12 different extracellular enzymes, resulting in a rapid reduction of dissolved organic carbon by 74.5% within the first 36 h. In summary, our study demonstrates rapid successions of bacterial community and extracellular enzyme activity after DOM inputs, suggesting that the bacterial response to Ulva prolifera-derived organic matter may contribute to environmental restoration and may pose a health threat due to the bloom of potential pathogenic Vibrio.
Collapse
Affiliation(s)
- Jinchang Liang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuanchao Zhan
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shun Zhou
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chun-Xu Xue
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chuang Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu Lin
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chunle Luo
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China
| | - Xuchen Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
21
|
Yu H, Zheng X, Weng W, Yan X, Chen P, Liu X, Peng T, Zhong Q, Xu K, Wang C, Shu L, Yang T, Xiao F, He Z, Yan Q. Synergistic effects of antimony and arsenic contaminations on bacterial, archaeal and fungal communities in the rhizosphere of Miscanthus sinensis: Insights for nitrification and carbon mineralization. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125094. [PMID: 33486227 DOI: 10.1016/j.jhazmat.2021.125094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The impacts of metal(loids) on soil microbial communities are research focuses to understand nutrient cycling in heavy metal-contaminated environments. However, how antimony (Sb) and arsenic (As) contaminations synergistically affect microbially-driven ecological processes in the rhizosphere of plants is poorly understood. Here we examined the synergistic effects of Sb and As contaminations on bacterial, archaeal and fungal communities in the rhizosphere of a pioneer plant (Miscanthus sinensis) by focusing on soil carbon and nitrogen cycle. High contamination (HC) soils showed significantly lower levels of soil enzymatic activities, carbon mineralization and nitrification potential than low contamination (LC) environments. Multivariate analysis indicated that Sb and As fractions, pH and available phosphorus (AP) were the main factors affecting the structure and assembly of microbial communities, while Sb and As contaminations reduced the microbial alpha-diversity and interspecific interactions. Random forest analysis showed that microbial keystone taxa provided better predictions for soil carbon mineralization and nitrification under Sb and As contaminations. Partial least squares path modeling indicated that Sb and As contaminations could reduce the carbon mineralization and nitrification by influencing the microbial biomass, alpha-diversity and soil enzyme activities. This study enhances our understanding of microbial carbon and nitrogen cycling affected by Sb and As contaminations.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, Amann R. The Biogeochemistry of Marine Polysaccharides: Sources, Inventories, and Bacterial Drivers of the Carbohydrate Cycle. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:81-108. [PMID: 32726567 DOI: 10.1146/annurev-marine-032020-012810] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.
Collapse
Affiliation(s)
- C Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - M Wietz
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - T Brinkhoff
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany
| | - J-H Hehemann
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences (MARUM), University of Bremen, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - D Probandt
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - L Zeugner
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - R Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
23
|
Nobu MK, Narihiro T, Mei R, Kamagata Y, Lee PKH, Lee PH, McInerney MJ, Liu WT. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. MICROBIOME 2020; 8:111. [PMID: 32709258 PMCID: PMC7382037 DOI: 10.1186/s40168-020-00885-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Current understanding of the carbon cycle in methanogenic environments involves trophic interactions such as interspecies H2 transfer between organotrophs and methanogens. However, many metabolic processes are thermodynamically sensitive to H2 accumulation and can be inhibited by H2 produced from co-occurring metabolisms. Strategies for driving thermodynamically competing metabolisms in methanogenic environments remain unexplored. RESULTS To uncover how anaerobes combat this H2 conflict in situ, we employ metagenomics and metatranscriptomics to revisit a model ecosystem that has inspired many foundational discoveries in anaerobic ecology-methanogenic bioreactors. Through analysis of 17 anaerobic digesters, we recovered 1343 high-quality metagenome-assembled genomes and corresponding gene expression profiles for uncultured lineages spanning 66 phyla and reconstructed their metabolic capacities. We discovered that diverse uncultured populations can drive H2-sensitive metabolisms through (i) metabolic coupling with concurrent H2-tolerant catabolism, (ii) forgoing H2 generation in favor of interspecies transfer of formate and electrons (cytochrome- and pili-mediated) to avoid thermodynamic conflict, and (iii) integration of low-concentration O2 metabolism as an ancillary thermodynamics-enhancing electron sink. Archaeal populations support these processes through unique methanogenic metabolisms-highly favorable H2 oxidation driven by methyl-reducing methanogenesis and tripartite uptake of formate, electrons, and acetate. CONCLUSION Integration of omics and eco-thermodynamics revealed overlooked behavior and interactions of uncultured organisms, including coupling favorable and unfavorable metabolisms, shifting from H2 to formate transfer, respiring low-concentration O2, performing direct interspecies electron transfer, and interacting with high H2-affinity methanogenesis. These findings shed light on how microorganisms overcome a critical obstacle in methanogenic carbon cycles we had hitherto disregarded and provide foundational insight into anaerobic microbial ecology. Video Abstract.
Collapse
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, HK Hong Kong
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College, London, UK
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
| |
Collapse
|
24
|
Nunan N, Schmidt H, Raynaud X. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190249. [PMID: 32200737 PMCID: PMC7133523 DOI: 10.1098/rstb.2019.0249] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity is a fundamental property of soil that is often overlooked in microbial ecology. Although it is generally accepted that the heterogeneity of soil underpins the emergence and maintenance of microbial diversity, the profound and far-reaching consequences that heterogeneity can have on many aspects of microbial ecology and activity have yet to be fully apprehended and have not been fully integrated into our understanding of microbial functioning. In this contribution we first discuss how the heterogeneity of the soil microbial environment, and the consequent uncertainty associated with acquiring resources, may have affected how microbial metabolism, motility and interactions evolved and, ultimately, the overall microbial activity that is represented in ecosystem models, such as heterotrophic decomposition or respiration. We then present an analysis of predicted metabolic pathways for soil bacteria, obtained from the MetaCyc pathway/genome database collection (https://metacyc.org/). The analysis suggests that while there is a relationship between phylogenic affiliation and the catabolic range of soil bacterial taxa, there does not appear to be a trade-off between the 16S rRNA gene copy number, taken as a proxy of potential growth rate, of bacterial strains and the range of substrates that can be used. Finally, we present a simple, spatially explicit model that can be used to understand how the interactions between decomposers and environmental heterogeneity affect the bacterial decomposition of organic matter, suggesting that environmental heterogeneity might have important consequences on the variability of this process. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Naoise Nunan
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna 1090, Austria
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
25
|
Distinct capabilities of different Gammaproteobacterial strains on utilizing small peptides in seawater. Sci Rep 2020; 10:464. [PMID: 31949195 PMCID: PMC6965191 DOI: 10.1038/s41598-019-57189-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022] Open
Abstract
Proteins and peptides account for 20–75% of marine biota biomass, of which a major fraction is metabolized by bacteria, thus deciphering interactions between bacteria and peptides is important in understanding marine carbon and nitrogen cycling. To better understand capabilities of different bacterial strains on peptide decomposition, four Gammaproteobacteria (Pseudoalteromonas atlantica, Alteromonas sp., Marinobacterium jannaschii, Amphritea japonica) were incubated in autoclaved seawater amended with tetrapeptide alanine-valine-phenylalanine-alanine (AVFA), a fragment of RuBisCO. While AVFA was decomposed greatly by Pseudoalteromonas atlantica and Alteromonas sp, it remained nearly intact in the Marinobacterium jannaschii and Amphritea japonica incubations. Pseudoalteromonas and Alteromonas decomposed AVFA mainly through extracellular hydrolysis pathway, releasing 71–85% of the AVFA as hydrolysis products to the surrounding seawater. Overall, this study showed that Gammaproteobacterial strains differ greatly in their capabilities of metabolizing peptides physiologically, providing insights into interactions of bacteria and labile organic matter in marine environments.
Collapse
|
26
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
27
|
Ramin KI, Allison SD. Bacterial Tradeoffs in Growth Rate and Extracellular Enzymes. Front Microbiol 2019; 10:2956. [PMID: 31921094 PMCID: PMC6933949 DOI: 10.3389/fmicb.2019.02956] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Like larger organisms, bacteria possess traits, or phenotypic characteristics, that influence growth and impact ecosystem processes. Still, it remains unclear how these traits are organized across bacterial lineages. Using 49 bacterial strains isolated from leaf litter in Southern California, we tested the hypothesis that bacterial growth rates trade off against extracellular enzyme investment. We also tested for phylogenetic conservation of these traits under high and low resource conditions represented, respectively, by Luria broth (LB) and a monomer-dominated medium extracted from plant litter. In support of our hypotheses, we found a negative correlation between the maximum growth rate and the total activity of carbon-, nitrogen-, and phosphorus-degrading extracellular enzymes. However, this tradeoff was only observed under high resource conditions. We also found significant phylogenetic signal in maximum growth rate and extracellular enzyme investment under high and low resource conditions. Driven by our bacterial trait data, we proposed three potential life history strategies. Resource acquisition strategists invest heavily in extracellular enzyme production. Growth strategists invest in high growth rates. Bacteria in a third category showed lower potential for enzyme production and growth, so we tentatively classified them as maintenance strategists that may perform better under conditions we did not measure. These strategies were related to bacterial phylogeny, with most growth strategists belonging to the phylum Proteobacteria and most maintenance and resource acquisition strategists belonging to the phylum Actinobacteria. By accounting for extracellular enzyme investment, our proposed life history strategies complement existing frameworks, such as the copiotroph-oligotroph continuum and Grime’s competitor-stress tolerator-ruderal triangle. Our results have biogeochemical implications because allocation to extracellular enzymes versus growth or stress tolerance can determine the fate and form of organic matter cycling through surface soil.
Collapse
Affiliation(s)
- Kelly I Ramin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States.,Department of Earth System Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
28
|
Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci Rep 2019; 9:17780. [PMID: 31780725 PMCID: PMC6883037 DOI: 10.1038/s41598-019-54290-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Dissolved organic carbon (DOC) is the main energy source for marine heterotrophic microorganisms, but a small fraction of DOC resists microbial degradation and accumulates in the ocean. The reason behind this recalcitrance is unknown. We test whether the long-term stability of DOC requires the existence of structurally refractory molecules, using a mechanistic model comprising a diverse network of microbe-substrate interactions. Model experiments reproduce three salient observations, even when all DOC compounds are equally degradable: (i) >15% of an initial DOC pulse resists degradation, but is consumed by microbes if concentrated, (ii) the modelled deep-sea DOC reaches stable concentrations of 30–40 mmolC/m3, and (iii) the mean age of deep-sea DOC is several times the age of deep water with a wide range from <100 to >10,000 years. We conclude that while structurally-recalcitrant molecules exist, they are not required in the model to explain either the amount or longevity of DOC.
Collapse
|
29
|
Li Y, Sun LL, Sun YY, Cha QQ, Li CY, Zhao DL, Song XY, Wang M, McMinn A, Chen XL, Zhang YZ, Qin QL. Extracellular Enzyme Activity and Its Implications for Organic Matter Cycling in Northern Chinese Marginal Seas. Front Microbiol 2019; 10:2137. [PMID: 31608022 PMCID: PMC6755343 DOI: 10.3389/fmicb.2019.02137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023] Open
Abstract
Extracellular enzymes, initiating the degradation of organic macromolecules, are important functional components of marine ecosystems. Measuring in situ seawater extracellular enzyme activity (EEA) can provide fundamental information for understanding the biogeochemical cycling of organic matter in the ocean. Here we investigate the patterns of EEA and the major factors affecting the seawater EEA of Chinese marginal seas. The geographic distribution of EEA along a latitudinal transect was examined and found to be associated with dissolved organic carbon. Compared with offshore waters, inshore waters had higher enzyme activity. All the tested substrates were hydrolyzed at different rates and phosphatase, β-glucosidase and protease contributed greatly to summed hydrolysis rates. For any particular enzyme activity, the contribution of dissolved to total EEA was strongly heterogenous between stations. Comparisons of hydrolysis rates of the polymers and their corresponding oligomers suggest that molecule size does not necessarily limit the turnover of marine organic matter. In addition, several typical enzyme-producing clades, such as Bacteroidetes, Planctomycetes, Chloroflexi, Roseobacter, Alteromonas, and Pseudoalteromonas, were detected in the in situ environments. These enzyme-producing clades may be responsible for the production of different enzymes. Overall, each enzyme was found to flexibly respond to environmental conditions and were linked to microbial community composition. It is likely that this activity will profoundly affect organic matter cycling in the Chinese marginal seas.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lin-Lin Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yuan-Yuan Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS One 2019; 14:e0214422. [PMID: 30908541 PMCID: PMC6433265 DOI: 10.1371/journal.pone.0214422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the ability of soil bacteria to solubilize minerals, fix N2 and mobilize nutrients entrapped in the organic matter, their role in nutrient turnover and plant fitness is of high relevance in forest ecosystems. Although several authors have already studied the organic matter decomposing enzymes produced by soil and plant root-interacting bacteria, most of the works did not account for the activity of cell wall-attached enzymes. Therefore, the enzyme deployment strategy of three bacterial collections (genera Luteibacter, Pseudomonas and Arthrobacter) associated with Quercus spp. roots was investigated by exploring both cell-bound and freely-released hydrolytic enzymes. We also studied the potential of these bacterial collections to produce enzymes involved in the transformation of plant and fungal biomass. Remarkably, the cell-associated enzymes accounted for the vast majority of the total activity detected among Luteibacter strains, suggesting that they could have developed a strategy to maintain the decomposition products in their vicinity, and therefore to reduce the diffusional losses of the products. The spectrum of the enzymes synthesized and the titres of activity were diverse among the three bacterial genera. While cellulolytic and hemicellulolytic enzymes were rather common among Luteibacter and Pseudomonas strains and less detected in Arthrobacter collection, the activity of lipase was widespread among all the tested strains. Our results indicate that a large fraction of the extracellular enzymatic activity is due to cell wall-attached enzymes for some bacteria, and that Quercus spp. root bacteria could contribute at different levels to carbon (C), phosphorus (P) and nitrogen (N) cycles.
Collapse
|
31
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME JOURNAL 2018; 13:1119-1132. [PMID: 30531893 PMCID: PMC6474216 DOI: 10.1038/s41396-018-0326-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022]
Abstract
Identifying the roles played by individual heterotrophic bacteria in the degradation of high molecular weight (HMW) substrates is critical to understanding the constraints on carbon cycling in the ocean. At five sites in the Atlantic Ocean, we investigated the processing of organic matter by tracking changes in microbial community composition as HMW polysaccharides were enzymatically hydrolysed over time. During this investigation, we discovered that a considerable fraction of heterotrophic bacteria uses a newly-identified ‘selfish’ mode of substrate processing. We therefore additionally examined the balance of individual substrate utilisation mechanisms at different locations by linking individual microorganisms to distinct substrate utilisation mechanisms. Through FISH and uptake of fluorescently-labelled polysaccharides, ‘selfish’ organisms were identified as belonging to the Bacteroidetes, Planctomycetes and Gammaproteobacteria. ‘Sharing’ (extracellular enzyme producing) and ‘scavenging’ (non-enzyme producing) organisms predominantly belonged to the Alteromonadaceae and SAR11 clades, respectively. The extent to which individual mechanisms prevail depended on the initial population structure of the bacterial community at a given location and time, as well as the growth rate of specific bacteria. Furthermore, the same substrate was processed in different ways by different members of a pelagic microbial community, pointing to significant follow-on effects for carbon cycling.
Collapse
|
33
|
Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 2018; 20:2671-2685. [PMID: 30028074 DOI: 10.1111/1462-2920.14302] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/20/2023]
Abstract
Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.
Collapse
Affiliation(s)
- Marco Mühlenbruch
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Hans-Peter Grossart
- Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.,Potsdam University, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
34
|
Baltar F. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate. Front Microbiol 2018; 8:2438. [PMID: 29354095 PMCID: PMC5758490 DOI: 10.3389/fmicb.2017.02438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/24/2017] [Indexed: 12/02/2022] Open
Abstract
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.
Collapse
Affiliation(s)
- Federico Baltar
- Department of Marine Science, University of Otago, Dunedin, New Zealand.,NIWA/University of Otago Research Centre for Oceanography, Dunedin, New Zealand
| |
Collapse
|
35
|
Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME JOURNAL 2017; 11:1640-1650. [PMID: 28323277 PMCID: PMC5520146 DOI: 10.1038/ismej.2017.26] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 01/22/2017] [Indexed: 12/29/2022]
Abstract
Heterotrophic microbial communities process much of the carbon fixed by phytoplankton in the ocean, thus having a critical role in the global carbon cycle. A major fraction of the phytoplankton-derived substrates are high-molecular-weight (HMW) polysaccharides. For bacterial uptake, these substrates must initially be hydrolysed to smaller sizes by extracellular enzymes. We investigated polysaccharide hydrolysis by microbial communities during a transect of the Atlantic Ocean, and serendipitously discovered-using super-resolution structured illumination microscopy-that up to 26% of total cells showed uptake of fluorescently labelled polysaccharides (FLA-PS). Fluorescence in situ hybridisation identified these organisms as members of the bacterial phyla Bacteroidetes and Planctomycetes and the gammaproteobacterial genus Catenovulum. Simultaneous membrane staining with nile red indicated that the FLA-PS labelling occurred in the cell but not in the cytoplasm. The dynamics of FLA-PS staining was further investigated in pure culture experiments using Gramella forsetii, a marine member of Bacteroidetes. The staining patterns observed in environmental samples and pure culture tests are consistent with a 'selfish' uptake mechanisms of larger oligosaccharides (>600 Da), as demonstrated for gut Bacteroidetes. Ecologically, this alternative polysaccharide uptake mechanism secures substantial quantities of substrate in the periplasmic space, where further processing can occur without diffusive loss. Such a mechanism challenges the paradigm that hydrolysis of HMW substrates inevitably yields low-molecular-weight fragments that are available to the surrounding community and demonstrates the importance of an alternative mechanism of polysaccharide uptake in marine bacteria.
Collapse
Affiliation(s)
- Greta Reintjes
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
36
|
Hagstrom GI, Levin SA. Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. Ecosystems 2017. [DOI: 10.1007/s10021-017-0114-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Locey KJ, Fisk MC, Lennon JT. Microscale Insight into Microbial Seed Banks. Front Microbiol 2017; 7:2040. [PMID: 28119666 PMCID: PMC5220057 DOI: 10.3389/fmicb.2016.02040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.
Collapse
Affiliation(s)
| | | | - J. T. Lennon
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|