1
|
Zhong C, Hu G, Hu C, Xu C, Zhang Z, Ning K. Comparative genomics analysis reveals genetic characteristics and nitrogen fixation profile of Bradyrhizobium. iScience 2024; 27:108948. [PMID: 38322985 PMCID: PMC10845061 DOI: 10.1016/j.isci.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Bradyrhizobium is a genus of nitrogen-fixing bacteria, with some species producing nodules in leguminous plants. Investigations into Bradyrhizobium have recently revealed its substantial genetic resources and agricultural benefits, but a comprehensive survey of its genetic diversity and functional properties is lacking. Using a panel of various strains (N = 278), this study performed a comparative genomics analysis to anticipate genes linked with symbiotic nitrogen fixation. Bradyrhizobium's pan-genome consisted of 84,078 gene families, containing 824 core genes and 42,409 accessory genes. Core genes were mainly involved in crucial cell processes, while accessory genes served diverse functions, including nitrogen fixation and nodulation. Three distinct genetic profiles were identified based on the presence/absence of gene clusters related to nodulation, nitrogen fixation, and secretion systems. Most Bradyrhizobium strains from soil and non-leguminous plants lacked major nif/nod genes and were evolutionarily more closely related. These findings shed light on Bradyrhizobium's genetic features for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Gang Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Cong Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Chaohao Xu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Mousavi SA, Ramula S. The invasive legume Lupinus polyphyllus has minor site-specific impacts on the composition of soil bacterial communities. Ecol Evol 2024; 14:e11030. [PMID: 38357596 PMCID: PMC10864723 DOI: 10.1002/ece3.11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.
Collapse
Affiliation(s)
| | - Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
3
|
Claassens R, Venter SN, Beukes CW, Stępkowski T, Chan WY, Steenkamp ET. Bradyrhizobium xenonodulans sp. nov. isolated from nodules of Australian Acacia species invasive to South Africa. Syst Appl Microbiol 2023; 46:126452. [PMID: 37634485 DOI: 10.1016/j.syapm.2023.126452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
A genealogical concordance approach was used to delineate strains isolated from Acacia dealbata and Acacia mearnsii root nodules in South Africa. These isolates form part of Bradyrhizobium based on 16S rRNA sequence similarity. Phylogenetic analysis of six housekeeping genes (atpD, dnaK, glnII, gyrB, recA and rpoB) confirmed that these isolates represent a novel species, while pairwise average nucleotide identity (ANIb) calculations with the closest type strains (B. cosmicum 58S1T, B. betae PL7HG1T, B. ganzhouense CCBAU 51670 T, B. cytisi CTAW11T and B. rifense CTAW71T) resulted in values well below 95-96%. We further performed phenotypic tests which revealed that there are high levels of intraspecies variation, while an additional analysis of the nodA and nifD loci indicated that the symbiotic loci of the strains are closely related to those of Bradyrhizobium isolates with an Australian origin. Strain 14ABT (=LMG 31415 T = SARCC-753 T) is designated as the type strain of the novel species for which we propose the name Bradyrhizobium xenonodulans sp. nov.
Collapse
Affiliation(s)
- Ricu Claassens
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | | | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa; Right to Care, Centurion, Gauteng, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa.
| |
Collapse
|
4
|
Msaddak A, Mars M, Quiñones MA, Lucas MM, Pueyo JJ. Lupin, a Unique Legume That Is Nodulated by Multiple Microsymbionts: The Role of Horizontal Gene Transfer. Int J Mol Sci 2023; 24:ijms24076496. [PMID: 37047476 PMCID: PMC10094711 DOI: 10.3390/ijms24076496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin’s adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin’s adaptability to marginal soils and climates.
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Miguel A. Quiñones
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - M. Mercedes Lucas
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - José J. Pueyo
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| |
Collapse
|
5
|
Castellano-Hinojosa A, Mora C, Strauss SL. Native Rhizobia Improve Plant Growth, Fix N 2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. PLANTS (BASEL, SWITZERLAND) 2022; 11:3011. [PMID: 36432740 PMCID: PMC9695096 DOI: 10.3390/plants11223011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Sunnhemp (Crotalaria juncea L.) is an important legume cover crop used in tree cropping systems, where there is increased interest by growers to identify rhizobia to maximize soil nitrogen (N) inputs. We aimed to isolate and identify native rhizobia and compare their capabilities with non-native rhizobia from commercial inoculants to fix atmospheric dinitrogen (N2), produce and reduce nitrous oxide (N2O), and improve plant growth. Phylogenetic analyses of sequences of the 16S rRNA and recA, atpD, and glnII genes showed native rhizobial strains belonged to Rhizobium tropici and the non-native strain to Bradyrhizobium japonicum. Plant nodulation tests, sequencing of nodC and nifH genes, and the acetylene-dependent ethylene production assay confirmed the capacity of all strains to nodulate sunnhemp and fix N2. Inoculation with native rhizobial strains resulted in significant increases in root and shoot weight and total C and N contents in the shoots, and showed greater N2-fixation rates and lower emissions of N2O compared to the non-native rhizobium. Our results suggest that native rhizobia improve plant growth, fix N2, and reduce greenhouse emissions of sunnhemp more than commercial rhizobia inoculants in Florida citrus orchards.
Collapse
|
6
|
Bouhnik O, Alami S, Lamin H, Lamrabet M, Bennis M, Ouajdi M, Bellaka M, Antri SE, Abbas Y, Abdelmoumen H, Bedmar EJ, Idrissi MME. The Fodder Legume Chamaecytisus albidus Establishes Functional Symbiosis with Different Bradyrhizobial Symbiovars in Morocco. MICROBIAL ECOLOGY 2022; 84:794-807. [PMID: 34625829 DOI: 10.1007/s00248-021-01888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 T (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3T, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 T and Bradyrhizobium. retamae Ro19T, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco.
| | - Soufiane Alami
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Mhammed Bellaka
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Salwa El Antri
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, Granada, 18008, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| |
Collapse
|
7
|
Hsouna J, Gritli T, Ilahi H, Ellouze W, Mansouri M, Chihaoui SA, Bouhnik O, Missbah El Idrissi M, Abdelmoumen H, Wipf D, Courty PE, Bekki A, Tambong JT, Mnasri B. Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 2022; 45:126343. [PMID: 35759954 DOI: 10.1016/j.syapm.2022.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. "salignae" is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. "cyanophyllae" is proposed. Isolates formed effective nodules on A. saligna.
Collapse
Affiliation(s)
- Jihed Hsouna
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland Station, Ontario L0R 2E0, Canada.
| | - Maroua Mansouri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Omar Bouhnik
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Daniel Wipf
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Abdelkader Bekki
- Laboratory of Rhizobia Biotechnology and Plant Breeding, University Oran1, Es Senia 31000, Algeria
| | - James T Tambong
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia.
| |
Collapse
|
8
|
Adjei JA, Aserse AA, Yli-Halla M, Ahiabor BDK, Abaidoo RC, Lindstrom K. Phylogenetically diverse Bradyrhizobium genospecies nodulate Bambara groundnut (Vigna subterranea L. Verdc) and soybean (Glycine max L. Merril) in the northern savanna zones of Ghana. FEMS Microbiol Ecol 2022; 98:fiac043. [PMID: 35404419 PMCID: PMC9329091 DOI: 10.1093/femsec/fiac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
A total of 102 bacterial strains isolated from nodules of three Bambara groundnut and one soybean cultivars grown in nineteen soil samples collected from northern Ghana were characterized using multilocus gene sequence analysis. Based on a concatenated sequence analysis (glnII-rpoB-recA-gyrB-atpD-dnaK), 54 representative strains were distributed in 12 distinct lineages, many of which were placed mainly in the Bradyrhizobium japonicum and Bradyrhizobium elkanii supergroups. Twenty-four of the 54 representative strains belonged to seven putative novel species, while 30 were conspecific with four recognized Bradyrhizobium species. The nodA phylogeny placed all the representative strains in the cosmopolitan nodA clade III. The strains were further separated in seven nodA subclusters with reference strains mainly of African origin. The nifH phylogeny was somewhat congruent with the nodA phylogeny, but both symbiotic genes were mostly incongruent with the core housekeeping gene phylogeny indicating that the strains acquired their symbiotic genes horizontally from distantly related Bradyrhizobium species. Using redundancy analysis, the distribution of genospecies was found to be influenced by the edaphic factors of the respective sampling sites. In general, these results mainly underscore the high genetic diversity of Bambara groundnut-nodulating bradyrhizobia in Ghanaian soils and suggest a possible vast resource of adapted inoculant strains.
Collapse
Affiliation(s)
- Josephine A Adjei
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Aregu A Aserse
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Benjamin D K Ahiabor
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Robert C Abaidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Kristina Lindstrom
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
9
|
Phylogenetic and symbiotic diversity of Lupinus albus and L. angustifolius microsymbionts in the maamora forest, morocco. Syst Appl Microbiol 2022; 45:126338. [DOI: 10.1016/j.syapm.2022.126338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
|
10
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T, van Zyl E, Coetzee MPA, Stepkowski T, Venter SN, Steenkamp ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2021; 167:107338. [PMID: 34757168 DOI: 10.1016/j.ympev.2021.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa
| | - Taponeswa Tasiya
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stepkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
12
|
Alami S, Lamin H, Bennis M, Bouhnik O, Lamrabet M, El Hachimi ML, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Characterization of Retama sphaerocarpa microsymbionts in Zaida lead mine tailings in the Moroccan middle Atlas. Syst Appl Microbiol 2021; 44:126207. [PMID: 34015589 DOI: 10.1016/j.syapm.2021.126207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
In the Moroccan Middle Atlas, the tailings rich in lead and other metal residues, in the abandoned Zaida mining district, represent a real threat to environment and the neighboring villages' inhabitants' health. In this semi-arid to arid area, phytostabilisation would be the best choice to limit the transfer of heavy metals to populations and groundwater. The aim of this work was to characterize the bacteria that nodulate Retama sphaerocarpa, spontaneous nitrogen fixing shrubby legume, native to the Zaida mining area, with great potential to develop for phytostabilisation. Forty-three bacteria isolated from root nodules of the plant were characterized. Based on REP-PCR and ARDRA, four strains were selected for further molecular analyzes. The 16S rRNA gene sequences analysis revealed that the isolated strains are members of the genus Bradyrhizobium, and the phylogenetic analysis of the housekeeping genes glnII, atpD, gyrB, rpoB, recA and dnaK individual sequences and their concatenation showed that the strains are close to B. algeriense RST89T and B. valentinum LmjM3T with similarity percentages of 89.07% to 95.66% which suggest that the newly isolated strains from this mining site may belong to a potential novel species. The phylogeny of the nodA and nodC genes showed that the strains belong to the symbiovar retamae of the genus Bradyrhizobium. These strains nodulate also R. monosperma, R. dasycarpa and Lupinus luteus.
Collapse
Affiliation(s)
- Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | | | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
13
|
Laitinen OH, Kuusela TP, Kukkurainen S, Nurminen A, Sinkkonen A, Hytönen VP. Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes. BMC Ecol Evol 2021; 21:53. [PMID: 33836663 PMCID: PMC8033661 DOI: 10.1186/s12862-021-01784-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avidins are biotin-binding proteins commonly found in the vertebrate eggs. In addition to streptavidin from Streptomyces avidinii, a growing number of avidins have been characterized from divergent bacterial species. However, a systematic research concerning their taxonomy and ecological role has never been done. We performed a search for avidin encoding genes among bacteria using available databases and classified potential avidins according to taxonomy and the ecological niches utilized by host bacteria. RESULTS Numerous avidin-encoding genes were found in the phyla Actinobacteria and Proteobacteria. The diversity of protein sequences was high and several new variants of genes encoding biotin-binding avidins were found. The living strategies of bacteria hosting avidin encoding genes fall mainly into two categories. Human and animal pathogens were overrepresented among the found bacteria carrying avidin genes. The other widespread category were bacteria that either fix nitrogen or live in root nodules/rhizospheres of plants hosting nitrogen-fixing bacteria. CONCLUSIONS Bacterial avidins are a taxonomically and ecologically diverse group mainly found in Actinobacteria, Proteobacteria and Bacteroidetes, associated often with plant invasiveness. Avidin encoding genes in plasmids hint that avidins may be horizontally transferred. The current survey may be used as a basis in attempts to understand the ecological significance of biotin-binding capacity.
Collapse
Affiliation(s)
- Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tanja P Kuusela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sampo Kukkurainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Turku, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
14
|
Banasiewicz J, Granada CE, Lisboa BB, Grzesiuk M, Matuśkiewicz W, Bałka M, Schlindwein G, Vargas LK, Passaglia LMP, Stępkowski T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Syst Appl Microbiol 2021; 44:126203. [PMID: 33857759 DOI: 10.1016/j.syapm.2021.126203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Camille E Granada
- Universidade do Vale do Taquari - UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Małgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Weronika Matuśkiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mateusz Bałka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gilson Schlindwein
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
15
|
Rejili M, Off K, Brachmann A, Marín M. Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia. Int J Syst Evol Microbiol 2020; 70:5539-5550. [PMID: 32897848 DOI: 10.1099/ijsem.0.004445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strain aSej3T was isolated from a root nodule of a Lupinus angustifolius plant growing in Bizerte, Tunisia. 16S rRNA gene analysis placed this strain within the genus Bradyrhizobium. Multilocus sequence analysis (MLSA) including three housekeeping genes (glnII, gyrB and recA) grouped aSej3T together with Bradyrhizobium rifense CTAW71T, Bradyrhizobium cytisi CTAW11T, Bradyrhizobium ganzhouense RITF806T, Bradyrhizobium lupini USDA 3051T and Bradyrhizobium canariense BTA-1T. MLSA with five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed that this strain shares less than 93.5 % nucleotide identity with other type strains. Genome sequencing and inspection revealed a genome size of 8.83 Mbp with a G+C content of 62.8 mol%. Genome-wide average nucleotide identity and digital DNA-DNA hybridization values were below 87.5 and 36.2 %, respectively, when compared to described Bradyrhizobium species. Strain aSej3T nodulated L. angustifolius plants under axenic conditions and its nodC gene clustered within the genistearum symbiovar. Altogether, the phylogenetic data and the chemotaxonomic characteristics of this strain support that aSej3T represents a new species for which we propose the name Bradyrhizobium hipponense sp. nov. with the type strain aSej3T (=DSM 108913T=LMG 31020T).
Collapse
Affiliation(s)
- Mokhtar Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences, Gabes University, Tunisia
| | - Katja Off
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Andreas Brachmann
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Macarena Marín
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
16
|
Abstract
Lupinus mutabilis is an important source of protein in different Andean countries, and its use in diets, particularly those of less wealthy individuals, has been observed for thousands of years. There is an increasing demand for protein crops suitable for Europe and this species is a potential candidate. Assessment of Lupinus mutabilis genetic material in European conditions started more than 40 years ago, with the characterization of a vast number of accessions from the Andean region. In this review, abiotic and biotic constraints to L. mutabilis cultivation in European soil and climatic conditions are discussed, and cultivation management practices are suggested. The beneficial interaction of L. mutabilis with Bradyrhizobium strains in the soil and various pollinator species is also discussed, and the effect of abiotic stresses on these interactions is highlighted. Prospects of alternative uses of L. mutabilis biomass in Northern Europe and opportunities for breeding strategies are discussed. In conclusion, the different approach to crop modeling for Southern and Northern European climatic conditions is highlighted.
Collapse
|
17
|
Boudehouche W, Parker MA, Boulila F. Relationships of Bradyrhizobium strains nodulating three Algerian Genista species. Syst Appl Microbiol 2020; 43:126074. [PMID: 32169316 DOI: 10.1016/j.syapm.2020.126074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
The Mediterranean world is the cradle for the diversification of a large number of plant species, including legumes belonging to the Tribe Genisteae. Nodule bacteria from three species of Genista legumes indigenous to northwestern Africa (G. ferox, G. numidica, G. tricuspidata) were sampled across a 150km region of Algeria in order to investigate symbiotic relationships. Partial 23S rRNA sequences from 107 isolates indicated that Bradyrhizobium was the predominant symbiont genus (96% of isolates), with the remainder belonging to Rhizobium or Mesorhizobium. A multilocus sequence analysis on 46 Bradyrhizobium strains using seven housekeeping (HK) genes showed that strains were differentiated into multiple clades with affinities to seven species: B. canariense (17 isolates), B. japonicum (2), B. ottawaense (2), B. cytisi/B. rifense (9), 'B. valentinum' (5), and B. algeriense (11). Extensive discordance between the HK gene phylogeny and a tree for four loci in the symbiosis island (SI) region implied that horizontal transfer of SI loci has been common. Cases of close symbiont relationship across pairs of legumes hosts were evident, with 33% of isolates having as their closest relative a strain sampled from a different Genista species. Nevertheless, tree permutation tests also showed that there was substantial host-related phylogenetic clustering. Thus, each of the three Genista hosts utilized a measurably different array of bacterial lineages.
Collapse
Affiliation(s)
- Wafa Boudehouche
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Matthew A Parker
- Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Farida Boulila
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| |
Collapse
|
18
|
Missbah El Idrissi M, Lamin H, ElFaik S, Tortosa G, Peix A, Bedmar E, Abdelmoumen H. Microvirga
sp. symbiovar mediterranense nodulates
Lupinus cosentinii
grown wild in Morocco. J Appl Microbiol 2019; 128:1109-1118. [DOI: 10.1111/jam.14526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Affiliation(s)
- M. Missbah El Idrissi
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - H. Lamin
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - S. ElFaik
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - G. Tortosa
- Department of Soil Microbiology and Symbiotic Systems Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - A. Peix
- Instituto de Recursos Naturales y Agrobiología IRNASA‐CSIC Salamanca Spain
| | - E.J. Bedmar
- Department of Soil Microbiology and Symbiotic Systems Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - H. Abdelmoumen
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| |
Collapse
|
19
|
Microvirga tunisiensis sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and L. luteus grown in Northern Tunisia. Syst Appl Microbiol 2019; 42:126015. [DOI: 10.1016/j.syapm.2019.126015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
|
20
|
Rejili M, Msaddak A, Filali I, Benabderrahim MA, Mars M, Marín M. New chromosomal lineages within Microvirga and Bradyrhizobium genera nodulate Lupinus angustifolius growing on different Tunisian soils. FEMS Microbiol Ecol 2019; 95:5537381. [DOI: 10.1093/femsec/fiz118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTThirty-one rhizobial isolates nodulating native Lupinus angustifolius (blue lupine) plants growing in Northern Tunisian soils were isolated and analysed using different chromosomal and symbiotic gene markers. Phylogenetic analyses based on recA partial sequences grouped them into at least five groups: four of them within the genus Bradyrhizobium (26 isolates) and one into the genus Microvirga (5 isolates). Representative strains were analysed by multilocus sequence analysis of three housekeeping genes rrs-recA-glnII and rrs-gyrB-dnaK for Bradyrhizobium and Microvirga isolates, respectively. Based on this analysis, eight isolates clustered with the previously described strains Bradyrhizobium lupini USDA3051 and Bradyrhizobium canariense BTA-1. However, five of the isolates clustered separately and may constitute a new species within the Bradyrhizobium genus. The remaining five isolates were closely related to the strain Microvirga sp. LmiM8 and may constitute a new Microvirga species. The analysis of the nodC gene showed that all Bradyrhizobium strains nodulating blue lupine belong to the symbiovar genistearum, whereas the Microvirga isolates are associated with the symbiovar mediterranense. The results of this study support that the L. angustifolius root nodule symbionts isolated in Northern Tunisia belong mostly to the B. canariense/B. lupini lineages. However, new clades of Bradyrhizobium and Microvirga have been identified as L. angustifolius endosymbionts.
Collapse
Affiliation(s)
- M Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) – Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - A Msaddak
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) – Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - I Filali
- College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh PO Box 84428, Saudi Arabia
| | - M A Benabderrahim
- Arid and Oases Cropping Laboratory, Arid Area Institute, Gabes 6051, Tunisia
| | - M Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) – Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Marín
- Institute of Genetics, Ludwig Maximilians University of Munich (LMU), Grosshaderner Str. 2–4, D-82152 Martinsried, Germany
| |
Collapse
|
21
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
22
|
Bünger W, Grönemeyer JL, Sarkar A, Reinhold-Hurek B. Bradyrhizobium ripae sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia. Int J Syst Evol Microbiol 2018; 68:3688-3695. [DOI: 10.1099/ijsem.0.002955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, Center of Bioolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Bioolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Abhijit Sarkar
- Department of Microbe-Plant Interactions, Center of Bioolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Bioolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
23
|
Huang CT, Hish KT, Wang CN, Liu CT, Kao WY. Phylogenetic analyses of Bradyrhizobium symbionts associated with invasive Crotalaria zanzibarica and its coexisting legumes in Taiwan. Syst Appl Microbiol 2018; 41:619-628. [DOI: 10.1016/j.syapm.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
|
24
|
De Meyer SE, Ruthrof KX, Edwards T, Hopkins AJ, Hardy G, O’Hara G, Howieson J. Diversity of endemic rhizobia on Christmas Island: Implications for agriculture following phosphate mining. Syst Appl Microbiol 2018; 41:641-649. [DOI: 10.1016/j.syapm.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
|
25
|
Grönemeyer JL, Reinhold-Hurek B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front Microbiol 2018; 9:2194. [PMID: 30294308 PMCID: PMC6158577 DOI: 10.3389/fmicb.2018.02194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.
Collapse
Affiliation(s)
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
26
|
Phylogenetic diversity of Bradyrhizobium strains nodulating Calicotome spinosa in the Northeast of Algeria. Syst Appl Microbiol 2018; 41:452-459. [DOI: 10.1016/j.syapm.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
|
27
|
Ahnia H, Bourebaba Y, Durán D, Boulila F, Palacios JM, Rey L, Ruiz-Argüeso T, Boulila A, Imperial J. Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria. Syst Appl Microbiol 2018; 41:333-339. [DOI: 10.1016/j.syapm.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
28
|
Msaddak A, Rejili M, Durán D, Rey L, Palacios JM, Imperial J, Ruiz-Argüeso T, Mars M. Definition of two new symbiovars, sv. lupini and sv. mediterranense, within the genera Bradyrhizobium and Phyllobacterium efficiently nodulating Lupinus micranthus in Tunisia. Syst Appl Microbiol 2018; 41:487-493. [PMID: 29803609 DOI: 10.1016/j.syapm.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
In this study, a polyphasic approach was used to analyze three representative strains (LmiH4, LmiM2 and LmiT21) from a collection of six previously described strains isolated in Tunisia from root nodules of Lupinus micranthus. The phylogenetic analysis of the concatenated rrs, recA and glnII genes showed that strain LmiH4 had 100% concatenated gene sequence identity with the type strain Bradyrhizobium retamae Ro19T. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species Bradyrhizobium valentinum LmjM3T. However, strain LmiT21 showed an identical concatenated gene sequence with reference strain Phyllobacterium sophorae CCBAU03422T. The recA-glnII concatenated protein-coding genes used produced incongruent phylogenies compared with 16S rDNA phylogeny. The nodC gene analysis showed that the strains were phylogenetically divergent to the Bradyrhizobium symbiovars defined to date, and represented two new symbiovars. Plant infection analysis revealed that the three strains showed moderate host range and symbiotic specificities. Based on their symbiotic characteristics, we propose that the three strains isolated from Lupinus micranthus nodules belong to two new symbiovars, with the first denominated lupini within the two species Bradyrhizobium valentinum (type strain LmiM2) and B. retamae (type strain LmiH4), and the second denominated mediterranense within the species P. sophorae (type strain LmiT21).
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabès, Erriadh, Zrig 6072, Tunisia
| | - Mokhtar Rejili
- Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabès, Erriadh, Zrig 6072, Tunisia.
| | - David Durán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, CSIC, 28006, Madrid, Spain
| | | | - Mohamed Mars
- Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabès, Erriadh, Zrig 6072, Tunisia
| |
Collapse
|
29
|
Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae. Genes (Basel) 2018. [PMID: 29538303 PMCID: PMC5867884 DOI: 10.3390/genes9030163] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.
Collapse
Affiliation(s)
- Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Banasiewicz
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Camille E Granada
- Universidade do Vale do Taquari-UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Keller J, Imperial J, Ruiz-Argüeso T, Privet K, Lima O, Michon-Coudouel S, Biget M, Salmon A, Aïnouche A, Cabello-Hurtado F. RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:102-116. [PMID: 29241560 DOI: 10.1016/j.plantsci.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen fixation in the legume root-nodule symbiosis has a critical importance in natural and agricultural ecosystems and depends on the proper choice of the symbiotic partners. However, the genetic determinism of symbiotic specificity remains unclear. To study this process, we inoculated three Lupinus species (L. albus, L. luteus, L. mariae-josephae), belonging to the under-investigated tribe of Genistoids, with two Bradyrhizobium strains (B. japonicum, B. valentinum) presenting contrasted degrees of symbiotic specificity depending on the host. We produced the first transcriptomes (RNA-Seq) from lupine nodules in a context of symbiotic specificity. For each lupine species, we compared gene expression between functional and non-functional interactions and determined differentially expressed (DE) genes. This revealed that L. luteus and L. mariae-josephae (nodulated by only one of the Bradyrhizobium strains) specific nodulomes were richest in DE genes than L. albus (nodulation with both microsymbionts, but non-functional with B. valentinum) and share a higher number of these genes between them than with L. albus. In addition, a functional analysis of DE genes highlighted the central role of the genetic pathways controlling infection and nodule organogenesis, hormones, secondary, carbon and nitrogen metabolisms, as well as the implication of plant defence in response to compatible or incompatible Bradyrhizobium strains.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - J Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - T Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón, Madrid, Spain
| | - K Privet
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - O Lima
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - S Michon-Coudouel
- Environmental and Human Genomics Platform, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Biget
- Environmental and Human Genomics Platform, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
31
|
Grönemeyer JL, Bünger W, Reinhold-Hurek B. Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia. Int J Syst Evol Microbiol 2017; 67:4884-4891. [DOI: 10.1099/ijsem.0.002039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Wiebke Bünger
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
32
|
Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Syst Appl Microbiol 2017; 40:440-447. [PMID: 28869059 DOI: 10.1016/j.syapm.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Abstract
An assessment was made of the evolutionary relationships of soybean nodulating bacteria associated with legumes native to eastern Canada to identify potential new sources of soybean inoculant strains. Short season soybeans were used to selectively trap bacteria from root zone soils of four native legume species. Screening of more than 800 bacterial isolates from soybean root nodules by analysis of recA gene sequences followed by analyses of selected genotypes using six core and two symbiosis (nodC and nifH) gene sequences permitted identification of diverse taxa that included eight novel and four named Bradyrhizobium species as well as lineages attributed to the genera Afipia and Tardiphaga. Plant tests showed that symbionts related to four named species as well as a novel Bradyrhizobium lineage were highly efficient with regard to nitrogen fixation on soybeans relative to an inoculant strain. A new symbiovar (sv. septentrionalis) is proposed based on a group of four novel Bradyrhizobium spp. that possess distinctive nodC and nifH gene sequences and symbiotic characteristics. Evidence is provided for horizontal transfer of sv. septentrionalis symbiosis genes between novel Bradyrhizobium spp., a process that rendered recipient bacteria ineffective on soybeans. Diverse lineages of non-symbiotic and symbiotic Bradyrhizobium spp. co-occured within monophyletic clusters in a phylogenetic tree of concatenated core genes, suggesting that loss and/or gain of symbiosis genes has occurred in the evolutionary history of the bacterial genus. Our data suggest that symbiont populations associated with legumes native to eastern Canada harbour elite strains of Bradyrhizobium for soybean inoculation.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Thu Van Tran Thi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
33
|
La Pierre KJ, Simms EL, Tariq M, Zafar M, Porter SS. Invasive legumes can associate with many mutualists of native legumes, but usually do not. Ecol Evol 2017; 7:8599-8611. [PMID: 29075475 PMCID: PMC5648655 DOI: 10.1002/ece3.3310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
Abstract
Mutualistic interactions can strongly influence species invasions, as the inability to form successful mutualisms in an exotic range could hamper a host's invasion success. This barrier to invasion may be overcome if an invader either forms novel mutualistic associations or finds and associates with familiar mutualists in the exotic range. Here, we ask (1) does the community of rhizobial mutualists associated with invasive legumes in their exotic range overlap with that of local native legumes and (2) can any differences be explained by fundamental incompatibilities with particular rhizobial genotypes? To address these questions, we first characterized the rhizobial communities naturally associating with three invasive and six native legumes growing in the San Francisco Bay Area. We then conducted a greenhouse experiment to test whether the invasive legume could nodulate with any of a broad array of rhizobia found in their exotic range. There was little overlap between the Bradyrhizobium communities associated with wild‐grown invasive and native legumes, yet the invasive legumes could nodulate with a broad range of rhizobial strains under greenhouse conditions. These observations suggest that under field conditions in their exotic range, these invasive legumes are not currently associating with the mutualists of local native legumes, despite their potential to form such associations. However, the promiscuity with which these invading legumes can form mutualistic associations could be an important factor early in the invasion process if mutualist scarcity limits range expansion. Overall, the observation that invasive legumes have a community of rhizobia distinct from that of native legumes, despite their ability to associate with many rhizobial strains, challenges existing assumptions about how invading species obtain their mutualists. These results can therefore inform current and future efforts to prevent and remove invasive species.
Collapse
Affiliation(s)
- Kimberly J La Pierre
- Department of Integrative Biology University of California Berkeley CA USA.,Present address: Smithsonian Environmental Research Center Edgewater MD USA
| | - Ellen L Simms
- Department of Integrative Biology University of California Berkeley CA USA
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology Government College University Faisalabad Pakistan
| | - Marriam Zafar
- Centre of Agricultural Biochemistry and Biotechnology University of Agriculture Faisalabad Pakistan
| | - Stephanie S Porter
- School of Biological Sciences Washington State University Vancouver WA USA
| |
Collapse
|
34
|
Degefu T, Wolde-meskel E, Woliy K, Frostegård Å. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of tree and annual legume species growing in Ethiopia. Syst Appl Microbiol 2017; 40:205-214. [DOI: 10.1016/j.syapm.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/27/2022]
|
35
|
Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium, and Bradyrhizobium Nodulate Lupinus micranthus Growing in Soils of Northern Tunisia. Appl Environ Microbiol 2017; 83:AEM.02820-16. [PMID: 28062461 DOI: 10.1128/aem.02820-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of bacterial populations nodulating Lupinus micranthus in five geographical sites from northern Tunisia was examined. Phylogenetic analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, and the other five clusters were close to different recently defined Bradyrhizobium species. Isolates close to Microvirga were obtained from nodules of plants from four of the five sites sampled. We carried out an in-depth phylogenetic study with representatives of the seven clusters using sequences from housekeeping genes (rrs, recA, glnII, gyrB, and dnaK) and obtained consistent results. A phylogeny based on the sequence of the symbiotic gene nodC identified four groups, three formed by Bradyrhizobium isolates and one by the Microvirga and Phyllobacterium isolates. Symbiotic behaviors of the representative strains were tested, and some congruence between symbiovars and symbiotic performance was observed. These data indicate a remarkable diversity of L. micranthus root nodule symbionts in northern Tunisia, including strains from the Bradyrhizobiaceae, Methylobacteriaceae, and Phyllobacteriaceae families, in contrast with those of the rhizobial populations nodulating lupines in the Old World, including L. micranthus from other Mediterranean areas, which are nodulated mostly by Bradyrhizobium strains.IMPORTANCELupinus micranthus is a legume broadly distributed in the Mediterranean region and plays an important role in soil fertility and vegetation coverage by fixing nitrogen and solubilizing phosphate in semiarid areas. Direct sowing to extend the distribution of this indigenous legume can contribute to the prevention of soil erosion in pre-Saharan lands of Tunisia. However, rhizobial populations associated with L. micranthus are poorly understood. In this context, the diversity of endosymbionts of this legume was investigated. Most Lupinus species are nodulated by Bradyrhizobium strains. This work showed that about half of the isolates from northern Tunisian soils were in fact Bradyrhizobium symbionts, but the other half were found unexpectedly to be bacteria within the genera Microvirga and Phyllobacterium These unusual endosymbionts may have a great ecological relevance. Inoculation with the appropriate selected symbiotic bacterial partners will increase L. micranthus survival with consequent advantages for the environment in semiarid areas of Tunisia.
Collapse
|
36
|
Beligala DH, Michaels HJ, Devries M, Phuntumart V. Multilocus Sequence Analysis of Root Nodule Bacteria Associated with <i>Lupinus</i> spp. and <i>Glycine max</i>. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aim.2017.711063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales. Appl Environ Microbiol 2016; 82:5099-115. [PMID: 27316955 DOI: 10.1128/aem.00591-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Collapse
|
38
|
Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206-218. [DOI: 10.1016/j.ympev.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
|
39
|
Guha S, Sarkar M, Ganguly P, Uddin MR, Mandal S, DasGupta M. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India. Environ Microbiol 2016; 18:2575-90. [PMID: 27102878 DOI: 10.1111/1462-2920.13348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022]
Abstract
Bradyrhizobial invasion in dalbergoid legumes like Arachis hypogaea and endophytic bacterial invasions in non-legumes like Oryza sativa occur through epidermal cracks. Here, we show that there is no overlap between the bradyrhizobial consortia that endosymbiotically and endophytically colonise these plants. To minimise contrast due to phylogeographic isolation, strains were collected from Arachis/Oryza intercropped fields and a total of 17 bradyrhizobia from Arachis (WBAH) and 13 from Oryza (WBOS) were investigated. 16SrRNA and concatenated dnaK-glnII-recA phylogeny clustered the nodABC-positive WBAH and nodABC-deficient WBOS strains in two distinct clades. The in-field segregation is reproducible under controlled conditions which limits the factors that influence their competitive exclusion. While WBAH renodulated Arachis successfully, WBOS nodulated in an inefficient manner. Thus, Arachis, like other Aeschynomene legumes support nod-independent symbiosis that was ineffectual in natural fields. In Oryza, WBOS recolonised endophytically and promoted its growth. WBAH however caused severe chlorosis that was completely overcome when coinfected with WBOS. This explains the exclusive recovery of WBOS in Oryza in natural fields and suggests Nod-factors to have a role in counterselection of WBAH. Finally, canonical soxY1 and thiosulphate oxidation could only be detected in WBOS indicating loss of metabolic traits in WBAH with adaptation of symbiotic lifestyle.
Collapse
Affiliation(s)
- Sohini Guha
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Monolina Sarkar
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Md Raihan Uddin
- Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
40
|
Diversity of Bradyrhizobium strains nodulating Lupinus micranthus on both sides of the Western Mediterranean: Algeria and Spain. Syst Appl Microbiol 2016; 39:266-274. [DOI: 10.1016/j.syapm.2016.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
|
41
|
Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 2016; 66:62-69. [DOI: 10.1099/ijsem.0.000674] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Wiebke Bünger
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334, Bremen, Germany
| |
Collapse
|
42
|
Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65:4886-4894. [DOI: 10.1099/ijsem.0.000666] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers’ fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to ‘Bradyrhizobium arachidis’ CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with ’B. arachidis’ CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (T
m
).
Collapse
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - T. Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
43
|
Lemaire B, Van Cauwenberghe J, Verstraete B, Chimphango S, Stirton C, Honnay O, Smets E, Sprent J, James EK, Muasya AM. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Syst Appl Microbiol 2015; 39:41-8. [PMID: 26689612 DOI: 10.1016/j.syapm.2015.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 02/04/2023]
Abstract
The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa; Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium.
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium
| | | | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 2435, 3001 Heverlee, Belgium; Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, The Netherlands
| | - Janet Sprent
- Division of Plant Sciences, University of Dundee at JHI, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
44
|
Grönemeyer JL, Chimwamurombe P, Reinhold-Hurek B. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T
m).
Collapse
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Percy Chimwamurombe
- Department of Biological Sciences, University of Namibia (UNAM), P. Bag 13301, Windhoek, Namibia
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
45
|
Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A. The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity. Microbes Environ 2015; 30:254-61. [PMID: 26370165 PMCID: PMC4567564 DOI: 10.1264/jsme2.me14141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/06/2015] [Indexed: 11/17/2022] Open
Abstract
The growth and yield of peas cultivated on eight different soils, as well as the diversity of pea microsymbionts derived from these soils were investigated in the present study. The experimental plot was composed of soils that were transferred from different parts of Poland more than a century ago. The soils were located in direct vicinity of each other in the experimental plot. All soils examined contained pea microsymbionts, which were suggested to belong to Rhizobium leguminosarum sv. viciae based on the nucleotide sequence of the partial 16S rRNA gene. PCR-RFLP analyses of the 16S-23S rRNA gene ITS region and nodD alleles revealed the presence of numerous and diversified groups of pea microsymbionts and some similarities between the tested populations, which may have been the result of the spread or displacement of strains. However, most populations retained their own genetic distinction, which may have been related to the type of soil. Most of the tested populations comprised low-effective strains for the promotion of pea growth. No relationships were found between the characteristics of soil and symbiotic effectiveness of rhizobial populations; however, better seed yield was obtained for soil with medium biological productivity inhabited by high-effective rhizobial populations than for soil with high agricultural quality containing medium-quality pea microsymbionts, and these results showed the importance of symbiosis for plant hosts.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Anna Podleśna
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Janusz Podleśny
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| |
Collapse
|
46
|
Azarias Guimarães A, Florentino LA, Alves Almeida K, Lebbe L, Barroso Silva K, Willems A, de Souza Moreira FM. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 2015; 38:433-41. [DOI: 10.1016/j.syapm.2015.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
47
|
Granada CE, Beneduzi A, Lisboa BB, Turchetto-Zolet AC, Vargas LK, Passaglia LM. Multilocus sequence analysis reveals taxonomic differences among Bradyrhizobium sp. symbionts of Lupinus albescens plants growing in arenized and non-arenized areas. Syst Appl Microbiol 2015; 38:323-9. [DOI: 10.1016/j.syapm.2015.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/29/2022]
|
48
|
Parker MA, Jankowiak JG, Landrigan GK. Diversifying selection by Desmodiinae legume species onBradyrhizobiumsymbionts. FEMS Microbiol Ecol 2015; 91:fiv075. [DOI: 10.1093/femsec/fiv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 11/14/2022] Open
|
49
|
Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. MICROBIAL ECOLOGY 2015; 69:630-640. [PMID: 25301497 DOI: 10.1007/s00248-014-0503-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/24/2014] [Indexed: 06/04/2023]
Abstract
To analyze macroevolutionary patterns in host use by Bradyrhizobium root-nodule bacteria, 420 strains from 75 legume host genera (sampled in 25 countries) were characterized for portions of six housekeeping genes and the nifD locus in the symbiosis island chromosomal region. Most Bradyrhizobium clades utilized very divergent sets of legume hosts. This suggests that Bradyrhizobium spread across the major legume lineages early in its evolution, with only a few derived clades subsequently developing a narrower pattern of host use. Significant modularity existed in the network structure of recent host jumps (inferred from cases where closely related strain pairs were found on different legume taxa). This implies that recent host switching has occurred most often within particular subgroups of legumes. Nevertheless, the observed link structure would allow a bacterial lineage to reach almost any of the 75 legume host genera in a relatively small number of steps. However, permutation tests also showed that symbionts from certain host plant clades were significantly more similar than would be the case if bacteria were distributed at random on the trees. Related legumes thus harbored related sets of symbionts in some cases, indicating some degree of phylogenetic conservatism in partner selection.
Collapse
Affiliation(s)
- Matthew A Parker
- Department of Biological Sciences, State University of New York, Binghamton, NY, 13902, USA,
| |
Collapse
|
50
|
Parker MA, Rousteau A. Mosaic origins of Bradyrhizobium legume symbionts on the Caribbean island of Guadeloupe. Mol Phylogenet Evol 2014; 77:110-5. [DOI: 10.1016/j.ympev.2014.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
|