1
|
Zhou Z, Ding H, Shi C, Peng S, Zhu B, An X, Li H. Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies. BIORESOURCE TECHNOLOGY 2025; 419:132035. [PMID: 39755159 DOI: 10.1016/j.biortech.2025.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production. However, the toxicity of butanol to the producing strains leading to its low yield and the high cost of feedstock are the main obstacles limiting the ABE fermentation industry. In this study, to enhance the butanol tolerance and production in Clostridium beijerinckii D9, the strategies of metabolic engineering and process regulation were employed. With this effort, a recombinant strain D9/pykA was successfully developed. Furthermore, the effect of exogenous fermentation waste streams and their two-stage addition strategy on ABE fermentation was also investigated. Under the optimal condition, the highest butanol and total solvent production of 11.20 ± 0.58 g/L and 13.65 ± 0.51 g/L was achieved in C. beijerinckii D9/pykA, representing increases of 40.70 % and 37.05 %, respectively, compared to the original strain D9. Additionally, the results of the physiological mechanism revealed that the two-stage fermentation waste stream addition improved NADH synthesis and upregulated key genes involved in butanol biosynthesis, and thus enhancing the production. These insights could provide a foundation for further optimization of ABE fermentation processes and offer promising avenues for improving other similar research.
Collapse
Affiliation(s)
- Zhiyou Zhou
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Ding
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chaoyue Shi
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuaiyin Peng
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Biao Zhu
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hanguang Li
- College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
2
|
Hwang JH, Kim HJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Kim SH, Park JH, Bhatia SK, Kim YG, Jang KS, Yang YH. Positive effect of phasin in biohydrogen production of non polyhydroxybutyrate-producing Clostridium acetobutylicum ATCC 824. BIORESOURCE TECHNOLOGY 2024; 395:130355. [PMID: 38272145 DOI: 10.1016/j.biortech.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
In this study, the goal was to enhance the tolerance of Clostridium acetobutylicum ATCC 824 to biomass-based inhibitory compounds for biohydrogen production and evaluate various known genes that enhance the production of biochemicals in various hosts. The introduction of phaP, the major polyhydroxyalkanoate granule-associated protein that has been reported as a chaperone-like protein resulted in increased tolerance to inhibitors and leads to higher levels of hydrogen production, cell growth, and glucose consumption in the presence of these inhibitors. It was observed that the introduction of phaP led to an increase in the transcription of the hydrogenase gene, whereas transcription of the chaperone functional genes decreased compared to the wild type. Finally, the introduction of phaP could significantly enhance biohydrogen production by 2.6-fold from lignocellulosic hydrolysates compared to that of wild type. These findings suggested that the introduction of phaP could enhance growth and biohydrogen production, even in non-polyhydroxyalkanoate-producing strains.
Collapse
Affiliation(s)
- Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong-Hoon Park
- Clean Energy Transition Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Republic of Korea; Convergence Manufacturing System Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
4
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
5
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes (Basel) 2021; 12:genes12020181. [PMID: 33514005 PMCID: PMC7911632 DOI: 10.3390/genes12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.
Collapse
|
8
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
9
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of ClpB From Corynebacterium crenatum in Thermal Stress and Arginine Fermentation. Front Microbiol 2020; 11:1660. [PMID: 32765470 PMCID: PMC7380099 DOI: 10.3389/fmicb.2020.01660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
ClpB, an ATP-dependent molecular chaperone, is involved in metabolic pathways and plays important roles in microorganisms under stress conditions. Metabolic pathways and stress resistance are important characteristics of industrially -relevant bacteria during fermentation. Nevertheless, ClpB-related observations have been rarely reported in industrially -relevant microorganisms. Herein, we found a homolog of ClpB from Corynebacterium crenatum. The amino acid sequence of ClpB was analyzed, and the recombinant ClpB protein was purified and characterized. The full function of ClpB requires DnaK as chaperone protein. For this reason, dnaK/clpB deletion mutants and the complemented strains were constructed to investigate the role of ClpB. The results showed that DnaK/ClpB is not essential for the survival of C. crenatum MT under pH and alcohol stresses. The ClpB-deficient or DnaK-deficient C. crenatum mutants showed weakened growth during thermal stress. In addition, the results demonstrated that deletion of the clpB gene affected glucose consumption and L-arginine, L-glutamate, and lactate production during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
10
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of the ClpX from Corynebacterium crenatum involved in stress responses and energy metabolism. Appl Microbiol Biotechnol 2020; 104:5505-5517. [PMID: 32300856 DOI: 10.1007/s00253-020-10597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
ClpX and ClpP are involved in many important functions, including stress responses and energy metabolism, in microorganisms. However, the ClpX and ClpP of microbes used in industrial scale have rarely been studied. Industrial bacterial fermentation experiences a variety of stresses, and energy metabolism is extremely important for industrial bacteria. Thus, the role played by the ClpX and ClpP of industrial bacteria in fermentation should be investigated. Most microorganisms have a single clpP gene, while Corynebacterium crenatum AS 1.542 possesses two clpPs. Herein, the clpX, clpP1, and clpP2 of C. crenatum were cloned, and its fusion protein was expressed and characterized. We also constructed clpX deletion mutant and complementation strain. Results indicate that ClpX serves an important function in thermal, pH, and ethanol stresses. It is also involved in NADPH synthesis and glucose consumption during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China.,School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096, People's Republic of China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China. .,School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
11
|
Yang Y, Lang N, Zhang L, Wu H, Jiang W, Gu Y. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Appl Microbiol Biotechnol 2020; 104:5011-5023. [DOI: 10.1007/s00253-020-10555-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
|
12
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
13
|
COMPUTER RECOGNITION OF CHEMICAL SUBSTANCES BASED ON THEIR ELECTROPHYSIOLOGICAL CHARACTERISTICS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
|
15
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Park YK, Nicaud JM. Screening a genomic library for genes involved in propionate tolerance in Yarrowia lipolytica. Yeast 2019; 37:131-140. [PMID: 31293017 DOI: 10.1002/yea.3431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 01/18/2023] Open
Abstract
Microbial oils are regarded as promising alternatives to fossil fuels. For bio-oil production to be sustainable over the long term, utilizing low-cost substrates like volatile fatty acids (VFAs) is crucial. Increasing attention is being paid to one of the most common VFAs: propionate, a substrate that could be used to produce the odd-chain FAs of industrial interest. However, little is known about microbial responses to propionate-induced stress and the genes involved. Using genomic library screening, we identified two genes involved in propionate tolerance in Yarrowia lipolytica-MFS1 and RTS1. Strains containing each of the genes displayed enhanced tolerance to propionate even when the genes were expressed in truncated form via a replicative plasmid. Compared with the control strain, the strain overexpressing MFS1 under a constitutive promoter displayed greater tolerance to propionate: It had a shorter lag phase and higher growth rate in propionate medium (0.047 hr-1 versus 0.030 hr-1 for the control in 40 g/L propionate); it also accumulated more total lipids and more odd-chain lipids (10% and 3.3%, respectively) than the control. The strain overexpressing RTS1 showed less tolerance for propionate than the strains harboring the truncated form (0.057 hr-1 versus 0.065 hr-1 in 40 g/L propionate medium) but still had higher tolerance than the control strain. Furthermore, the overexpression of RTS1 seemed to confer tolerance to other weak acids such as lactate, formic acid, malic acid, and succinic acid. This work provides a basis for better understanding the response to propionate-induced stress in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
17
|
Xu G, Wu A, Xiao L, Han R, Ni Y. Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking chaperone SecB. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:164. [PMID: 31297152 PMCID: PMC6598250 DOI: 10.1186/s13068-019-1507-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Escherichia coli has been proved to be one promising platform chassis for the production of various natural products, such as biofuels. Product toxicity is one of the main bottlenecks for achieving maximum production of biofuels. Host strain engineering is an effective approach to alleviate solvent toxicity issue in fermentation. RESULTS Thirty chaperones were overexpressed in E. coli JM109, and SecB recombinant strain was identified with the highest n-butanol tolerance. The tolerance (T) of E. coli overexpressing SecB, calculated by growth difference in the presence and absence of solvents, was determined to be 9.13% at 1.2% (v/v) butanol, which was 3.2-fold of the control strain. Random mutagenesis of SecB was implemented and homologously overexpressed in E. coli, and mutant SecBT10A was identified from 2800 variants rendering E. coli the highest butanol tolerance. Saturation mutagenesis on T10 site revealed that hydrophobic residues were required for high butanol tolerance of E. coli. Compared with wild-type (WT) SecB, the T of SecBT10A strain was further increased from 9.14 to 14.4% at 1.2% butanol, which was 5.3-fold of control strain. Remarkably, E. coli engineered with SecBT10A could tolerate as high as 1.8% butanol (~ 14.58 g/L). The binding affinity of SecBT10A toward model substrate unfolded maltose binding protein (preMBP) was 11.9-fold of that of WT SecB as determined by isothermal titration calorimetry. Residue T10 locates at the entrance of hydrophobic substrate binding groove of SecB, and might play an important role in recognition and binding of cargo proteins. CONCLUSIONS SecB chaperone was identified by chaperone mining to be effective in enhancing butanol tolerance of E. coli. Maximum butanol tolerance of E. coli could reach 1.6% and 1.8% butanol by engineering single gene of SecB or SecBT10A. Hydrophobic interaction is vital for enhanced binding affinity between SecB and cargo proteins, and therefore improved butanol tolerance.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
18
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
19
|
Guo Y, Lu B, Tang H, Bi D, Zhang Z, Lin L, Pang H. Tolerance against butanol stress by disrupting succinylglutamate desuccinylase inEscherichia coli. RSC Adv 2019; 9:11683-11695. [PMID: 35517002 PMCID: PMC9063396 DOI: 10.1039/c8ra09711a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
The four-carbon alcohol, butanol, is emerging as a promising biofuel and efforts have been undertaken to improve several microbial hosts for its production.
Collapse
Affiliation(s)
- Yuan Guo
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | - Bo Lu
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | | | - Dewu Bi
- Guangxi University
- Nanning 530004
- China
| | | | - Lihua Lin
- Guangxi Academy of Sciences
- Nanning 530007
- China
| | - Hao Pang
- Guangxi Academy of Sciences
- Nanning 530007
- China
| |
Collapse
|
20
|
|
21
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
22
|
Horinouchi T, Maeda T, Furusawa C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J Microbiol Biotechnol 2018; 34:157. [PMID: 30341456 PMCID: PMC6208762 DOI: 10.1007/s11274-018-2542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Microbes are capable of producing alcohols, making them an important source of alternative energy that can replace fossil fuels. However, these alcohols can be toxic to the microbes themselves, retaring or inhibiting cell growth and decreasing the production yield. One solution is improving the alcohol tolerance of such alcohol-producing organisms. Advances in omics technologies, including transcriptomic, proteomic, metabolomic, and genomic technologies, have helped us understand the complex mechanisms underlying alcohol toxicity, and such advances could assist in devising strategies for engineering alcohol-tolerant strains. This review highlights these advances and discusses strategies for improving alcohol tolerance using omics analyses.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tomoya Maeda
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Traore MA, Sahari A, Behkam B. Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy. Methods Mol Biol 2018; 1831:25-35. [PMID: 30051422 DOI: 10.1007/978-1-4939-8661-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite significant recent progress in nanomedicine, drug delivery to solid tumors remains a formidable challenge often associated with low delivery efficiency and limited penetration of the drug in poorly vascularized regions of solid tumors. Attenuated strains of facultative anaerobes have been demonstrated to have exceptionally high selectivity to primary tumors and metastatic cancer, a good safety profile, and superior intratumoral penetration performance. However, bacteria have rarely been able to completely inhibit tumor growth in immunocompetent hosts solely by their presence in the tumor. We have developed a Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) in which the functional capabilities of tumor-targeting bacteria are interfaced with chemotherapeutic-loaded nanoparticles, an approach that would amplify the therapeutic potential of both modalities. Here, we describe two biomanufacturing techniques to construct NanoBEADS by linking different bacterial species with polymeric theranostic vehicles. NanoBEADS are envisioned to significantly impact current practices in cancer theranostics through improved targeting and intratumoral transport properties.
Collapse
Affiliation(s)
- Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ali Sahari
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
24
|
Xu M, Zhao J, Yu L, Yang ST. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J Biotechnol 2017; 263:36-44. [DOI: 10.1016/j.jbiotec.2017.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
|
25
|
Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 2017; 114:E6652-E6659. [PMID: 28739897 DOI: 10.1073/pnas.1700469114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.
Collapse
|
26
|
A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00662-17. [PMID: 28476770 DOI: 10.1128/aem.00662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.
Collapse
|
27
|
Zhao H, Sun H, Li L, Lou Y, Li R, Qi L, Gao Z. Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana). Sci Rep 2017; 7:46107. [PMID: 28383053 PMCID: PMC5382692 DOI: 10.1038/srep46107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Rongsheng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China
| | - Lianghua Qi
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
28
|
Rahman MS, Xu CC, Ma K, Nanda M, Qin W. High Production of 2,3-butanediol by a Mutant Strain of the Newly Isolated Klebsiella pneumoniae SRP2 with Increased Tolerance Towards Glycerol. Int J Biol Sci 2017; 13:308-318. [PMID: 28367095 PMCID: PMC5370438 DOI: 10.7150/ijbs.17594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 11/05/2022] Open
Abstract
Biodiesel, a renewable fuel produced by transesterification of animal fats and vegetable oils, generates about 10% (v/v) of crude glycerol as a core byproduct. The high volume of this non bio-degradable glycerol is becoming of a great environmental and economical concern due to its worldwide ever-growing surplus. Herein we report a high production of 2,3-butanediol (2,3-BD) from pure and biodiesel derived crude glycerol using a mutant K. pneumoniae SRM2 obtained from a newly isolated strain Klebsiella pneumoniae SRP2. The mutant strain SRM2 with standing high glycerol concentration (220 g L-1 of medium) could rapidly convert glycerol aerobically to 2,3-BD, a versatile product extensively used in chemical, pharmaceutical and fuel industries Our study revealed that an increased GDH activity led to a substantially enhanced production of 2,3-BD. The mutant strain exhibited 1.3-fold higher activity of GDH than that of parent strain (500.08 vs. 638.6 µmol min -1 mg -1 protein), yielding of 32.3 g L-1 and 77.5 g L-1 2,3-BD with glycerol in batch and fed-batch process respectively. However, in batch culture with crude glycerol, cell growth and glycerol consumption were expressively boosted, and 2,3-BD production was 27.7 g L-1 from 75.0 g/L crude glycerol. In this report, the optimal conditions for high production of 2,3-BD were defined in a completely aerobic process, and 0.59 g g-1 product yield of 2,3-BD was attained by the mutated strain K. pneumoniae SRM2, which is the highest amount obtained from batch biotransformation process of glycerol metabolism till today. These results indicated that our newly developed mutant can tolerate high concentration of glycerol, have a high glycerol utilization rate, and high product yield of 2,3-BD. It is demonstrated that the mutant strain K. pneumoniae SRM2 has an ability to produce fewer co-products at trace concentrations at higher glycerol concentrations, and could be a potential candidate for 2,3-DB production in an industrial bioconversion process.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada;; Department of Microbiology, University of Chittagong, Bangladesh
| | - Chunbao Charles Xu
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario N6A 5B9, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Malaya Nanda
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, Ontario N6A 5B9, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
29
|
Liu S, Qureshi N, Hughes SR. Progress and perspectives on improving butanol tolerance. World J Microbiol Biotechnol 2017; 33:51. [PMID: 28190182 DOI: 10.1007/s11274-017-2220-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
Abstract
Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism's inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.
Collapse
Affiliation(s)
- Siqing Liu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Nasib Qureshi
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| | - Stephen R Hughes
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
30
|
Gallardo R, Alves M, Rodrigues L. Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum. N Biotechnol 2017; 34:59-67. [DOI: 10.1016/j.nbt.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
31
|
Liang M, Zhou X, Xu C. Systems biology in biofuel. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Su H, Zhu J, Liu G, Tan F. Investigation of availability of a high throughput screening method for predicting butanol solvent -producing ability of Clostridium beijerinckii. BMC Microbiol 2016; 16:160. [PMID: 27448996 PMCID: PMC4957875 DOI: 10.1186/s12866-016-0776-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Currently, efficient screening methods for selection of desired bacterial phenotypes from large populations are not easy feasible or readily available due to the complicated physiological and metabolic networks of solventogenic clostridia. In this study, to contribute to the improvement of methods for predicting the butanol-producing ability of Clostridium beijerinckii based on starch substrate, we further investigate a simple, visualization screening method for selecting target strains from mutant library of Clostridium beijerinckii NCIMB 8052 by using trypan blue dye as an indicator in solid starch via statistical survey and validation of fermentation experiment with controlling pH. RESULTS To verify an effective, efficient phenotypic screening method for isolating high butanol-producing mutants, the revalidation process was conducted based on Trypan Blue was used for visualization, and starch was used as the bacterial metabolic substrate. The availability of the screening system was further evaluated based on the relationship between characteristics of mutant strains and their α-amylase activities. Mutant clones were analyzed in detail based on their distinctive growth patterns and rate of fermentation of soluble starch to form butanol and were compared by statistical method. Significant correlations were identified between colony morphology and changes in butanol concentrations. The screening method was validated via statistical analysis for characterizing phenotypic parameters. The fermentation experiment of mutant strains with controlling pH value also demonstrated a positive correlation between increased α-amylase activity and increased solvent production by Clostridium beijerinckii was observed, and therefore indicated that the trypan blue dyeing method can be used as a fast method to screen target mutant strain for better solvent producers from, for instance, a mutant library. CONCLUSIONS The suitability of the novel screening procedure was validated, opening up a new indicator of approach to select mutant solventogenic clostridia with improved fermentation of starch to increase butanol concentrations. The applicability can easily be broadened to a wide range of interesting microbes such as cellulolytic or acetogenic microorganisms, which produce biofuels from feedstock rich in starch.
Collapse
Affiliation(s)
- HaiFeng Su
- Enviromentally-Begnin Chemical Process Research Center, Division of Ecological & Enviromental Research on the Three Gorges, Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, Beijing, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, 611130, Wenjiang, Sichuan, China
| | - Gang Liu
- Sichuan Academy of Grassland Science, Xipu Chengdu, 611731, Sichuan, Peoples Republic of China.
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, Sichuan, Peoples Republic of China.
| |
Collapse
|
33
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
34
|
Jones AJ, Venkataramanan KP, Papoutsakis T. Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol Lett 2016; 363:fnw063. [PMID: 26989157 DOI: 10.1093/femsle/fnw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone-Butanol-Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells.
Collapse
Affiliation(s)
- Alexander J Jones
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Keerthi P Venkataramanan
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Terry Papoutsakis
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
35
|
Freedman BG, Zu TNK, Wallace RS, Senger RS. Raman spectroscopy detects phenotypic differences among
Escherichia coli
enriched for 1‐butanol tolerance using a metagenomic DNA library. Biotechnol J 2016; 11:877-89. [DOI: 10.1002/biot.201500144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/22/2015] [Accepted: 01/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin G. Freedman
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Theresah N. K. Zu
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Robert S. Wallace
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Ryan S. Senger
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| |
Collapse
|
36
|
Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 2016; 363:fnw020. [PMID: 26832641 DOI: 10.1093/femsle/fnw020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
The heavy dependence on petroleum-derived fuel has raised concerns about energy sustainability and climate change, which have prompted researchers to explore fuel production from renewable sources. 1-Butanol and isobutanol are promising biofuels that have favorable properties and can also serve as solvents or chemical feedstocks. Microbial production of these alcohols provides great opportunities to access a wide spectrum of renewable resources. In recent years, research has improved the native 1-butanol production and has engineered isobutanol production in various organisms to explore metabolic diversity and a broad range of substrates. This review focuses on progress in metabolic engineering for the production of these two compounds using various resources.
Collapse
Affiliation(s)
- Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Oh YH, Eom GT, Kang KH, Joo JC, Jang YA, Choi JW, Song BK, Lee SH, Park SJ. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess Biosyst Eng 2016; 39:555-63. [DOI: 10.1007/s00449-016-1537-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
|
38
|
Wen RC, Shen CR. Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:267. [PMID: 28031744 PMCID: PMC5168855 DOI: 10.1186/s13068-016-0680-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/02/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a natural fermentation product secreted by Clostridium species, bio-based 1-butanol has attracted great attention for its potential as alternative fuel and chemical feedstock. Feasibility of microbial 1-butanol production has also been demonstrated in various recombinant hosts. RESULTS In this work, we constructed a self-regulated 1-butanol production system in Escherichia coli by borrowing its endogenous fermentation regulatory elements (FRE) to automatically drive the 1-butanol biosynthetic genes in response to its natural fermentation need. Four different cassette of 5' upstream transcription and translation regulatory regions controlling the expression of the major fermentative genes ldhA, frdABCD, adhE, and ackA were cloned individually to drive the 1-butanol pathway genes distributed among three plasmids, resulting in 64 combinations that were tested for 1-butanol production efficiency. Fermentation of 1-butanol was triggered by anaerobicity in all cases. In the growth-decoupled production screening, only combinations with formate dehydrogenase (Fdh) overexpressed under FRE adhE demonstrated higher titer of 1-butanol anaerobically. In vitro assay revealed that 1-butanol productivity was directly correlated with Fdh activity under such condition. Switching cells to oxygen-limiting condition prior to significant accumulation of biomass appeared to be crucial for the induction of enzyme synthesis and the efficiency of 1-butanol fermentation. With the selection pressure of anaerobic NADH balance, the engineered strain demonstrated stable production of 1-butanol anaerobically without the addition of inducer or antibiotics, reaching a titer of 10 g/L in 24 h and a yield of 0.25 g/g glucose under high-density fermentation. CONCLUSIONS Here, we successfully engineered a self-regulated 1-butanol fermentation system in E. coli based on the natural regulation of fermentation reactions. This work also demonstrated the effectiveness of selection pressure based on redox balance anaerobically. Results obtained from this study may help enhance the industrial relevance of 1-butanol synthesis using E. coli and solidifies the possibility of strain improvement by directed evolution.
Collapse
Affiliation(s)
- Rex C. Wen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Claire R. Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|
39
|
Herring CD, Kenealy WR, Joe Shaw A, Covalla SF, Olson DG, Zhang J, Ryan Sillers W, Tsakraklides V, Bardsley JS, Rogers SR, Thorne PG, Johnson JP, Foster A, Shikhare ID, Klingeman DM, Brown SD, Davison BH, Lynd LR, Hogsett DA. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:125. [PMID: 27313661 PMCID: PMC4910263 DOI: 10.1186/s13068-016-0536-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. RESULTS Here, we describe the highest ethanol titers achieved from T. saccharolyticum during a 4-year project to develop it for industrial production of ethanol from pre-treated hardwood at 51-55 °C. We describe organism and bioprocess development efforts undertaken to improve ethanol production. The final strain M2886 was generated by removing genes for exopolysaccharide synthesis, the regulator perR, and re-introduction of phosphotransacetylase and acetate kinase into the methyglyoxal synthase gene. It was also subject to multiple rounds of adaptation and selection, resulting in mutations later identified by resequencing. The highest ethanol titer achieved was 70 g/L in batch culture with a mixture of cellobiose and maltodextrin. In a "mock hydrolysate" Simultaneous Saccharification and Fermentation (SSF) with Sigmacell-20, glucose, xylose, and acetic acid, an ethanol titer of 61 g/L was achieved, at 92 % of theoretical yield. Fungal cellulases were rapidly inactivated under these conditions and had to be supplemented with cellulosomes from C. thermocellum. Ethanol titers of 31 g/L were reached in a 100 L SSF of pre-treated hardwood and 26 g/L in a fermentation of a hardwood hemicellulose extract. CONCLUSIONS This study demonstrates that thermophilic anaerobes are capable of producing ethanol at high yield and at titers greater than 60 g/L from purified substrates, but additional work is needed to produce the same ethanol titers from pre-treated hardwood.
Collapse
Affiliation(s)
- Christopher D. Herring
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
| | - William R. Kenealy
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Verdezyne, Carlsbad, CA USA
| | - A. Joe Shaw
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novogy Inc, Cambridge, MA 02138 USA
| | | | - Daniel G. Olson
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />Bioenergy Science Center, Oak Ridge, TN USA
| | - Jiayi Zhang
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Genzyme, Cambridge, MA USA
| | - W. Ryan Sillers
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Myriant Corporation, Quincy, MA USA
| | - Vasiliki Tsakraklides
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novogy Inc, Cambridge, MA 02138 USA
| | | | | | | | - Jessica P. Johnson
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Washington, DC, USA
| | - Abigail Foster
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
| | - Indraneel D. Shikhare
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Nalco Champion, Houston, TX USA
| | - Dawn M. Klingeman
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Brian H. Davison
- />Bioenergy Science Center, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Lee R. Lynd
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- />Bioenergy Science Center, Oak Ridge, TN USA
| | - David A. Hogsett
- />Mascoma Corporation, 67 Etna Rd, Lebanon, NH 03766 USA
- />Novozymes Inc, Davis, CA USA
| |
Collapse
|
40
|
Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes. Curr Opin Biotechnol 2015; 36:16-31. [DOI: 10.1016/j.copbio.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/21/2022]
|
41
|
Akinosho H, Rydzak T, Borole A, Ragauskas A, Close D. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2156-2174. [PMID: 26423392 DOI: 10.1007/s10646-015-1543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.
Collapse
Affiliation(s)
- Hannah Akinosho
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Thomas Rydzak
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
| | - Abhijeet Borole
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN, USA
| | - Arthur Ragauskas
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA.
| |
Collapse
|
42
|
Lin J, Sharma V, Milase R, Mbhense N. Simultaneous enhancement of phenolic compound degradations byAcinetobacterstrain V2via a step-wise continuous acclimation process. J Basic Microbiol 2015; 56:627-34. [DOI: 10.1002/jobm.201500263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Johnson Lin
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Vikas Sharma
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ridwaan Milase
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ntuthuko Mbhense
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| |
Collapse
|
43
|
Abdelaal AS, Ageez AM, Abd El-Hadi AEHA, Abdallah NA. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech 2015; 5:401-410. [PMID: 28324542 PMCID: PMC4522734 DOI: 10.1007/s13205-014-0235-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Strain tolerance to toxic metabolites remains an important issue in the
production of biofuels. Here we examined the impact of overexpressing the
heterologous groESL chaperone from Clostridium acetobutylicum to enhance the tolerance of
Escherichia coli against several stressors.
Strain tolerance was identified using strain maximum specific growth rate (μ) and strain growth after a period of solvent exposure.
In comparison with control strain, the groESL
overexpressing strain yielded a 27 % increase in growth under 0.8 % (v/v) butanol, a
9 % increase under 1 % (v/v) butanol, and a 64 % increase under 1.75 (g/l) acetate.
Moreover, after 10 h, groESL overexpression
resulted in increase in relative tolerance of 58 % compared with control strain
under 0.8 % (v/v) butanol, 56 % increase under 1 % (v/v) butanol, 42 % increase
under 1 % (v/v) isobutanol, 36 % increase under 4 % (v/v) ethanol, 58 % increase
under 1.75 (g/l) acetate. These data demonstrate that overexpression of the
groESL from C.
acetobutylicum in E. coli increased
tolerance to several stressors. Solvent tolerant strain of E. coli was developed to be used as a basic strain for biofuel
production.
Collapse
Affiliation(s)
- Ali S Abdelaal
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| | - Amr M Ageez
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | - Naglaa A Abdallah
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
44
|
Vinayavekhin N, Mahipant G, Vangnai AS, Sangvanich P. Untargeted metabolomics analysis revealed changes in the composition of glycerolipids and phospholipids in Bacillus subtilis under 1-butanol stress. Appl Microbiol Biotechnol 2015; 99:5971-83. [PMID: 26025016 DOI: 10.1007/s00253-015-6692-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/18/2015] [Accepted: 05/15/2015] [Indexed: 01/21/2023]
Abstract
1-Butanol has been utilized widely in industry and can be produced or transformed by microbes. However, current knowledge about the mechanisms of 1-butanol tolerance in bacteria remains quite limited. Here, we applied untargeted metabolomics to study Bacillus subtilis cells under 1-butanol stress and identified 55 and 37 ions with significantly increased and decreased levels, respectively. Using accurate mass determination, tandem mass spectra, and synthetic standards, 86 % of these ions were characterized. The levels of phosphatidylethanolamine, diglucosyldiacylglycerol, and phosphatidylserine were found to be upregulated upon 1-butanol treatment, whereas those of diacylglycerol and lysyl phosphatidylglycerol were downregulated. Most lipids contained 15:0/15:0, 16:0/15:0, and 17:0/15:0 acyl chains, and all were mapped to membrane lipid biosynthetic pathways. Subsequent two-stage quantitative real-time reverse transcriptase PCR analyses of genes in the two principal membrane lipid biosynthesis pathways revealed elevated levels of ywiE transcripts in the presence of 1-butanol and reduced expression levels of cdsA, pgsA, mprF, clsA, and yfnI transcripts. Thus, the gene transcript levels showed agreement with the metabolomics data. Lastly, the cell morphology was investigated by scanning electron microscopy, which indicated that cells became almost twofold longer after 1.4 % (v/v) 1-butanol stress for 12 h. Overall, the studies uncovered changes in the composition of glycerolipids and phospholipids in B. subtilis under 1-butanol stress, emphasizing the power of untargeted metabolomics in the discovery of new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,
| | | | | | | |
Collapse
|
45
|
Lee S, Lee JH, Mitchell RJ. Analysis of Clostridium beijerinckii NCIMB 8052's transcriptional response to ferulic acid and its application to enhance the strain tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:68. [PMID: 25904983 PMCID: PMC4406174 DOI: 10.1186/s13068-015-0252-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/07/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant-based cellulose presents the best source of renewable sugars for biofuel production. However, the lignin associated with plant cellulose presents a hurdle as hydrolysis of this component leads to the production of inhibitory compounds, such as ferulic acid. RESULTS The impacts of ferulic acid, a phenolic compound commonly found in lignin hydrolysates, on the growth, solvent production, and transcriptional responses of Clostridium beijerinckii NCIMB 8052 were determined. Addition of ferulic acid to growing cultures resulted in a decrease in the growth and solvent production by 30% and 25%, respectively, when compared to the control cultures. To better understand the toxicity of this compound, microarray analyses were performed using samples taken from these cultures at three different growth states. Several gene ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified showing significant change at each status, including ATP-binding cassette (ABC) transporters, two component system, and oxidoreductase activity. Moreover, genes related with efflux systems and heat shock proteins were also strongly up-regulated. Among these, expression of the groESL operon was induced by more than fourfold and was consequently selected to improve C. beijerinckii tolerance to ferulic acid. Real-time quantitative PCR (RT-qPCR) analysis confirmed that C. beijerinckii harboring the plasmid, pSAAT-ptb_Gro, had a two- to fivefold increased groESL operon expression during growth of these cultures. Moreover, this strain was more tolerant to ferulic acid as the growth of this recombinant strain and its bioconversion of glucose into solvents were both improved. CONCLUSIONS Using transcriptomics, we identified numerous genes that are differentially expressed when C. beijerinckii cultures were exposed to ferulic acid for varying amounts of time. The operon expressing groESL was consistently up-regulated, suggesting that this gene cluster may contribute to strain tolerance. This was confirmed as recombinant cultures showed both an enhanced growth and solvent yield in the presence of 0.5 g/L ferulic acid.
Collapse
Affiliation(s)
- Siseon Lee
- />School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan, 689-798 South Korea
| | - Jin Hyung Lee
- />Korea Institute for Ceramic Engineering and Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031 South Korea
| | - Robert J Mitchell
- />School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan, 689-798 South Korea
| |
Collapse
|
46
|
Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. J Proteomics 2015; 122:11-25. [PMID: 25829261 DOI: 10.1016/j.jprot.2015.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED To increase the efficiency of biocatalysts a thorough understanding of the molecular response of the biocatalyst to precursors, products and environmental conditions applied in bioconversions is essential. Here we performed a comprehensive proteome and phospholipid analysis to characterize the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. Using complementary quantitative proteomics approaches we were able to identify and quantify 1467 proteins, corresponding to 28% of the total KT2440 proteome. 256 proteins were altered in abundance in response to n-butanol. The proteome response entailed an increased abundance of enzymes involved in n-butanol degradation including quinoprotein alcohol dehydrogenases, aldehyde dehydrogenases and enzymes of fatty acid beta oxidation. From these results we were able to construct a pathway for the metabolism of n-butanol in P. putida. The initial oxidation of n-butanol is catalyzed by at least two quinoprotein ethanol dehydrogenases (PedE and PedH). Growth of mutants lacking PedE and PedH on n-butanol was significantly impaired, but not completely inhibited, suggesting that additional alcohol dehydrogenases can at least partially complement their function in KT2440. Furthermore, phospholipid profiling revealed a significantly increased abundance of lyso-phospholipids in response to n-butanol, indicating a rearrangement of the lipid bilayer. BIOLOGICAL SIGNIFICANCE n-butanol is an important bulk chemical and a promising alternative to gasoline as a transportation fuel. Due to environmental concerns as well as increasing energy prices there is a growing interest in sustainable and cost-effective biotechnological production processes for the production of bulk chemicals and transportation fuels from renewable resources. n-butanol fermentation is well established in Clostridiae, but the efficiency of n-butanol production is mainly limited by its toxicity. Therefore bacterial strains with higher intrinsic tolerance to n-butanol have to be selected as hosts for n-butanol production. Pseudomonas bacteria are metabolically very versatile and exhibit a high intrinsic tolerance to organic solvents making them suitable candidates for bioconversion processes. A prerequisite for a potential production of n-butanol in Pseudomonas bacteria is a thorough understanding of the molecular adaption processes caused by n-butanol and the identification of enzymes involved in n-butanol metabolization. This work describes the impact of n-butanol on the proteome and the phospholipid composition of the reference strain P. putida KT2440. The high proteome coverage of our proteomics survey allowed us to reconstruct the degradation pathway of n-butanol and to monitor the changes in the energy metabolism of KT2440 induced by n-butanol. Key enzymes involved in n-butanol degradation identified in study will be interesting targets for optimization of n-butanol production in Pseudomonads. The present work and the identification of key enzymes involved in butanol metabolism may serve as a fundament to develop new or improve existing strategies for the biotechnological production of the next-generation biofuel n-butanol in Pseudomonads.
Collapse
|
47
|
Dong H, Zhao C, Zhang T, Lin Z, Li Y, Zhang Y. Engineering Escherichia coli Cell Factories for n-Butanol Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:141-63. [PMID: 25662903 DOI: 10.1007/10_2015_306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The production of n-butanol, as a widely applied solvent and potential fuel, is attracting much attention. The fermentative production of butanol coupled with the production of acetone and ethanol by Clostridium (ABE fermentation) was once one of the oldest biotechnological processes, ranking second in scale behind ethanol fermentation. However, there remain problems with butanol production by Clostridium, especially the difficulty in genetically manipulating clostridial strains. In recent years, many efforts have been made to produce butanol using non-native strains. Until now, the most advanced effort was the engineering of the user-friendly and widely studied Escherichia coli for butanol production. This paper reviews the current progress and problems relating to butanol production by engineered E. coli in terms of prediction using mathematical models, pathway construction, novel enzyme replacement, butanol toxicity, and tolerance engineering strategies.
Collapse
Affiliation(s)
- Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianrui Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhao Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 2014; 99:1011-22. [DOI: 10.1007/s00253-014-6249-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/07/2023]
|
49
|
Li HG, Ofosu FK, Li KT, Gu QY, Wang Q, Yu XB. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance. BIORESOURCE TECHNOLOGY 2014; 172:276-282. [PMID: 25270042 DOI: 10.1016/j.biortech.2014.09.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 06/03/2023]
Abstract
To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum. Under the optimized condition, the phase shift was smoothly triggered and fermentation performances were consequently enhanced. The maximum total solvent and butanol concentration were 23.6% and 24.3%, respectively higher than that of the wild-type strain. Furthermore, the correlation between butanol produced and the butanol tolerance was investigated, suggesting that enhancing butanol tolerance could improve butanol production. These results indicate that the simple but effective isolation method and acclimatization process are a promising technique for isolation and improvement of butanol tolerance and production.
Collapse
Affiliation(s)
- Han-Guang Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fred Kwame Ofosu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kun-Tai Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiu-Ya Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Bin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
50
|
Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy. J Bacteriol 2014; 196:3983-91. [PMID: 25157078 DOI: 10.1128/jb.01590-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Raman spectroscopy was used to study the time course of phenotypic responses of Escherichia coli (DH5α) to 1-butanol exposure (1.2% [vol/vol]). Raman spectroscopy is of interest for bacterial phenotyping because it can be performed (i) in near real time, (ii) with minimal sample preparation (label-free), and (iii) with minimal spectral interference from water. Traditional off-line analytical methodologies were applied to both 1-butanol-treated and control cells to draw correlations with Raman data. Here, distinct sets of Raman bands are presented that characterize phenotypic traits of E. coli with maximized correlation to off-line measurements. In addition, the observed time course phenotypic responses of E. coli to 1.2% (vol/vol) 1-butanol exposure included the following: (i) decreased saturated fatty acids levels, (ii) retention of unsaturated fatty acids and low levels of cyclopropane fatty acids, (iii) increased membrane fluidity following the initial response of increased rigidity, and (iv) no changes in total protein content or protein-derived amino acid composition. For most phenotypic traits, correlation coefficients between Raman spectroscopy and traditional off-line analytical approaches exceeded 0.75, and major trends were captured. The results suggest that near-real-time Raman spectroscopy is suitable for approximating metabolic and physiological phenotyping of bacterial cells subjected to toxic environmental conditions.
Collapse
|