1
|
Chabhadiya S, Acharya D, Mangrola A, Shah R, Pithawala EA. Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:111-119. [PMID: 39416688 PMCID: PMC11446356 DOI: 10.1016/j.biotno.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/19/2024]
Abstract
Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering Pseudomonas aeruginosa for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like Escherichia coli. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.
Collapse
Affiliation(s)
- Sameer Chabhadiya
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - D.K. Acharya
- Department of Microbiology, Gandhinagar University, Kalol, Gujarat, India
| | - Amitsinh Mangrola
- Department of Biochemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, India
| | - Rupal Shah
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - Edwin A. Pithawala
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Li X, Yang Z, Liu J. Optimizing Systems for Robust Heterologous Production of Biosurfactants Rhamnolipid and Lyso-Ornithine Lipid in Pseudomonas putida KT2440. Molecules 2024; 29:3288. [PMID: 39064867 PMCID: PMC11279095 DOI: 10.3390/molecules29143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Surfactants are amphiphilic molecules that are capable of mixing water and oil. Biosurfactants are eco-friendly, low-toxicity, and stable to a variety of environmental factors. Optimizing conditions for microorganisms to produce biosurfactants can lead to improved production suitable for scaling up. In this study, we compared heterologous expression levels of the luminescence system luxCDABE operon controlled by regulatable promoters araC-PBAD and its strong version araC-PBAD-SD in Escherichia coli K12, Pseudomonas aeruginosa PAO1, and P. putida KT2440. Real-time monitoring of luminescence levels in the three strains indicated that luxCDABE controlled by araC-PBAD-SD promoter with 0.2% arabinose supplementation in P. putida produced the highest level of luminescence. By using the araC-PBAD-SD promoter-controlled rhlAB expression in P. putida, we were able to produce mono-rhamnolipid at a level of 1.5 g L-1 when 0.02% arabinose was supplemented. With the same system to express olsB, lyso-ornithine lipid was produced at a level of 10 mg L-1 when 0.2% arabinose was supplemented. To our knowledge, this is the first report about optimizing conditions for lyso-ornithine lipid production at a level up to 10 mg L-1. Taken together, our results demonstrate that regulatable araC-PBAD-SD promoter in P. putida KT2440 is a useful system for heterologous production of biosurfactants.
Collapse
Affiliation(s)
| | | | - Jianhua Liu
- Systems Biology, School for Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (X.L.); (Z.Y.)
| |
Collapse
|
3
|
Puyol McKenna P, Naughton PJ, Dooley JSG, Ternan NG, Lemoine P, Banat IM. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals (Basel) 2024; 17:138. [PMID: 38276011 PMCID: PMC10818721 DOI: 10.3390/ph17010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms' adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed.
Collapse
Affiliation(s)
- Patricia Puyol McKenna
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick J. Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - James S. G. Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Nigel G. Ternan
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick Lemoine
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK;
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
4
|
Gauthier C, Lavoie S, Kubicki S, Piochon M, Cloutier M, Dagenais-Roy M, Groleau MC, Pichette A, Thies S, Déziel E. Structural characterization of a nonionic rhamnolipid from Burkholderia lata. Carbohydr Res 2024; 535:108991. [PMID: 38065042 DOI: 10.1016/j.carres.2023.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
We present the isolation and structural characterization of a novel nonionic dirhamnolipid methyl ester produced by the bacterium Burkholderia lata. The structure and the absolute configuration of the isolated dirhamnolipid bearing a symmetrical C14-C14 methyl ester chain were thoroughly investigated through chemical degradation and spectroscopic methods including 1D and 2D NMR analysis, HR-ESI-TOF-MS, chiral GC-MS, and polarimetry. Our work represents the first mention in the literature of a rhamnolipid methyl ester from Burkholderia species.
Collapse
Affiliation(s)
- Charles Gauthier
- Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Centre de recherche sur la boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Serge Lavoie
- Centre de recherche sur la boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52428, Jülich, Germany
| | - Marianne Piochon
- Centre de recherche sur la boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Maude Cloutier
- Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Maude Dagenais-Roy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52428, Jülich, Germany
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
5
|
Lipphardt A, Karmainski T, Blank LM, Hayen H, Tiso T. Identification and quantification of biosurfactants produced by the marine bacterium Alcanivorax borkumensis by hyphenated techniques. Anal Bioanal Chem 2023; 415:7067-7084. [PMID: 37819435 PMCID: PMC10684412 DOI: 10.1007/s00216-023-04972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
A novel biosurfactant was discovered to be synthesized by the marine bacterium Alcanivorax borkumensis in 1992. This bacterium is abundant in marine environments affected by oil spills, where it helps to degrade alkanes and, under such conditions, produces a glycine-glucolipid biosurfactant. The biosurfactant enhances the bacterium's attachment to oil droplets and facilitates the uptake of hydrocarbons. Due to its useful properties expected, there is interest in the biotechnological production of this biosurfactant. To support this effort analytically, a method combining reversed-phase high-performance liquid chromatography (HPLC) with high-resolution mass spectrometry (HRMS) was developed, allowing the separation and identification of glycine-glucolipid congeners. Accurate mass, retention time, and characteristic fragmentation pattern were utilized for species assignment. In addition, charged-aerosol detection (CAD) was employed to enable absolute quantification without authentic standards. The methodology was used to investigate the glycine-glucolipid production by A. borkumensis SK2 using different carbon sources. Mass spectrometry allowed us to identify congeners with varying chain lengths (C6-C12) and degrees of unsaturation (0-1 double bonds) in the incorporated 3-hydroxy-alkanoic acids, some previously unknown. Quantification using CAD revealed that the titer was approximately twice as high when grown with hexadecane as with pyruvate (49 mg/L versus 22 mg/L). The main congener for both carbon sources was glc-40:0-gly, accounting for 64% with pyruvate and 85% with hexadecane as sole carbon source. With the here presented analytical suit, complex and varying glycolipids can be identified, characterized, and quantified, as here exemplarily shown for the interesting glycine-glucolipid of A. borkumensis.
Collapse
Affiliation(s)
- Anna Lipphardt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Tobias Karmainski
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Christensen M, Chiciudean I, Jablonski P, Tanase AM, Shapaval V, Hansen H. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99. PLoS One 2023; 18:e0282623. [PMID: 36888636 PMCID: PMC9994712 DOI: 10.1371/journal.pone.0282623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
High-throughput screening (HTS) methods for characterization of microbial production of polyhydroxyalkanoates (PHA) are currently under investigated, despite the advent of such systems in related fields. In this study, phenotypic microarray by Biolog PM1 screening of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99 identified 49 and 54 carbon substrates to be metabolized by these bacteria, respectively. Growth on 15 (Halomonas sp. R5-57) and 14 (Pseudomonas sp. MR4-99) carbon substrates was subsequently characterized in 96-well plates using medium with low nitrogen concentration. Bacterial cells were then harvested and analyzed for putative PHA production using two different Fourier transform infrared spectroscopy (FTIR) systems. The FTIR spectra obtained from both strains contained carbonyl-ester peaks indicative of PHA production. Strain specific differences in the carbonyl-ester peak wavenumber indicated that the PHA side chain configuration differed between the two strains. Confirmation of short chain length PHA (scl-PHA) accumulation in Halomonas sp. R5-57 and medium chain length PHA (mcl-PHA) in Pseudomonas sp. MR4-99 was done using Gas Chromatography-Flame Ionization Detector (GC-FID) analysis after upscaling to 50 mL cultures supplemented with glycerol and gluconate. The strain specific PHA side chain configurations were also found in FTIR spectra of the 50 mL cultures. This supports the hypothesis that PHA was also produced in the cells cultivated in 96-well plates, and that the HTS approach is suitable for analysis of PHA production in bacteria. However, the carbonyl-ester peaks detected by FTIR are only indicative of PHA production in the small-scale cultures, and appropriate calibration and prediction models based on combining FTIR and GC-FID data needs to be developed and optimized by performing more extensive screenings and multivariate analyses.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| | - Iulia Chiciudean
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Ana-Maria Tanase
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Hilde Hansen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| |
Collapse
|
7
|
Sivapuratharasan V, Lenzen C, Michel C, Muthukrishnan AB, Jayaraman G, Blank LM. Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics. Metab Eng Commun 2022; 15:e00202. [PMID: 36017490 PMCID: PMC9396041 DOI: 10.1016/j.mec.2022.e00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of Pseudomonas taiwanensis VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was actP, coding for a cation/acetate symporter, and the other gene was paaA coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmolrhl/Cmol4-coumarate) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmolrhl/Cmolferulate), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.
Collapse
Affiliation(s)
- Vaishnavi Sivapuratharasan
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Christoph Lenzen
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Carina Michel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Anantha Barathi Muthukrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
8
|
Santamaria G, Liao C, Lindberg C, Chen Y, Wang Z, Rhee K, Pinto FR, Yan J, Xavier JB. Evolution and regulation of microbial secondary metabolism. eLife 2022; 11:e76119. [PMID: 36409069 PMCID: PMC9708071 DOI: 10.7554/elife.76119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.
Collapse
Affiliation(s)
- Guillem Santamaria
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chloe Lindberg
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Zhe Wang
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francisco Rodrigues Pinto
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
9
|
Blunt W, Blanchard C, Morley K. Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Identification of putative producers of rhamnolipids/glycolipids and their transporters using genome mining. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Schellenberger R, Crouzet J, Nickzad A, Shu LJ, Kutschera A, Gerster T, Borie N, Dawid C, Cloutier M, Villaume S, Dhondt-Cordelier S, Hubert J, Cordelier S, Mazeyrat-Gourbeyre F, Schmid C, Ongena M, Renault JH, Haudrechy A, Hofmann T, Baillieul F, Clément C, Zipfel C, Gauthier C, Déziel E, Ranf S, Dorey S. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2101366118. [PMID: 34561304 PMCID: PMC8488661 DOI: 10.1073/pnas.2101366118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.
Collapse
Affiliation(s)
- Romain Schellenberger
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Lin-Jie Shu
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Alexander Kutschera
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Tim Gerster
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Nicolas Borie
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jane Hubert
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Florence Mazeyrat-Gourbeyre
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Jean-Hugues Renault
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arnaud Haudrechy
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada;
| | - Stefanie Ranf
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany;
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France;
| |
Collapse
|
12
|
|
13
|
Tiso T, Narancic T, Wei R, Pollet E, Beagan N, Schröder K, Honak A, Jiang M, Kenny ST, Wierckx N, Perrin R, Avérous L, Zimmermann W, O'Connor K, Blank LM. Towards bio-upcycling of polyethylene terephthalate. Metab Eng 2021; 66:167-178. [PMID: 33865980 DOI: 10.1016/j.ymben.2021.03.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022]
Abstract
Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology. Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics.
Collapse
Affiliation(s)
- Till Tiso
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Tanja Narancic
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Niall Beagan
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katja Schröder
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Annett Honak
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Mengying Jiang
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France; SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Shane T Kenny
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nick Wierckx
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rémi Perrin
- SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Kevin O'Connor
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
14
|
Herzog M, Li L, Blesken CC, Welsing G, Tiso T, Blank LM, Winter R. Impact of the number of rhamnose moieties of rhamnolipids on the structure, lateral organization and morphology of model biomembranes. SOFT MATTER 2021; 17:3191-3206. [PMID: 33621291 DOI: 10.1039/d0sm01934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Various studies have described remarkable biological activities and surface-active properties of rhamnolipids, leading to their proposed use in a wide range of industrial applications. Here, we report on a study of the effects of monorhamnolipid RhaC10C10 and dirhamnolipid RhaRhaC10C10 incorporation into model membranes of varying complexity, including bacterial and heterogeneous model biomembranes. For comparison, we studied the effect of HAA (C10C10, lacking a sugar headgroup) partitioning into these membrane systems. AFM, confocal fluorescence microscopy, DSC, and Laurdan fluorescence spectroscopy were employed to yield insights into the rhamnolipid-induced morphological changes of lipid vesicles as well as modifications of the lipid order and lateral membrane organization of the model biomembranes upon partitioning of the different rhamnolipids. The partitioning of the three rhamnolipids into phospholipid bilayers changes the phase behavior, fluidity, lateral lipid organization and morphology of the phospholipid membranes dramatically, to what extent, depends on the headgroup structure of the rhamnolipid, which affects its packing and hydrogen bonding capacity. The incorporation into giant unilamellar vesicles (GUVs) of a heterogeneous anionic raft membrane system revealed budding of domains and fission of daughter vesicles and small aggregates for all three rhamnolipids, with major destabilization of the lipid vesicles upon insertion of RhaC10C10, and also formation of huge GUVs upon the incorporation of RhaRhaC10C10. Finally, we discuss the results with regard to the role these biosurfactants play in biology and their possible impact on applications, ranging from agricultural to pharmaceutical industries.
Collapse
Affiliation(s)
- Marius Herzog
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zahri KNM, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA. Research Trends of Biodegradation of Cooking Oil in Antarctica from 2001 to 2021: A Bibliometric Analysis Based on the Scopus Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042050. [PMID: 33669826 PMCID: PMC7922505 DOI: 10.3390/ijerph18042050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
In the present age, environmental pollution is multiplying due to various anthropogenic activities. Pollution from waste cooking oil is one of the main issues facing the current human population. Scientists and researchers are seriously concerned about the oils released from various activities, including the blockage of the urban drainage system and odor issues. In addition, cooking oil is known to be harmful and may have a carcinogenic effect. It was found that current research studies and publications are growing on these topics due to environmental problems. A bibliometric analysis of studies published from 2001 to 2021 on cooking oil degradation was carried out using the Scopus database. Primarily, this analysis identified the reliability of the topic for the present-day and explored the past and present progresses of publications on various aspects, including the contributing countries, journals and keywords co-occurrence. The links and interactions between the selected subjects (journals and keywords) were further visualised using the VOSviewer software. The analysis showed that the productivity of the publications is still developing, with the most contributing country being the United States, followed by China and India with 635, 359 and 320 publications, respectively. From a total of 1915 publications, 85 publications were published in the Journal of Agricultural and Food Chemistry. Meanwhile, the second and third of the most influential journals were Bioresource Technology and Industrial Crops and Products with 76 and 70 total publications, respectively. Most importantly, the co-occurrence of the author’s keywords revealed “biodegradation”, “bioremediation”, “vegetable oil” and “Antarctic” as the popular topics in this study area, especially from 2011 to 2015. In conclusion, this bibliometric analysis on the degradation of cooking oil may serve as guide for future avenues of research in this area of research.
Collapse
Affiliation(s)
- Khadijah Nabilah Mohd Zahri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Welsing G, Wolter B, Hintzen HMT, Tiso T, Blank LM. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods Enzymol 2021; 648:391-421. [PMID: 33579413 DOI: 10.1016/bs.mie.2020.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzymatic degradation of polyethylene terephthalate (PET) results in a hydrolysate consisting almost exclusively of its two monomers, ethylene glycol and terephthalate. To biologically valorize the PET hydrolysate, microbial upcycling into high-value products is proposed. Fatty acid derivatives hydroxyalkanoyloxy alkanoates (HAAs) represent such valuable target molecules. HAAs exhibit surface-active properties and can be exploited in the catalytical conversion to drop-in biofuels as well as in the polymerization to bio-based poly(amide urethane). This chapter presents the genetic engineering methods of pseudomonads for the metabolization of PET monomers and the biosynthesis of HAAs with detailed protocols concerning product purification.
Collapse
Affiliation(s)
- Gina Welsing
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Birger Wolter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Henric M T Hintzen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production. Microorganisms 2020; 8:microorganisms8121959. [PMID: 33322018 PMCID: PMC7763313 DOI: 10.3390/microorganisms8121959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain.
Collapse
|
18
|
Herzog M, Tiso T, Blank LM, Winter R. Interaction of rhamnolipids with model biomembranes of varying complexity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183431. [DOI: 10.1016/j.bbamem.2020.183431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
|
19
|
Blesken CC, Bator I, Eberlein C, Heipieper HJ, Tiso T, Blank LM. Genetic Cell-Surface Modification for Optimized Foam Fractionation. Front Bioeng Biotechnol 2020; 8:572892. [PMID: 33195133 PMCID: PMC7658403 DOI: 10.3389/fbioe.2020.572892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Rhamnolipids are among the glycolipids that have been investigated intensively in the last decades, mostly produced by the facultative pathogen Pseudomonas aeruginosa using plant oils as carbon source and antifoam agent. Simplification of downstream processing is envisaged using hydrophilic carbon sources, such as glucose, employing recombinant non-pathogenic Pseudomonas putida KT2440 for rhamnolipid or 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA, i.e., rhamnolipid precursors) production. However, during scale-up of the cultivation from shake flask to bioreactor, excessive foam formation hinders the use of standard fermentation protocols. In this study, the foam was guided from the reactor to a foam fractionation column to separate biosurfactants from medium and bacterial cells. Applying this integrated unit operation, the space-time yield (STY) for rhamnolipid synthesis could be increased by a factor of 2.8 (STY = 0.17 gRL/L·h) compared to the production in shake flasks. The accumulation of bacteria at the gas-liquid interface of the foam resulted in removal of whole-cell biocatalyst from the reactor with the strong consequence of reduced rhamnolipid production. To diminish the accumulation of bacteria at the gas-liquid interface, we deleted genes encoding cell-surface structures, focusing on hydrophobic proteins present on P. putida KT2440. Strains lacking, e.g., the flagellum, fimbriae, exopolysaccharides, and specific surface proteins, were tested for cell surface hydrophobicity and foam adsorption. Without flagellum or the large adhesion protein F (LapF), foam enrichment of these modified P. putida KT2440 was reduced by 23 and 51%, respectively. In a bioreactor cultivation of the non-motile strain with integrated rhamnolipid production genes, biomass enrichment in the foam was reduced by 46% compared to the reference strain. The intensification of rhamnolipid production from hydrophilic carbon sources presented here is an example for integrated strain and process engineering. This approach will become routine in the development of whole-cell catalysts for the envisaged bioeconomy. The results are discussed in the context of the importance of interacting strain and process engineering early in the development of bioprocesses.
Collapse
Affiliation(s)
- Christian C. Blesken
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
| | - Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
20
|
Wittgens A, Rosenau F. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids. Front Bioeng Biotechnol 2020; 8:594010. [PMID: 33195161 PMCID: PMC7642724 DOI: 10.3389/fbioe.2020.594010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The first heterologous expression of genes responsible for the production of rhamnolipids was already implemented in the mid-1990s during the functional identification of the rhlAB operon. This was the starting shot for multiple approaches to establish the rhamnolipid biosynthesis in different host organisms. Since most of the native rhamnolipid producing organisms are human or plant pathogens, the intention for these ventures was the establishment of non-pathogenic organisms as heterologous host for the production of rhamnolipids. The pathogenicity of producing organisms is one of the bottlenecks for applications of rhamnolipids in many industrial products especially foods and cosmetics. The further advantage of heterologous rhamnolipid production is the circumvention of the complex regulatory network, which regulates the rhamnolipid biosynthesis in wild type production strains. Furthermore, a suitable host with an optimal genetic background to provide sufficient amounts of educts allows the production of tailor-made rhamnolipids each with its specific physico-chemical properties depending on the contained numbers of rhamnose sugar residues and the numbers, chain length and saturation degree of 3-hydroxyfatty acids. The heterologous expression of rhl genes can also enable the utilization of unusual carbon sources for the production of rhamnolipids depending on the host organism.
Collapse
Affiliation(s)
- Andreas Wittgens
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany.,Department Synthesis of Macromolecules, Max-Planck-Institute for Polymer Research Mainz, Mainz, Germany
| |
Collapse
|
21
|
Jeck V, Froning M, Tiso T, Blank LM, Hayen H. Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids by liquid chromatography-mass spectrometry applying online Paternò-Büchi reaction. Anal Bioanal Chem 2020; 412:5601-5613. [PMID: 32627084 PMCID: PMC7413879 DOI: 10.1007/s00216-020-02776-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
Lipids are biomolecules with a broad variety of chemical structures, which renders them essential not only for various biological functions but also interestingly for biotechnological applications. Rhamnolipids are microbial glycolipids with surface-active properties and are widely used biosurfactants. They are composed of one or two L-rhamnoses and up to three hydroxy fatty acids. Their biosynthetic precursors are 3-hydroxy(alkanoyloxy)alkanoic acids (HAAs). The latter are also present in cell supernatants as complex mixtures and are extensively studied for their potential to replace synthetically derived surfactants. The carbon chain lengths of HAAs determine their physical properties, such as their abilities to foam and emulsify, and their critical micelle concentration. Despite growing biotechnological interest, methods for structural elucidation are limited and often rely on hydrolysis and analysis of free hydroxy fatty acids losing the connectivity information. Therefore, a high-performance liquid chromatography-mass spectrometry method was developed for comprehensive structural characterization of intact HAAs. Information is provided on chain length and number of double bonds in each hydroxy fatty acid and their linkage by tandem mass spectrometry (MS/MS). Post-column photochemical derivatization by online Paternὸ-Büchi reaction and MS/MS fragmentation experiments generated diagnostic fragments allowing structural characterization down to the double bond position level. Furthermore, the presented experiments demonstrate a powerful approach for structure elucidation of complex lipids by tailored fragmentation.
Collapse
Affiliation(s)
- Viola Jeck
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
- Lower Saxony State Office for Consumer Protection and Food Safety - LAVES, Martin-Niemöller-Str. 2, 26133, Oldenburg, Germany
| | - Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany.
| |
Collapse
|
22
|
Tiso T, Ihling N, Kubicki S, Biselli A, Schonhoff A, Bator I, Thies S, Karmainski T, Kruth S, Willenbrink AL, Loeschcke A, Zapp P, Jupke A, Jaeger KE, Büchs J, Blank LM. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Front Bioeng Biotechnol 2020; 8:976. [PMID: 32974309 PMCID: PMC7468518 DOI: 10.3389/fbioe.2020.00976] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid-liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.
Collapse
Affiliation(s)
- Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nina Ihling
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Sonja Kubicki
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas Biselli
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Andreas Schonhoff
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Isabel Bator
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Thies
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Karmainski
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sebastian Kruth
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anna-Lena Willenbrink
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Zapp
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
23
|
Bator I, Karmainski T, Tiso T, Blank LM. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Front Bioeng Biotechnol 2020; 8:899. [PMID: 32850747 PMCID: PMC7427536 DOI: 10.3389/fbioe.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
High-titer biosurfactant production in aerated fermenters using hydrophilic substrates is often hampered by excessive foaming. Ethanol has been shown to efficiently destabilize foam of rhamnolipids, a popular group of biosurfactants. To exploit this feature, we used ethanol as carbon source and defoamer, without introducing novel challenges for rhamnolipid purification. In detail, we engineered the non-pathogenic Pseudomonas putida KT2440 for heterologous rhamnolipid production from ethanol. To obtain a strain with high growth rate on ethanol as sole carbon source at elevated ethanol concentrations, adaptive laboratory evolution (ALE) was performed. Genome re-sequencing allowed to allocate the phenotypic changes to emerged mutations. Several genes were affected and differentially expressed including alcohol and aldehyde dehydrogenases, potentially contributing to the increased growth rate on ethanol of 0.51 h-1 after ALE. Further, mutations in genes were found, which possibly led to increased ethanol tolerance. The engineered rhamnolipid producer was used in a fed-batch fermentation with automated ethanol addition over 23 h, which resulted in a 3-(3-hydroxyalkanoyloxy)alkanoates and mono-rhamnolipids concentration of about 5 g L-1. The ethanol concomitantly served as carbon source and defoamer with the advantage of increased rhamnolipid and biomass production. In summary, we present a unique combination of strain and process engineering that facilitated the development of a stable fed-batch fermentation for rhamnolipid production, circumventing mechanical or chemical foam disruption.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Karmainski
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
24
|
A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts 2020. [DOI: 10.3390/catal10080874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here we report a chemoenzymatic approach to synthesize 1-octene from carbohydrates via ethenolysis of rhamnolipids. Rhamnolipids synthesized by P. putida contain a double bond between carbon five and six, which is experimentally confirmed via olefin cross metathesis. Utilizing these lipids in the ethenolysis catalyzed by a Grubbs−Hoveyda-type catalyst selectively generates 1-octene and with good conversions. This study shows the potential of chemoenzymatic approaches to produce compounds for the chemical industry from renewable resources.
Collapse
|