1
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Amaro C, Carmona-Salido H. Vibrio vulnificus, an Underestimated Zoonotic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:175-194. [PMID: 36792876 DOI: 10.1007/978-3-031-22997-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.
Collapse
Affiliation(s)
- Carmen Amaro
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain.
| | - Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
3
|
A multiplex PCR for the detection of Vibrio vulnificus hazardous to human and/or animal health from seafood. Int J Food Microbiol 2022; 377:109778. [PMID: 35696749 DOI: 10.1016/j.ijfoodmicro.2022.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen linked to aquaculture that is spreading due to climate change. The pathogen can be transmitted to humans and animals by ingestion of raw shellfish or seafood feed, respectively. The aim of this work was to design and test a new procedure to detect V. vulnificus hazardous to human and/or animal health in food/feed samples. For this purpose, we combined a pre-enrichment step with multiplex PCR using primers for the species and for human and animal virulence markers. In vitro assays with mixed DNA from different Vibrio species and Vibrio cultures showed that the new protocol was 100 % specific with a detection limit of 10 cfu/mL. The protocol was successfully validated in seafood using artificially contaminated live shrimp and proved useful also in pathogen isolation from animals and their ecosystem. In conclusion, this novel protocol could be applied in health risk studies associated with food/feed consumption, as well as in the routine identification and subtyping of V. vulnificus from environmental or clinical samples.
Collapse
|
4
|
Carmona-Salido H, Fouz B, Sanjuán E, Carda M, Delannoy CMJ, García-González N, González-Candelas F, Amaro C. The widespread presence of a family of fish virulence plasmids in Vibrio vulnificus stresses its relevance as a zoonotic pathogen linked to fish farms. Emerg Microbes Infect 2021; 10:2128-2140. [PMID: 34702148 PMCID: PMC8635547 DOI: 10.1080/22221751.2021.1999177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vibrio vulnificus is a pathogen of public health concern that causes either primary septicemia after ingestion of raw shellfish or secondary septicemia after wound exposure to seawater. In consequence, shellfish and seawater are considered its main reservoirs. However, there is one aspect of its biology that is systematically overlooked: its association with fish in its natural environment. This association led in 1975 to the emergence of a zoonotic clade within phylogenetic lineage 2 following successive outbreaks of vibriosis in farmed eels. Although this clade is now worldwide distributed, no new zoonotic clades were subsequently reported. In this work, we have performed phylogenetic, genomic and functional studies to show that other zoonotic clades are in fact present in 4 of the 5 lineages of the species. Further, we associate these clades, most of them previously but incompletely described, with the acquisition of a family of fish virulence plasmids containing genes essential for resistance to the immune system of certain teleosts of interest in aquaculture. Consequently, our results provide several pieces of evidence about the importance of this species as a zoonotic agent linked to fish farms, as well as on the relevance of these artificial environments acting as drivers that accelerate the evolution of the species.
Collapse
Affiliation(s)
- Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | - Miguel Carda
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| | | | - Neris García-González
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (UV-CSIC), Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (UV-CSIC), Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología, & Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València. Burjassot, Valencia, Spain
| |
Collapse
|
5
|
|
6
|
Gibello A, Vela AI, Martínez-Nevado E, Rodriguez-Bertos A, Casamayor A, García J, Domínguez L, Montoto P, Fernández-Garayzábal JF, Amaro C. Potentially human-virulent Vibrio vulnificus isolates from diseased great pompano (Trachinotus goodei). Transbound Emerg Dis 2019; 66:1765-1770. [PMID: 30927558 DOI: 10.1111/tbed.13190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is an opportunistic human pathogen responsible for the majority of seafood-associated deaths worldwide and is also a relevant fish pathogen for the aquaculture industry. In addition to infections in aquatic livestock, V. vulnificus also represents a risk to aquarium animals. For the first time, this work describes an important mortality outbreak in Trachinotus goodei in a zoo aquarium, with the isolation of Vibrio vulnificus (Vv) from the internal organs of the diseased fish. The isolates were identified by MALDI-TOF MS, serotyped and characterized by pulsed-field gel electrophoresis (PFGE). Although the isolates from great pompanos did not belong to pathovar piscis (formerly biotype 2) or to any of the fish-related serovars, they all had identical phenotypes, antimicrobial susceptibility profiles and PFGE patterns, which together with their isolation in pure culture from internal organs is strongly indicative of their clinical significance. Moreover, Vv isolates harboured important genetic markers of human virulence potential: they had the clinical variant of the vcg gene, gave the 338 bp DNA amplification product of the pilF gene and resisted the bactericidal activity of human serum. All these results strongly suggest that these Vv isolates should be considered potentially virulent for humans. These results extend the range of fish species affected by V. vulnificus, confirm the threat that this pathogen represents to aquatic animals and highlight the risk that this bacterial pathogen poses to human health.
Collapse
Affiliation(s)
- Alicia Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Ana Isabel Vela
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | | | - Antonio Rodriguez-Bertos
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain.,Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Almudena Casamayor
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Javier García
- Zoo Aquarium de Madrid, c/ Casa de Campo s/n, Madrid, Spain
| | - Lucas Domínguez
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Pablo Montoto
- Zoo Aquarium de Madrid, c/ Casa de Campo s/n, Madrid, Spain
| | - Jose Francisco Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Carmen Amaro
- ERI BioTecMed, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Le H, LiHua D, JianJun F, Peng L, SongLin G. Immunogenicity study of an expressed outer membrane protein U of Vibrio vulnificus in Japanese eel (Anguilla japonica). J Appl Microbiol 2018; 125:1642-1654. [PMID: 30106200 DOI: 10.1111/jam.14068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
AIMS Vibrio vulnificus is a common bacterial pathogen causing haemorrhagic septicaemia in eel farming. This study investigates the immunogenicity of an outer membrane protein U (OmpU) of V. vulnificus and the feasibility of the protein as a new subunit vaccine against V. vulnificus. METHODS AND RESULTS Partial gene sequence of the OmpU of V. vulnificus was cloned, and then the OmpU was expressed and purified. Three groups of Japanese eels (Anguilla japonica) were intraperitoneally (i.p) injected with bovine serum albumin (BSA group), formalin-killed whole cell of V. vulnificus (FKC group) or the expressed OmpU of V. vulnificus (OMP group). On 14, 21, 28 and 42 days postimmunization (dpi), the whole blood cells were collected to evaluate the stimulation index (SI) and bactericidal activity. The serum was obtained to assess the titres of specific antibody, lysozyme activity, complement activity and bactericidal activity. The lysozyme activities in the suspension of kidney, skin mucus and liver in eels were also ascertained. The results showed that the SI and the titres of anti-V. vulnificus antibody in the OMP group was significantly increased on 28 dpi; lysozyme activity in the kidney and skin mucus of OMP group on 42 and 14 dpi were both significantly higher than BSA group; eels in OMP group showed strong bactericidal capacity on 21 and 28 days; and the relative percent survival of OMP vs BSA group after challenged by V. vulnificus on 28 dpi was 80%. CONCLUSIONS These results showed that the expressed OmpU of V. vulnificus could significantly improve the immune function of Japanese eel and the resistance of eels to the infection of V. vulnificus. SIGNIFICANCE AND IMPACT OF THE STUDY This study offered an alternative preliminary strategy of making aquaculture vaccines against V. vulnificus for eel farming.
Collapse
Affiliation(s)
- H Le
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - D LiHua
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - F JianJun
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - L Peng
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - G SongLin
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| |
Collapse
|
8
|
Karunasagar I, Maiti B, Kumar BK. Molecular Methods to Study Vibrio parahaemolyticus and Vibrio vulnificus From Atypical Environments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Carda-Diéguez M, Ghai R, Rodríguez-Valera F, Amaro C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. MICROBIOME 2017; 5:162. [PMID: 29268781 PMCID: PMC5740887 DOI: 10.1186/s40168-017-0376-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. RESULTS Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibrio vulnificus and Vibrio cholerae/Vibrio metoecus being the most abundant ones in SMS from estuary and lake, respectively. Functions encoded in the SMS-microbiome differed significantly from those in the W-microbiome and allowed us to predict that successful mucus colonizers should have specific genes for (i) attachment (mainly by forming biofilms), (ii) bacterial competence and communication, and (iii) resistance to mucosal innate immunity, predators (amoeba), and heavy metals/drugs. In addition, we found several mobile genetic elements (mainly integrative conjugative elements) as well as a series of evidences suggesting that bacteria exchange DNA in SMS. Further, we isolated and sequenced a V. metoecus strain from SMS. This isolate shares pathogenicity islands with V. cholerae O1 from intestinal infections that are absent in the rest of sequenced V. metoecus strains, all of them from water and extra-intestinal infections. CONCLUSIONS We have obtained metagenomic and genomic evidence in favor of the hypothesis on the role of fish mucosal surfaces as a specialized habitat selecting microbes capable of colonizing and persisting on other comparable mucosal surfaces, e.g., the human intestine.
Collapse
Affiliation(s)
- Miguel Carda-Diéguez
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Occurrence of Virulence Genes Associated with Human Pathogenic Vibrios Isolated from Two Commercial Dusky Kob (Argyrosmus japonicus) Farms and Kareiga Estuary in the Eastern Cape Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101111. [PMID: 28946684 PMCID: PMC5664612 DOI: 10.3390/ijerph14101111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Background: Seafood-borne Vibrio infections, often linked to contaminated seafood and water, are of increasing global public health concern. The aim of this study was to evaluate the prevalence of human pathogenic vibrios and their associated virulence genes isolated from fish and water samples from 2 commercial dusky kob farms and Kareiga estuary, South Africa. Methods: A total of 200 samples including dusky kob fish (n = 120) and seawater (n = 80) were subjected to Vibrio screening on thiosulfate-citrate-bile salts-sucrose agar (TCBS). Presumptive isolates were confirmed and delineated to V. cholerae, V. parahaemolyticus, V. vulnificus, and V. fluvialis by PCR. Various pathogenic gene markers were screened: V. parahaemolyticus (trh and tdh), V. vulnificus (vcgE and vcgC) and V. fluvialis (stn, vfh,hupO, vfpA). Restriction Fragment Length Polymorphism (RFLP) of the vvhA gene of V. vulnificus strains was performed to determine the associated biotypes. Results: Total Vibrio prevalence was 59.4% (606/1020) of which V. fluvialis was the most predominant 193 (31.85%), followed by Vibrio vulnificus 74 (12.21%) and V. parahaemolyticus 33 (5.45%). No V. cholerae strain was detected. One of the V. parahaemolyticus strains possessed the trh gene 7 (9.46%) while most (91.9%; 68/74) V. vulnificus isolates were of the E-type genotype. V. fluvialis virulence genes detected were stn (13.5%), hupO (10.4%) and vfpA (1.0%). 12.16% (9/74) of V. vulnificus strains exhibited a biotype 3 RFLP pattern. Conclusions: This is the first report of potentially pathogenic vibrios from healthy marine fish in the study area, and therefore a public health concern.
Collapse
|
11
|
Murciano C, Hor LI, Amaro C. Host-pathogen interactions in Vibrio vulnificus: responses of monocytes and vascular endothelial cells to live bacteria. Future Microbiol 2016; 10:471-87. [PMID: 25865188 DOI: 10.2217/fmb.14.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To demonstrate that Vibrio vulnificus, a sepsis-related aquatic pathogen, can provoke a strong pro-inflammatory reaction in blood-associated target cells. MATERIALS & METHODS We selected two strains of the two main phylogenetic lineages, two human cell lines, monocytes and vascular endothelial cells and designed an in vitro infection model simulating early septicemia. RESULTS Both strains caused a strong cell-specific pro-inflammatory response and produced a high degree of cell damage that ended with death by lysis (endothelial cells) or apoptosis/lysis (monocytes). The interaction with endothelial cells was stronger than expected and significantly different for both lineages. CONCLUSION The early interaction with endothelial cells could have a direct role in sepsis and could explain, at least partially, the differences in pathogenicity between both lineages.
Collapse
Affiliation(s)
- Celia Murciano
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED). Department of Microbiology & Ecology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
12
|
Bier N, Jäckel C, Dieckmann R, Brennholt N, Böer SI, Strauch E. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15943-59. [PMID: 26694432 PMCID: PMC4690967 DOI: 10.3390/ijerph121215031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 12/01/2022]
Abstract
Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.
Collapse
Affiliation(s)
- Nadja Bier
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Claudia Jäckel
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Ralf Dieckmann
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| | - Nicole Brennholt
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz D-56068, Germany.
| | - Simone I Böer
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz D-56068, Germany.
| | - Eckhard Strauch
- National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Mollusks, Department of Biological Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin D-10589, Germany.
| |
Collapse
|
13
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
14
|
Haenen OLM, van Zanten E, Jansen R, Roozenburg I, Engelsma MY, Dijkstra A, Boers SA, Voorbergen-Laarman M, Möller AVM. Vibrio vulnificus outbreaks in Dutch eel farms since 1996: strain diversity and impact. DISEASES OF AQUATIC ORGANISMS 2014; 108:201-209. [PMID: 24695233 DOI: 10.3354/dao02703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vibrio vulnificus is a potentially zoonotic bacterial pathogen of fish, which can infect humans (causing necrotic fasciitis). We analysed 24 V. vulnificus isolates (from 23 severe eel disease outbreaks in 8 Dutch eel farms during 1996 to 2009, and 1 clinical strain from an eel farmer) for genetic correlation and zoonotic potential. Strains were typed using biotyping and molecular typing by high-throughput multilocus sequence typing (hiMLST) and REP-PCR (Diversilab®). We identified 19 strains of biotype 1 and 5 of biotype 2 (4 from eels, 1 from the eel farmer), that were subdivided into 8 MLST types (ST) according to the international standard method. This is the first report of V. vulnificus biotype 1 outbreaks in Dutch eel farms. Seven of the 8 STs, of unknown zoonotic potential, were newly identified and were deposited in the MLST database. The REP-PCR and the MLST were highly concordant, indicating that the REP-PCR is a useful alternative for MLST. The strains isolated from the farmer and his eels were ST 112, a known potential zoonotic strain. Antimicrobial resistance to cefoxitin was found in most of the V. vulnificus strains, and an increasing resistance to quinolones, trimethoprim + sulphonamide and tetracycline was found over time in strain ST 140. Virulence testing of isolates from diseased eels is recommended, and medical practitioners should be informed about the potential risk of zoonotic infections by V. vulnificus from eels for the prevention of infection especially among high-risk individuals. Additional use of molecular typing methods such as hiMLST and Diversilab® is recommended for epidemiological purposes during V. vulnificus outbreaks.
Collapse
Affiliation(s)
- O L M Haenen
- National Reference Laboratory of Fish, Crustacean and Shellfish Diseases, Central Veterinary Institute of Wageningen UR, 8200 AB Lelystad, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reynaud Y, Pitchford S, De Decker S, Wikfors GH, Brown CL. Molecular typing of environmental and clinical strains of Vibrio vulnificus isolated in the northeastern USA. PLoS One 2013; 8:e83357. [PMID: 24386187 PMCID: PMC3875459 DOI: 10.1371/journal.pone.0083357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/01/2013] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is a ubiquitous marine bacterium that is responsible for infections and some seafood-related illnesses and deaths in the United States, mainly in individuals with compromised health status in the Gulf of Mexico region. Most phylogenetic studies focus on V. vulnificus strains isolated in the southern United States, but almost no genetic data are available on northeastern bacterial isolates of clinical or environmental origin. Our goal in this study was to examine the genetic diversity of environmental strains isolated from commercially-produced oysters and in clinical strains of known pathogenicity in northeastern United States. We conducted analyses of a total of eighty-three strains of V. vulnificus, including 18 clinical strains known to be pathogenic. A polyphasic, molecular-typing approach was carried out, based upon established biotypes, vcg, CPS, 16S rRNA types and three other genes possibly associated with virulence (arylsulfatase A, mtlABC, and nanA). An established Multi Locus Sequence Typing (MLST) method was also performed. Phylogenetic analyses of these markers and MLST results produced similar patterns of clustering of strains into two main lineages (we categorized as 'LI' and 'LII'), with clinical and environmental strains clustering together in both lineages. Lineage LII was comprised primarily but not entirely of clinical bacterial isolates. Putative virulence markers were present in both clinical and environmental strains. These results suggest that some northeastern environmental strains of V. vulnificus are phylogenetically close to clinical strains and probably are capable of virulence. Further studies are necessary to assess the risk of human illness from consuming raw oysters harvested in the northeastern US.
Collapse
Affiliation(s)
- Yann Reynaud
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Steven Pitchford
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Sophie De Decker
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Gary H. Wikfors
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
| | - Christopher L. Brown
- NOAA (National Oceanic and Atmospheric Administration), NEFSC (Northeast Fisheries Science Center), Milford Laboratory, Milford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
Prevalence and population structure of Vibrio vulnificus on fishes from the northern Gulf of Mexico. Appl Environ Microbiol 2012; 78:7611-8. [PMID: 22923394 DOI: 10.1128/aem.01646-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prevalence of Vibrio vulnificus on the external surfaces of fish from the northern Gulf of Mexico was determined in this study. A collection of 242 fish comprising 28 species was analyzed during the course of 12 sampling trips over a 16-month period. The prevalence of V. vulnificus was 37% but increased up to 69% in summer. A positive correlation was found between the percentages of V. vulnificus-positive fish and water temperatures, while salinity and V. vulnificus-positive fish prevalence were inversely correlated. A general lineal model (percent V. vulnificus-positive fish = 0.5930 - 0.02818 × salinity + 0.01406 × water temperature) was applied to best fit the data. Analysis of the population structure was carried out using 244 isolates recovered from fish. Ascription to 16S rRNA gene types indicated that 157 isolates were type A (62%), 72 (29%) were type B, and 22 (9%) were type AB. The percentage of type B isolates, considered to have greater virulence potential, was higher than that previously reported in oyster samples from the northern Gulf of Mexico. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within the species. One hundred twenty-one unique AFLP profiles were found among all analyzed isolates, resulting in a calculated Simpson's index of diversity of 0.991. AFLP profiles were not grouped on the basis of collection date, fish species, temperature, or salinity, but isolates were clustered into two main groups that correlated precisely with 16S rRNA gene type. The population of V. vulnificus associated with fishes from the northern Gulf of Mexico is heterogeneous and includes strains of great virulence potential.
Collapse
|
17
|
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl Environ Microbiol 2012; 78:3407-15. [PMID: 22344665 DOI: 10.1128/aem.07395-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Collapse
|
18
|
pilF Polymorphism-based PCR to distinguish vibrio vulnificus strains potentially dangerous to public health. Appl Environ Microbiol 2009; 76:1328-33. [PMID: 20038687 DOI: 10.1128/aem.01042-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a heterogeneous species that comprises strains virulent and avirulent for humans and fish, and it is grouped into three biotypes. In this report, we describe a PCR-based methodology that allows both the species identification and discrimination of those isolates that could be considered dangerous to public health. Discrimination is based on the amplification of a variable region located within the gene pilF, which seems to be associated with potential human pathogenicity, regardless of the biotype of the strain.
Collapse
|
19
|
Evaluation of genotypic and phenotypic methods to distinguish clinical from environmental Vibrio vulnificus strains. Appl Environ Microbiol 2009; 75:1604-13. [PMID: 19139234 DOI: 10.1128/aem.01594-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a heterogeneous bacterial species that comprises virulent and avirulent strains from environmental and clinical sources that have been grouped into three biotypes. To validate the typing methods proposed to distinguish clinical from environmental isolates, we performed phenotypic (API 20E, API 20NE, and BIOLOG tests) and genetic (ribotyping and DNA polymorphism at several loci) studies with a large strain collection representing different biotypes, origins, and host ranges. No phenotypic method was useful for biotyping or grouping strains with regard to the origin of an isolate, and only the BIOLOG system was reliable for identifying the strains at the species level. DNA polymorphisms divided the population into three major profiles. Profile 1 strains were vcg type C, 16S rRNA type B, and vvh type 1 and included most of the biotype 1 human septicemic isolates; profile 2 strains were vcg type E, 16S rRNA type A, and vvh type 2 and included all biotype 2 isolates together with biotype 1 isolates from fish and water and some human isolates; and profile 3 strains were vcg type E, 16S rRNA type AB, and vvh type 2 and included biotype 3 strains. Ribotyping divided the species into two groups: one group that included profile 1 biotype 1 isolates and one group that included isolates of all three biotypes with the three profiles described above. In conclusion, no genotyping system was able to distinguish either clinical strains from environmental strains or biogroups within the species V. vulnificus, which suggests that new typing methodologies useful for public health have to be developed for this species.
Collapse
|
20
|
Valiente E, Padrós F, Lamas J, Llorens A, Amaro C. Microbial and histopathological study of the vibriosis caused by Vibrio vulnificus serovar E in eels: The metalloprotease Vvp is not an essential lesional factor. Microb Pathog 2008; 45:386-93. [DOI: 10.1016/j.micpath.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/12/2008] [Indexed: 01/22/2023]
|
21
|
Vibrio vulnificus biotype 2 serovar E gne but not galE is essential for lipopolysaccharide biosynthesis and virulence. Infect Immun 2008; 76:1628-38. [PMID: 18227162 DOI: 10.1128/iai.01393-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aimed to establish the role of gne (encoding UDP-GalNAc 4-epimerase activity) and galE (encoding UDP-Gal-4-epimerase activity) in the biosynthesis of surface polysaccharides, as well as in the virulence for eels and humans of the zoonotic serovar of Vibrio vulnificus biotype 2, serovar E. DNA sequence data revealed that gne and galE are quite homologous within this species (> or =90% homology). Mutation in gne of strain CECT4999 increased the surface hydrophobicity, produced deep alterations in the outer membrane architecture, and resulted in noticeable increases in the sensitivity to microcidal peptides (MP), to eel and human sera, and to phagocytosis/opsonophagocytosis. Furthermore, significant attenuation of virulence for eels and mice was observed. By contrast, mutation in galE did not alter the cellular surface, did not increase the sensitivity to MP, serum, or phagocytosis, and did not affect the virulence for fish and mice. The change in the attenuated-virulence phenotype produced by a mutation in gne was correlated with the loss of the O-antigen lipopolysaccharide (LPS), while the capsule was maintained. Complementation of a gne-deficient mutant restored the LPS structure together with the whole virulence phenotype. In conclusion, gne, but not galE, is essential for LPS biosynthesis and virulence in the zoonotic serovar of V. vulnificus biotype 2.
Collapse
|