1
|
Abdelaziz MNS, Maung AT, El-Telbany M, Lwin SZC, Noor Mohammadi T, Zayda M, Wang C, Damaso CH, Lin Y, Masuda Y, Honjoh KI, Miyamoto T. Applications of bacteriophage in combination with nisin for controlling multidrug-resistant Bacillus cereus in broth and various food matrices. Food Res Int 2024; 191:114685. [PMID: 39059942 DOI: 10.1016/j.foodres.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.
Collapse
Affiliation(s)
- Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Food Hygiene, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya 32897, Egypt
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
3
|
Li Y, Luo L, Wang W, Hong B, Ma Y, Wang J. Characterization of a cell wall hydrolase with high activity against vegetative cells, spores and biofilm of Bacillus cereus. Int J Food Microbiol 2024; 414:110617. [PMID: 38335884 DOI: 10.1016/j.ijfoodmicro.2024.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bacillus cereus is a prevalent foodborne pathogen that induces food poisoning symptoms such as vomiting and diarrhea. Its capacity to form spores and biofilm enables it to withstand disinfectants and antimicrobials, leading to persistent contamination during food processing. Consequently, it is necessary to develop novel and efficient antimicrobial agents to control B. cereus, its spores, and biofilms. Peptidoglycan hydrolases have emerged as a promising and eco-friendly alternative owing to their specific lytic activity against pathogenic bacteria. Here, we identified and characterized a Lysozyme-like cell wall hydrolase Lys14579, from the genome of B. cereus ATCC 14579. Recombinant Lys14579 specifically lysed B. cereus without affecting other bacteria. Lys14579 exhibited strong lytic activity against B. cereus, effectively lysing B. cereus cell within 20 min at low concentration (10 μg/mL). It also inhibited the germination of B. cereus spores and prevented biofilm formation at 12.5 μg/mL. Moreover, Lys14579 displayed good antimicrobial stability with negligible hemolysis in mouse red blood cells and no cytotoxicity against RAW264.7 cells. Notably, Lys14579 effectively inhibited B. cereus in boiled rice and minced meat in a dose-dependent manner. Furthermore, bioinformatics analysis and point mutagenesis experiments revealed that Glu-47 was the catalytic site, and Asp-57, Gln-60, Ser-61 and Glu-63 were active-site residues related with the cell wall lytic activity. Taken together, Lys14579 could be a promising biocontrol agent against vegetative cells, spores, and biofilm of B. cereus in food industry.
Collapse
Affiliation(s)
- Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Golosova NN, Khlusevich YA, Morozova VV, Matveev AL, Kozlova YN, Tikunov AY, Panina EA, Tikunova NV. Characterization of a Thermostable Endolysin of the Aeribacillus Phage AeriP45 as a Potential Staphylococcus Biofilm-Removing Agent. Viruses 2024; 16:93. [PMID: 38257793 PMCID: PMC10819204 DOI: 10.3390/v16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (V.V.M.); (A.L.M.); (Y.N.K.); (A.Y.T.); (E.A.P.)
| |
Collapse
|
5
|
Kazantseva OA, Skorynina AV, Piligrimova EG, Ryabova NA, Shadrin AM. A Genomic Analysis of the Bacillus Bacteriophage Kirovirus kirovense Kirov and Its Ability to Preserve Milk. Int J Mol Sci 2023; 24:12584. [PMID: 37628765 PMCID: PMC10454425 DOI: 10.3390/ijms241612584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Anna V. Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Emma G. Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Natalya A. Ryabova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
- Institute of Protein Research RAS, Institutskaya St., 4, 142290 Pushchino, Russia
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| |
Collapse
|
6
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
A Broad-Spectrum Phage Endolysin (LysCP28) Able to Remove Biofilms and Inactivate Clostridium perfringens Strains. Foods 2023; 12:foods12020411. [PMID: 36673503 PMCID: PMC9858456 DOI: 10.3390/foods12020411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterium capable of producing four major toxins which cause disease symptoms and pathogenesis in humans and animals. C. perfringens strains carrying enterotoxins can cause food poisoning in humans and are associated with meat consumption. An endolysin, named LysCP28, is encoded by orf28 from C. perfringens bacteriophage BG3P. This protein has an N-terminal glycosyl-hydrolase domain (lysozyme) and a C-terminal SH3 domain. Purified LysCP28 (38.8 kDa) exhibited a broad spectrum of lytic activity against C. perfringens strains (77 of 96 or 80.21%), including A, B, C, and D types, isolated from different sources. Moreover, LysCP28 (10 μg/mL) showed high antimicrobial activity and was able to lyse 2 × 107 CFU/mL C. perfringens ATCC 13124 and C. perfringens J21 (animal origin) within 2 h. Necessary due to this pathogenic bacterium's ability to form biofilms, LysCP28 (18.7 μg/mL) was successfully evaluated as an antibiofilm agent in both biofilm removal and formation inhibition. Finally, to confirm the efficacy of LysCP28 in a food matrix, duck meat was contaminated with C. perfringens and treated with endolysin (100 µg/mL and 50 µg/mL), which reduced viable bacteria by 3.2 and 3.08 units-log, respectively, in 48 h at 4 °C. Overall, the endolysin LysCP28 could potentially be used as a biopreservative to reduce C. perfringens contamination during food processing.
Collapse
|
8
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
9
|
Complete Genome Sequence of Levilactobacillus brevis Bacteriophage ENFP1. Microbiol Resour Announc 2022; 11:e0020322. [PMID: 35678578 PMCID: PMC9302086 DOI: 10.1128/mra.00203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the complete genome sequence of bacteriophage ENFP1, which infects
Levilactobacillus brevis
; it has a capsid width of 83 nm and a tail length of 144 nm. The 138.6-kb genome, containing 190 predicted protein-coding genes, is similar (88.03% nucleotide sequence identity) to that of
L. brevis
phage 521B.
Collapse
|
10
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
11
|
Getting Outside the Cell: Versatile Holin Strategies Used by Distinct Phages to Leave Their Bacillus thuringiensis Host. J Virol 2022; 96:e0069622. [PMID: 35758660 PMCID: PMC9327680 DOI: 10.1128/jvi.00696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Holins are small transmembrane proteins involved in the final stage of the lytic cycle of double-stranded DNA (dsDNA) phages. They cooperate with endolysins to achieve bacterial lysis, thereby releasing the phage progeny into the extracellular environment. Besides their role as membrane permeabilizers, allowing endolysin transfer and/or activation, holins also regulate the lysis timing. In this work, we provide functional characterization of the holins encoded by three phages targeting the Bacillus cereus group. The siphovirus Deep-Purple has a lysis cassette in which holP30 and holP33 encode two proteins displaying holin properties, including a transmembrane domain. The holin genes were expressed in Escherichia coli and induced bacterial lysis, with HolP30 being more toxic than HolP33. In Bacillus thuringiensis, the simultaneous expression of both holins was necessary to observe lysis, suggesting that they may interact to form functional pores. The myoviruses Deep-Blue and Vp4 both encode a single candidate holin (HolB and HolV, respectively) with two transmembrane domains, whose genes are not located near the endolysin genes. Their function as holin proteins was confirmed as their expression in E. coli impaired cell growth and viability. The HolV expression in B. thuringiensis also led to bacterial lysis, which was enhanced by coexpressing the holin with its cognate endolysin. Despite similar organizations and predicted topologies, truncated mutants of the HolB and HolV proteins showed different toxicity levels, suggesting that differences in amino acid composition influence their lysis properties. IMPORTANCE The phage life cycle ends with the host cell lysis, thereby releasing new virions into the environment for the next round of bacterial infection. Nowadays, there is renewed interest in phages as biocontrol agents, primarily due to their ability to cause bacterial death through lysis. While endolysins, which mediate peptidoglycan degradation, have been fairly well described, the pore-forming proteins, referred to as holins, have been extensively characterized in only a few model phages, mainly infecting Gram-negative bacteria. In this work, we characterized the holins encoded by a siphovirus and two myoviruses targeting members of the Gram-positive Bacillus cereus group, which comprises closely related species, including the well-known Bacillus anthracis, B. cereus sensu stricto, and Bacillus thuringiensis. Overall, this paper provides the first experimental characterization of holins encoded by B. cereus phages and reveals versatile lysis mechanisms used by these phages.
Collapse
|
12
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
A novel Bacillus cereus bacteriophage DLn1 and its endolysin as biocontrol agents against Bacillus cereus in milk. Int J Food Microbiol 2022; 369:109615. [DOI: 10.1016/j.ijfoodmicro.2022.109615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022]
|
14
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
15
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
16
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
17
|
Wan X, Geng P, Sun J, Yuan Z, Hu X. Characterization of two newly isolated bacteriophages PW2 and PW4 and derived endolysins with lysis activity against Bacillus cereus group strains. Virus Res 2021; 302:198489. [PMID: 34146612 DOI: 10.1016/j.virusres.2021.198489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
This study characterized two novel Siphoviridae phages, PW2 and PW4, that can infect 52% and 44% of the tested Bacillus cereus group isolates and display relatively high activity against four cereulide-producing isolates belonging to B. weihenstephanensis and B. paranthracis. The genome sequences of PW2 and PW4 are similar to six known phages infecting B. cereus group isolates, which can be classified into two conserved groups, with the PW2 genome harboring conserved coding sequences (CDSs) from both groups. Two phage-derived endolysins, LysPW2 and LysPW4, which are predicted to encode N-acetylmuramoyl-L-alanine amidase, and their enzymatically active domains (EADs), LysPW2-EAD and LysPW4-EAD, were heterologously expressed. Both LysPW2 and LysPW4, especially the former, show a much wider host range than the phages, albeit still limited to the B. cereus group for the tested bacteria. The optimal temperature and pH for LysPW2 ability is 37 °C and pH 8.0 and for LysPW4 is 50 °C and pH 9.0. Neither LysPW2-EAD nor LysPW4-EAD show any lytic activity against vegetative cells of the tested B. cereus group isolates but can inhibit germination in 66.3% and 65.7% of spores, respectively. In addition, both LysPW2-EAD and LysPW4-EAD exhibit spore-binding capabilities.
Collapse
Affiliation(s)
- Xiaofu Wan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China; College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Peiling Geng
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiahui Sun
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
18
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
19
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
20
|
Zhang Z, Lahti M, Douillard FP, Korkeala H, Lindström M. Phage lysin that specifically eliminates Clostridium botulinum Group I cells. Sci Rep 2020; 10:21571. [PMID: 33299101 PMCID: PMC7725837 DOI: 10.1038/s41598-020-78622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum poses a serious threat to food safety and public health by producing potent neurotoxin during its vegetative growth and causing life-threatening neuroparalysis, botulism. While high temperature can be utilized to eliminate C. botulinum spores and the neurotoxin, non-thermal elimination of newly germinated C. botulinum cells before onset of toxin production could provide an alternative or additional factor controlling the risk of botulism in some applications. Here we introduce a putative phage lysin that specifically lyses vegetative C. botulinum Group I cells. This lysin, called CBO1751, efficiently kills cells of C. botulinum Group I strains at the concentration of 5 µM, but shows little or no lytic activity against C. botulinum Group II or III or other Firmicutes strains. CBO1751 is active at pH from 6.5 to 10.5. The lytic activity of CBO1751 is tolerant to NaCl (200 mM), but highly susceptible to divalent cations Ca2+ and Mg2+ (50 mM). CBO1751 readily and effectively eliminates C. botulinum during spore germination, an early stage preceding vegetative growth and neurotoxin production. This is the first report of an antimicrobial lysin against C. botulinum, presenting high potential for developing a novel antibotulinal agent for non-thermal applications in food and agricultural industries.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Meeri Lahti
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Skorynina AV, Piligrimova EG, Kazantseva OA, Kulyabin VA, Baicher SD, Ryabova NA, Shadrin AM. Bacillus-infecting bacteriophage Izhevsk harbors thermostable endolysin with broad range specificity. PLoS One 2020; 15:e0242657. [PMID: 33232350 PMCID: PMC7685451 DOI: 10.1371/journal.pone.0242657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Several bacterial species belonging to the Bacillus cereus group are known to be causative agents of food poisoning and severe human diseases. Bacteriophages and their lytic enzymes called endolysins have been widely shown to provide for a supplemental or primary means of treating bacterial infections. In this work we present a new broad-host-range phage Izhevsk, which infects the members of the Bacillus cereus group. Transmission electron microscopy, genome sequencing and comparative analyses revealed that Izhevsk is a temperate phage with Siphoviridae morphology and belongs to the same genus as the previously described but taxonomically unclassified bacteriophages Tsamsa and Diildio. The Ply57 endolysin of Izhevsk phage has broad-spectrum activity against B. cereus sensu lato. The thermolability of Ply57 is higher than that of the PlyG of Wβ phage. This work contributes to our current understanding of phage biodiversity and may be useful for further development of efficient antimicrobials aimed at diagnosing and treating infectious diseases and food contaminations caused by the Bacillus cereus group of bacteria.
Collapse
Affiliation(s)
- Anna V. Skorynina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Emma G. Piligrimova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Olesya A. Kazantseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Vladislav A. Kulyabin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Svetlana D. Baicher
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | | | - Andrey M. Shadrin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
- * E-mail: ,
| |
Collapse
|
22
|
Leprince A, Nuytten M, Gillis A, Mahillon J. Characterization of PlyB221 and PlyP32, Two Novel Endolysins Encoded by Phages Preying on the Bacillus cereus Group. Viruses 2020; 12:E1052. [PMID: 32967292 PMCID: PMC7551664 DOI: 10.3390/v12091052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Endolysins are phage-encoded enzymes implicated in the breaching of the bacterial cell wall at the end of the viral cycle. This study focuses on the endolysins of Deep-Blue (PlyB221) and Deep-Purple (PlyP32), two phages preying on the Bacillus cereus group. Both enzymes exhibit a typical modular organization with an enzymatically active domain (EAD) located in the N-terminal and a cell wall binding domain (CBD) in the C-terminal part of the protein. In silico analysis indicated that the EAD domains of PlyB221 and PlyP32 are endowed with peptidase and muramidase activities, respectively, whereas in both proteins SH3 domains are involved in the CBD. To evaluate their antimicrobial properties and binding specificity, both endolysins were expressed and purified. PlyB221 and PlyP32 efficiently recognized and lysed all the tested strains from the B. cereus group. Biochemical characterization showed that PlyB221 activity was stable under a wide range of pHs (5-9), NaCl concentrations (up to 200 mM), and temperature treatments (up to 50 °C). Although PlyP32 activity was less stable than that of PlyB221, the endolysin displayed high activity at pH 6-7, NaCl concentration up to 100 mM and the temperature treatment up to 45 °C. Overall, PlyB221 and PlyP32 display suitable characteristics for the development of biocontrol and detection tools.
Collapse
Affiliation(s)
- Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (M.N.); (A.G.)
| | - Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (M.N.); (A.G.)
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (M.N.); (A.G.)
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London WC2N 5DU, UK
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (M.N.); (A.G.)
| |
Collapse
|
23
|
Jończyk-Matysiak E, Popiela E, Owczarek B, Hodyra-Stefaniak K, Świtała-Jeleń K, Łodej N, Kula D, Neuberg J, Migdał P, Bagińska N, Orwat F, Weber-Dąbrowska B, Roman A, Górski A. Phages in Therapy and Prophylaxis of American Foulbrood - Recent Implications From Practical Applications. Front Microbiol 2020; 11:1913. [PMID: 32849478 PMCID: PMC7432437 DOI: 10.3389/fmicb.2020.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|