1
|
Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 2023; 174:104079. [PMID: 37169232 DOI: 10.1016/j.resmic.2023.104079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Myxobacteria are Gram-negative eubacteria and they thrive in a variety of habitats including soil rich in organic matter, rotting wood, animal dung and marine environment. Myxobacteria are a promising source of new compounds associated with diverse bioactive spectrum and unique mode of action. The genome information of myxobacteria has revealed many orphan biosynthetic pathways indicating that these bacteria can be the source of several novel natural products. In this review, we highlight the biology of myxobacteria with emphasis on their habitat, life cycle, isolation methods and enlist all the bioactive secondary metabolites purified till date and their mode of action.
Collapse
Affiliation(s)
- Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, India - 144004.
| | - Amar Nath
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| | - Shiv Kumar
- Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| |
Collapse
|
2
|
Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov., isolated from paddy soils. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three bacterial strains (Red232T, Red267T and Red630T) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of
Anaeromyxobacter
species, independent from any other strain genera. Similarity values of the 16S rRNA gene sequences and genomes among the three isolated strains and the type strain of
Anaeromyxobacter
,
Anaeromyxobacter dehalogenans
2CP-1T, were 95.4–97.4% for 16S rRNA gene sequence, 75.3–79.5% for average nucleotide identity, 19.6–21.7% for digital DNA–DNA hybridization and 64.1–72.6% for average amino acid identity, all of which are below the species delineation thresholds. Nitrogenase genes were observed in the genomes of the three novel strains, but not in
A. dehalogenans
2CP-1T. Moreover, multiple genomic, physiological and chemotaxonomic features supported the discrimination between these three strains. Based on the evidence in this study, the three isolates represent three novel independent species for which the following names are proposed: Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov. The type strains are Red232T (=NBRC 114074T=MCCC 1K03954T), Red267T (=NBRC 114075T=MCCC 1K04211T), and Red630T (=NBRC 114076T=MCCC 1K03957T), respectively.
Collapse
|
3
|
Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp. MINERALS 2021. [DOI: 10.3390/min11090967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacillus sp. is widely used in the remediation of uranium-contaminated sites. However, little is known about the competitive process of microbial community in the environment during bioremediation. The bioremediation of uranium tailings using Bacillus sp. was explored, and the bacterial community was analyzed by high-throughput sequencing at different stages of remediation. Bacillus sp. reduced the leaching of uranium from uranium tailings. The lowest uranium concentration was 17.25 μg/L. Alpha diversity revealed that the abundance and diversity of microorganisms increased with the extension of the culture time. The microbial abundance and diversity were higher in the treatment group than in the control group. The dominant species at the phyla level were Firmicutes and Proteobacteria in the uranium tailings environment, whereas the phylum of Proteobacteria was significantly increased in the treatment group. Based on the genus level, the proportions of Arthrobacter, Rhodococcus and Paenarthrobacter decreased significantly, whereas those of Clostridium sp., Bacillus and Pseudomonas increased dramatically. Hence, the remediation of uranium contamination in the environment was due to the functional microorganisms, which gradually became the dominant strain in the treatment, such as Desulfotomaculum, Desulfosporporosinus, Anaerocolumna, Ruminiclostridium and Burkholderia. These findings provided a promising outlook of the potential for remediation strategies of soil contaminated by uranium. The dynamic characteristics of the microbial community are likely to provide a foundation for the bioremediation process in practice.
Collapse
|
4
|
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT. Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study. Pharmaceutics 2021; 13:1265. [PMID: 34452226 PMCID: PMC8401837 DOI: 10.3390/pharmaceutics13081265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | | | - Mujtaba Aamir Bhat
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Mohammad Iqbal Banday
- Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Ommer Bashir
- Department of School Education, Jammu 181205, Jammu and Kashmir, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Arif Tasleem Jan
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
5
|
Abstract
Bacteria are globally distributed in various environments on earth, but a global view of the geographic diversity and distribution of a single taxon is lacking. The Earth Microbiome Project (EMP) has established a global collection of microbial communities, providing the possibility for such a survey. Myxococcales is a bacterial order with a potent ability to produce diverse natural products and have wide application potential in agriculture, biomedicine, and environmental protection. In this study, through a comparative analysis of the EMP data and public information, we determined that myxobacteria account for 2.34% of the total bacterial operational taxonomic units (OTUs), and are one of the most diverse bacterial groups on Earth. Myxococcales OTUs are globally distributed and prefer nonsaline soil and sediments, followed by saline environments, but rarely appear in host-associated environments. Myxobacteria are among the least-investigated bacterial groups. The presently cultured and genome-sequenced myxobacteria are most likely environmentally widespread and abundant taxa, and account for approximately 10% and 7% of the myxobacterial community (>97% similarity), respectively. This global panoramic view of the geographic distribution and diversity of myxobacteria, as well as their cultured and genome-sequenced information, will enable us to explore these important bioresources more reasonably and efficiently. The diversity and distribution of myxobacteria beyond the EMP data are further discussed. IMPORTANCE The diversity and distribution of bacteria are crucial for our understanding of their ecological importance and application potential. Myxobacteria are fascinating prokaryotes with multicellular behaviors and a potent capacity for producing secondary metabolites, and have a wide range of potential applications. The ecological importance of myxobacteria in major ecosystems is becoming established, but the global geographic diversity and distribution remain unclear. From a global survey we revealed that Myxococcales OTUs are globally distributed and prefer nonsaline soil and sediments, followed by saline environments, but rarely appear in host-associated environments. The global panoramic view of the geographic distribution and diversity of myxobacteria, as well as their cultured and genome-sequenced information, will enable us to explore these important bioresources more reasonably and efficiently.
Collapse
|
6
|
Zheng XJ, Bacha RUS, Su DM, Pan QJ. Relativistic DFT Probe for Reaction Energies and Electronic/Bonding Properties of Polypyrrolic Hetero-Bimetallic Actinide Complexes: Effects of Uranyl endo-Oxo Functionalization. Inorg Chem 2021; 60:5747-5756. [PMID: 33826313 DOI: 10.1021/acs.inorgchem.1c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of hetero-bimetallic actinide complexes of the Schiff-base polypyrrolic macrocycle (L), featuring cation-cation interactions (CCIs), were systematically investigated using relativistic density functional theory (DFT). The tetrahydrofuran (THF) solvated complex [(THF)(OUVIOUIV)(THF)(L)]2+ has high reaction free energy (ΔrG), and its replacement with electron-donating iodine promotes the reaction thermodynamics to obtain uranyl iodide [(I)(OUVIOUIV)(I)(L)]2+ (UVI-UIV). Retaining this coordination geometry, calculations have been extended to other An(IV) (An = Th, Pa, Np, Pu), i.e., for the substitution of U(IV) to obtain UVI-AnIV. As a consequence, the reaction free energy is appreciably lowered, suggesting the thermodynamic feasibility for the experimental synthesis of these bimetallic complexes. Among all UVI-AnIV, the electron-spin density and high-lying occupied orbitals of UVI-PaIV show a large extent of electron transfer from electron-rich Pa(IV) to electron-deficient U(VI), leading to a more stable UV-PaV oxidation state. Additionally, the shortest bond distance and the comparatively negative Eint of the Pa-Oendo bond suggest more positive and negative charges (Q) of Pa and endo-oxo atoms, respectively. As a result of the enhanced Pa-Oendo bond and strong CCI in UVI-PaIV along with the corresponding lowest reaction free energy among all of the optimized complexes, uranyl species is a better candidate for the experimental synthesis in the ultimate context of environmental remediation.
Collapse
Affiliation(s)
- Xiu-Jun Zheng
- Institute of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dong-Mei Su
- State-Owned Assets Management Division, Harbin University, Harbin 150086, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
7
|
Mtimunye PJ, Chirwa EM. Uranium (VI) reduction in a fixed-film reactor by a bacterial consortium isolated from uranium mining tailing heaps. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, Melo IS, Oliveira VM. Land Use and Seasonal Effects on the Soil Microbiome of a Brazilian Dry Forest. Front Microbiol 2019; 10:648. [PMID: 31024471 PMCID: PMC6461016 DOI: 10.3389/fmicb.2019.00648] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Drylands occupy approximately 41% of the Earth's terrestrial surface. Climate change and land use practices are expected to affect biogeochemical cycling by the soil microbiome in these ecosystems. Understanding how soil microbial community might respond to these drivers is extremely important to mitigate the processes of land degradation and desertification. The Caatinga, an exclusively Brazilian biome composed of an extensive seasonal tropical dry forest, is exposed to variable spatiotemporal rainfall patterns as well as strong human-driven pressures. Herein, an integrated analysis of shotgun metagenomics approach coupled to meteorological data was employed to unravel the impact of seasonality and land use change on soil microbiome from preserved and agriculture-affected experimental fields in Caatinga drylands. Multivariate analysis suggested that microbial communities of preserved soils under seasonal changes were shaped primarily by water deficit, with a strong increase of Actinobacteria and Proteobacteria members in the dry and rainy seasons, respectively. In contrast, nutrient availability notably played a critical role in driving the microbial community in agriculture-affected soils. The strong enrichment of bacterial genera belonging to the poorly-known phylum Acidobacteria ('Candidatus Solibacter' and 'Candidatus Koribacter') in soils from dry season affected by ferti-irrigation practices presupposes a contrasting copiotrophic lifestyle and ecological role in mitigating the impact of chemical fertilization. Functional analyses identify overrepresented genes related to osmotic stress response (synthesis of osmoprotectant compounds, accumulation of potassium ions) and preferential carbon and nitrogen utilization when comparing the microbiome of preserved soils under seasonal changes, reflecting differences in the genetic potential for nutrient cycling and C acquisition in the environment. However, the prevalence of nitrosative stress and denitrification functions in irrigation/fertilization-affected soils of the dry season clearly suggest that nutrient input and disruption of natural water regime may impact biogeochemical cycles linked to the microbial processes, with potential impacts on the ecosystem functionality. These findings help to better understand how natural seasonality and agricultural management differentially affect soil microbial ecology from dry forests, providing support for the development of more sustainable land management in dryland ecosystems.
Collapse
Affiliation(s)
- Gileno V. Lacerda-Júnior
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
| | - Melline F. Noronha
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
| | - Lucélia Cabral
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tiago P. Delforno
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
| | - Sanderson Tarciso Pereira de Sousa
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
| | | | - Itamar S. Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Valéria M. Oliveira
- Division of Microbial Resources (DRM), Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Mohr KI. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 2018; 6:E84. [PMID: 30103481 PMCID: PMC6164225 DOI: 10.3390/microorganisms6030084] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of new antibiotics is mandatory with regard to the increasing number of resistant pathogens. One approach is the search for new antibiotic producers in nature. Among actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive secondary metabolites for decades. To date, about 600 substances could be described, many of them with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured myxobacteria is much higher than would be expected from the number of cultivated strains. Although several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate Count Anomaly must be overcome to get broader access to new secondary metabolite producers. In the last years it turned out that especially new species, genera, and families of myxobacteria are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto uncultivable ones is our biggest challenge.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany.
| |
Collapse
|
10
|
Azam M, Al-Resayes SI, Alam M, Albaqami NTM, Park S, Trzesowska-Kruszynska A, Kruszynski R. Synthesis and structural characterization of a dimethylformamide bound dioxouranium(VI) salen based complex with propylene linkage. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jeazet HBT, Gloe K, Doert T, Mizera J, Kataeva ON, Tsushima S, Bernhard G, Weigand JJ, Lindoy LF, Gloe K. Uranyl(VI) binding by bis(2-hydroxyaryl)diimine and bis(2-hydroxyaryl)diamine ligand derivatives. Synthetic, X-ray, DFT and solvent extraction studies. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Zubcevic L, Wang S, Bavro VN, Lee SJ, Nichols CG, Tucker SJ. Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic 'Inward Rectifier' (NirBac) channels. Sci Rep 2015; 5:15305. [PMID: 26470642 PMCID: PMC4607889 DOI: 10.1038/srep15305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022] Open
Abstract
Potassium channels exhibit a modular design with distinct structural and functional domains; in particular, a highly conserved pore-loop sequence that determines their ionic selectivity. We now report the functional characterisation of a novel group of functionally non-selective members of the prokaryotic 'inward rectifier' subfamily of K(+) channels. These channels share all the key structural domains of eukaryotic and prokaryotic Kir/KirBac channels, but instead possess unique pore-loop selectivity filter sequences unrelated to any other known ionic selectivity filter. The strikingly unusual architecture of these 'NirBac' channels defines a new family of functionally non-selective ion channels, and also provides important insights into the modular design of ion channels, as well as the evolution of ionic selectivity within this superfamily of tetrameric cation channels.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Shizhen Wang
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Vassiliy N. Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Sun-Joo Lee
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Colin G. Nichols
- Washington University St. Louis, School Of Medicine, Centre for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, MO, USA
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00472-15. [PMID: 25977440 PMCID: PMC4432346 DOI: 10.1128/genomea.00472-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified.
Collapse
|
14
|
Yao J, Zheng XJ, Pan QJ, Schreckenbach G. Highly Valence-Diversified Binuclear Uranium Complexes of a Schiff-Base Polypyrrolic Macrocycle: Prediction of Unusual Structures, Electronic Properties, and Formation Reactions. Inorg Chem 2015; 54:5438-49. [DOI: 10.1021/acs.inorgchem.5b00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Yao
- Key Laboratory of
Functional Inorganic Material Chemistry of Education Ministry, School
of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiu-Jun Zheng
- Key Laboratory of
Functional Inorganic Material Chemistry of Education Ministry, School
of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Qing-Jiang Pan
- Key Laboratory of
Functional Inorganic Material Chemistry of Education Ministry, School
of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
15
|
Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. Appl Environ Microbiol 2015; 81:4164-72. [PMID: 25862231 DOI: 10.1128/aem.00043-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022] Open
Abstract
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.
Collapse
|
16
|
Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01449-14. [PMID: 25614562 PMCID: PMC4319575 DOI: 10.1128/genomea.01449-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
Collapse
|
17
|
Cápiro NL, Wang Y, Hatt JK, Lebrón CA, Pennell KD, Löffler FE. Distribution of organohalide-respiring bacteria between solid and aqueous phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10878-87. [PMID: 25105899 DOI: 10.1021/es501320h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Contemporary microbial monitoring of aquifers relies on groundwater samples to enumerate nonattached cells of interest. One-dimensional column studies quantified the distribution of bacterial cells in solid and the aqueous phases as a function of microbial species, growth substrate availability and porous medium (i.e., Appling soil versus Federal Fine Ottawa sand with 0.75% and 0.01% [w/w] organic carbon, respectively). Without supplied growth substrates, effluent from columns inoculated with the tetrachloroethene- (PCE-) to-ethene-dechlorinating bacterial consortium BDI-SZ containing Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ), or inoculated with Anaeromyxobacter dehalogenans strain W (AdehalW), captured 94-96, 81-99, and 73-84% of the Dhc, GeoSZ, and AdehalW cells, respectively. Cell retention was organism-specific and increased in the order Dhc < GeoSZ < AdehalW. When amended with 10 mM lactate and 0.11 mM PCE, aqueous samples accounted for 1.3-27 and 0.02-22% of the total Dhc and GeoSZ biomass, respectively. In Appling soil, up to three orders-of-magnitude more cells were associated with the solid phase, and attachment rate coefficients (katt) were consistently greater compared to Federal Fine sand. Cell-solid interaction energies ranged from -2.5 to 787 kT and were consistent with organism-specific deposition behavior, where GeoSZ and AdehalW exhibited greater attachment than Dhc cells. The observed disparities in microbial cell distributions between the aqueous and solid phases imply that groundwater analysis can underestimate the total cell abundance in the aquifer by orders-of-magnitude under conditions of growth and in porous media with elevated organic carbon content. The implications of these findings for monitoring chlorinated solvent sites are discussed.
Collapse
Affiliation(s)
- Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | | | | | | | | | | |
Collapse
|
18
|
Hatt JK, Ritalahti KM, Ogles DM, Lebrón CA, Löffler FE. Design and application of an internal amplification control to improve Dehalococcoides mccartyi 16S rRNA gene enumeration by qPCR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11131-8. [PMID: 24053159 DOI: 10.1021/es4019817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of chlorinated ethenes to nontoxic ethene in contaminated aquifers. Enumeration of Dhc biomarker genes using quantitative real-time PCR (qPCR) in groundwater is a key component of site assessment and bioremediation monitoring. Unfortunately, standardized qPCR procedures that recognize impaired measurements due to PCR inhibition, low template DNA concentrations, or analytical error are not available, thus limiting confidence in qPCR data. To improve contemporary approaches for enumerating Dhc in environmental samples, multiplex qPCR assays were designed to quantify the Dhc 16S rRNA gene and one of two different internal amplification controls (IACs): a modified Dhc 16S rRNA gene fragment (Dhc*) and the firefly luciferase gene luc. The Dhc* IAC exhibited competitive inhibition in qPCR with the Dhc 16S rRNA gene template when the ratio of either target was 100-fold greater than the other target. A multiplex qPCR assay with the luc IAC avoided competitive inhibition and accurately quantified Dhc abundances ranging from ∼10 to 10(7) 16S rRNA gene copies per reaction. The addition of ∼10(6) E. coli luc IAC to simulated groundwater amended with the Dhc-containing consortium KB-1 yielded reproducible luc counts after DNA extraction and multiplex qPCR enumeration. The application of the luc IAC assay improved Dhc biomarker gene quantification from simulated groundwater samples and is a valuable approach for "ground truthing" qPCR data obtained in different laboratories, thus reducing ambiguity associated with qPCR enumeration and reproducibility.
Collapse
Affiliation(s)
- Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | | | | | | | | |
Collapse
|
19
|
Guo YR, Wu Q, Odoh SO, Schreckenbach G, Pan QJ. Theoretical Study of Structural, Spectroscopic and Reaction Properties of trans-bis(imido) Uranium(VI) Complexes. Inorg Chem 2013; 52:9143-52. [DOI: 10.1021/ic401440w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qian Wu
- Key Laboratory
of Functional Inorganic Material Chemistry of Education Ministry,
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Samuel O. Odoh
- Department
of Chemistry, University of Manitoba, Winnipeg,
MB, Canada R3T 2N2
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352,
United States
| | - Georg Schreckenbach
- Department
of Chemistry, University of Manitoba, Winnipeg,
MB, Canada R3T 2N2
| | - Qing-Jiang Pan
- Key Laboratory
of Functional Inorganic Material Chemistry of Education Ministry,
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
20
|
Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 2013; 79:4635-42. [PMID: 23709511 DOI: 10.1128/aem.00693-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related to Anaeromyxobacter dehalogenans 2CP-1(T) with 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinoline N-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility of Anaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments, Anaeromyxobacter dehalogenans may play a role in arsenic release from these environments.
Collapse
|
21
|
Akondi K, Lakshmi V. Emerging Trends in Genomic Approaches for Microbial Bioprospecting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:61-70. [DOI: 10.1089/omi.2012.0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K.B. Akondi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| | - V.V. Lakshmi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| |
Collapse
|
22
|
Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci U S A 2012; 109:19709-14. [PMID: 23150571 DOI: 10.1073/pnas.1211238109] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N(2)O) concentrations. N(2)O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N(2)O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N(2)O to N(2) reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N(2)O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N(2)O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N(2)O consumption will advance understanding of the ecological controls on N(2)O emissions and lead to refined greenhouse gas flux models.
Collapse
|
23
|
Systems biology approach to bioremediation. Curr Opin Biotechnol 2012; 23:483-90. [DOI: 10.1016/j.copbio.2012.01.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/28/2012] [Indexed: 11/21/2022]
|
24
|
Ding C, He J. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microb Biotechnol 2012; 5:347-67. [PMID: 22070763 PMCID: PMC3821678 DOI: 10.1111/j.1751-7915.2011.00313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022] Open
Abstract
Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.
Collapse
Affiliation(s)
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
25
|
Pan QJ, Odoh SO, Schreckenbach G, Arnold PL, Love JB. Theoretical exploration of uranyl complexes of a designed polypyrrolic macrocycle: structure/property effects of hinge size on Pacman-shaped complexes. Dalton Trans 2012; 41:8878-85. [DOI: 10.1039/c2dt31055d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China 150080.
| | | | | | | | | |
Collapse
|
26
|
Pan QJ, Odoh SO, Asaduzzaman AM, Schreckenbach G. Adsorption of Uranyl Species onto the Rutile (110) Surface: A Periodic DFT Study. Chemistry 2011; 18:1458-66. [DOI: 10.1002/chem.201101320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/12/2022]
|
27
|
Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. Appl Environ Microbiol 2011; 77:3860-9. [PMID: 21498771 DOI: 10.1128/aem.01981-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.
Collapse
|
28
|
He Q, Yao K. Impact of alternative electron acceptors on selenium(IV) reduction by Anaeromyxobacter dehalogenans. BIORESOURCE TECHNOLOGY 2011; 102:3578-3580. [PMID: 21041077 DOI: 10.1016/j.biortech.2010.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/10/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
The capability of Anaeromyxobacter dehalogenans to reduce Se(IV) to Se(0) as a detoxification mechanism suggests a potential role of these ecologically important microorganisms in the biogeochemical cycling of selenium and the control of selenium contamination. However, the reduction of Se(IV) by the energetically versatile A. dehalogenans could be hindered by its ability to use alternative electron acceptors, particularly Fe(III) and humic substances which are ubiquitous in the environment. Indeed, the presence of Fe(III) partially inhibited Se(IV)-reducing activity. Nonetheless, reduction of both Se(IV) and Fe(III) proceeded simultaneously, a characteristic desirable for bioremediation efforts in many environments abundant with Fe(III). The enhancement of Se(IV) reduction by anthraquinone-2,6-disulfonate, a humic substance analog, is advantageous for microbial selenium biotransformation given the broad distribution of humic substances in natural environments, which could be exploited for the design of improved control strategies for selenium pollution.
Collapse
Affiliation(s)
- Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
29
|
Thomas SH, Sanford RA, Amos BK, Leigh MB, Cardenas E, Löffler FE. Unique ecophysiology among U(VI)-reducing bacteria as revealed by evaluation of oxygen metabolism in Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 2010; 76:176-83. [PMID: 19897758 PMCID: PMC2798628 DOI: 10.1128/aem.01854-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022] Open
Abstract
Anaeromyxobacter spp. respire soluble hexavalent uranium, U(VI), leading to the formation of insoluble U(IV), and are present at the uranium-contaminated Oak Ridge Integrated Field Research Challenge (IFC) site. Pilot-scale in situ bioreduction of U(VI) has been accomplished in area 3 of the Oak Ridge IFC site following biostimulation, but the susceptibility of the reduced material to oxidants (i.e., oxygen) compromises long-term U immobilization. Following oxygen intrusion, attached Anaeromyxobacter dehalogenans cells increased approximately 5-fold from 2.2x10(7)+/-8.6x10(6) to 1.0x10(8)+/-2.2x10(7) cells per g of sediment collected from well FW101-2. In the same samples, the numbers of cells of Geobacter lovleyi, a population native to area 3 and also capable of U(VI) reduction, decreased or did not change. A. dehalogenans cells captured via groundwater sampling (i.e., not attached to sediment) were present in much lower numbers (<1.3x10(4)+/-1.1x10(4) cells per liter) than sediment-associated cells, suggesting that A. dehalogenans cells occur predominantly in association with soil particles. Laboratory studies confirmed aerobic growth of A. dehalogenans strain 2CP-C at initial oxygen partial pressures (pO2) at and below 0.18 atm. A negative linear correlation [micro=(-0.09xpO2)+0.051; R2=0.923] was observed between the instantaneous specific growth rate micro and pO2, indicating that this organism should be classified as a microaerophile. Quantification of cells during aerobic growth revealed that the fraction of electrons released in electron donor oxidation and used for biomass production (fs) decreased from 0.52 at a pO2 of 0.02 atm to 0.19 at a pO2 of 0.18 atm. Hence, the apparent fraction of electrons utilized for energy generation (i.e., oxygen reduction) (fe) increased from 0.48 to 0.81 with increasing pO2, suggesting that oxygen is consumed in a nonrespiratory process at a high pO2. The ability to tolerate high oxygen concentrations, perform microaerophilic oxygen respiration, and preferentially associate with soil particles represents an ecophysiology that distinguishes A. dehalogenans from other known U(VI)-reducing bacteria in area 3, and these features may play roles for stabilizing immobilized radionuclides in situ.
Collapse
Affiliation(s)
- Sara H. Thomas
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Sanford
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Benjamin K. Amos
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Mary Beth Leigh
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Erick Cardenas
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Frank E. Löffler
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|