1
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Rossi F, Santonicola S, Amadoro C, Marino L, Colavita G. Food and Drinking Water as Sources of Pathogenic Protozoans: An Update. APPLIED SCIENCES 2024; 14:5339. [DOI: 10.3390/app14125339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This narrative review was aimed at collecting updated knowledge on the risk factors, illnesses caused, and measures for the prevention of protozoan infections transmitted by food and drinking water. Reports screened dated from 2019 to the present and regarded global prevalence in food handlers, occurrence in food and drinking water, impact on human health, and recently reported outbreaks and cases of severe infections attributable to the dietary route. Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica, and Cystoisospora belli were the protozoans most frequently involved in recently reported waterborne and foodborne outbreaks and cases. Blastocystis hominis was reported to be the most widespread intestinal protozoan in humans, and two case reports indicated its pathogenic potential. Dientamoeba fragilis, Endolimax nana, and Pentatrichomonas hominis are also frequent but still require further investigation on their ability to cause illness. A progressive improvement in surveillance of protozoan infections and infection sources took place in developed countries where the implementation of reporting systems and the application of molecular diagnostic methods led to an enhanced capacity to identify epidemiological links and improve the prevention of foodborne and waterborne protozoan infections.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 86100 Campobasso, Italy
| | - Serena Santonicola
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Carmela Amadoro
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 86100 Campobasso, Italy
| | - Giampaolo Colavita
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
3
|
Wang Y, Li N, Liang G, Wang L, Zhang X, Cui Z, Li X, Zhang S, Zhang L. Identification of host protein ENO1 (alpha-enolase) interacting with Cryptosporidium parvum sporozoite surface protein, Cpgp40. Parasit Vectors 2024; 17:146. [PMID: 38504274 PMCID: PMC10953254 DOI: 10.1186/s13071-024-06233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.
Collapse
Affiliation(s)
- Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Na Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
4
|
Lynch VD, Shaman J. Waterborne Infectious Diseases Associated with Exposure to Tropical Cyclonic Storms, United States, 1996-2018. Emerg Infect Dis 2023; 29:1548-1558. [PMID: 37486189 PMCID: PMC10370842 DOI: 10.3201/eid2908.221906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
In the United States, tropical cyclones cause destructive flooding that can lead to adverse health outcomes. Storm-driven flooding contaminates environmental, recreational, and drinking water sources, but few studies have examined effects on specific infections over time. We used 23 years of exposure and case data to assess the effects of tropical cyclones on 6 waterborne diseases in a conditional quasi-Poisson model. We separately defined storm exposure for windspeed, rainfall, and proximity to the storm track. Exposure to storm-related rainfall was associated with a 48% (95% CI 27%-69%) increase in Shiga toxin-producing Escherichia coli infections 1 week after storms and a 42% (95% CI 22%-62%) in increase Legionnaires' disease 2 weeks after storms. Cryptosporidiosis cases increased 52% (95% CI 42%-62%) during storm weeks but declined over ensuing weeks. Cyclones are a risk to public health that will likely become more serious with climate change and aging water infrastructure systems.
Collapse
|
5
|
Ormsby MJ, Akinbobola A, Quilliam RS. Plastic pollution and fungal, protozoan, and helminth pathogens - A neglected environmental and public health issue? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163093. [PMID: 36996975 DOI: 10.1016/j.scitotenv.2023.163093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities, known collectively as the 'plastisphere.' The plastisphere can facilitate the increased survival and dissemination of human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infections, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination, and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
6
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
7
|
Masangkay FR, Milanez GD, Dionisio JD, Ormita LAGL, Alvarez AV, Karanis P. Well water sources simultaneous contamination with Cryptosporidium and Acanthamoeba in East-Southeast Asia and Acanthamoeba spp. in biofilms in the Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155752. [PMID: 35533862 DOI: 10.1016/j.scitotenv.2022.155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium is the leading agent of waterborne parasitic protozoan outbreaks and is the second leading cause of infant mortality due to diarrhoea worldwide. Acanthamoeba spp. causes Acanthamoeba keratitis (AK) and a life-threatening condition known as granulomatous amoebic encephalitis (GAE). The present study aimed to assess the water quality of an indigenous and a rural community for waterborne parasitic protozoan contamination. Aquatic samples (n = 22) were processed by filtration of 500 mL portion through a 1.2 μm pore size glass microfiber filter and eluted for light microscopy, culture in non-nutrient agar, and PCR analysis. Overall, 36% (8/22) of the investigated aquatic samples were positive for either Cryptosporidium spp. oocysts (13%; 3/22) or Acanthamoeba spp., (36%; 8/22) or both (13%; 3/22). Cryptosporidium spp. oocysts were detected in 27% (3/11) of wet season samples only while Acanthamoeba spp. were detected in 18% (2/11) and 55% (6/11) of wet and dry season samples, respectively. Subsequently, molecular detection for Acanthamoeba species identified A. lenticulata and A. hatchetti with 98-99% BLAST similarity. This is the first report on the simultaneous contamination of Cryptosporidium and Acanthamoeba in well water sources in East-Southeast Asia, the first detection of Acanthamoeba spp. in biofilms in the Philippines, and the longest viability demonstrated for A. lenticulata in two-year-old water samples stored at room temperature.
Collapse
Affiliation(s)
- Frederick R Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines.
| | - Giovanni D Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Joseph D Dionisio
- Department of Medical Technology, Far Eastern University-Manila, Manila 1015, Philippines
| | - Luzelle Anne G-L Ormita
- Department of Psychology, Far Eastern University-Manila, Manila 1015, Philippines; Community Extension Services, Far Eastern University-Manila, Manila 1015, Philippines
| | - Abel V Alvarez
- Community Extension Services, Far Eastern University-Manila, Manila 1015, Philippines
| | - Panagiotis Karanis
- University of Cologne, Faculty of Medical and University Hospital Cologne, Cologne 50923, Germany; Medical School, Department of Basic and Clinical Science, University of Nicosia, Nicosia, 2417, Cyprus.
| |
Collapse
|
8
|
Costa D, Razakandrainibe R, Basmaciyan L, Raibaut J, Delaunay P, Morio F, Gargala G, Villier V, Mouhajir A, Levy B, Rieder C, Larreche S, Lesthelle S, Coron N, Menu E, Demar M, de Santi VP, Blanc V, Valot S, Dalle F, Favennec L. A summary of cryptosporidiosis outbreaks reported in France and overseas departments, 2017-2020. Food Waterborne Parasitol 2022; 27:e00160. [PMID: 35586547 PMCID: PMC9108463 DOI: 10.1016/j.fawpar.2022.e00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022] Open
Abstract
Cryptosporidium is a known foodborne pathogen, ranked fifth out of 24 among foodborne parasites in terms of importance and a cause of many cryptosporidiosis outbreaks worldwide. In France, very few outbreaks were reported before 2017, and data recently obtained by the Expert Laboratory of the Cryptosporidiosis National Reference Center (CNR-LE-Cryptosporidiosis) have shown that outbreaks are in fact common and frequently underreported. In this work, we aim to report the characteristics of outbreaks detected in France during the period 2017-2020 and present a summary of investigations carried out by the CNR-LE-Cryptosporidiosis. During the study period, there were eleven cryptosporidiosis outbreaks, including three with no identified origin. Among the eight identified outbreaks: six were due to water contamination (five tap water and one recreational water), one was due to direct contact with infected calves, and one was due to consumption of contaminated curd cheese. Among these outbreaks, five of them exceeded one hundred cases. Recent results obtained by the CNR-LE-Cryptosporidiosis revealed the multiannual occurrence of Cryptosporidium outbreaks in France. Waterborne outbreaks were more frequently detected, while foodborne outbreaks which are more difficult to detect were likely underreported.
Collapse
Affiliation(s)
- Damien Costa
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Romy Razakandrainibe
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Louise Basmaciyan
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Jérôme Raibaut
- Regional Health Agency PACA, Santé Publique France, 13002 Marseille, France
| | - Pascal Delaunay
- Parasitology and Mycology Department, Université Côte d'Azur, CHU Nice, 06000 Nice, France
| | - Florent Morio
- Parasitology-Mycology Laboratory, Institut de Biologie, CHU de Nantes, 44093 Nantes, France
| | - Gilles Gargala
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Venceslas Villier
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
| | | | - Bernard Levy
- INSERM: Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France
| | | | | | | | - Noémie Coron
- Laboratoire Bioesterel, 06210 Mandelieu La Napoule, France
| | - Estelle Menu
- Parasitology-Mycology Laboratory, CH Andrée-Rosemon, 97300 Cayenne, French Guiana
| | - Magalie Demar
- Department of Biology, Immunology and Parasitology, Cayenne Hospital Center, 97300 Cayenne, French Guiana
| | - Vincent Pommier de Santi
- French Military Health Service, French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13002 Marseille, France
| | | | - Stéphane Valot
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Frédéric Dalle
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Loic Favennec
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| |
Collapse
|