1
|
Shu HY, Zhao L, Jia Y, Liu FF, Chen J, Chang CM, Jin T, Yang J, Shu WS. CyanoStrainChip: A Novel DNA Microarray Tool for High-Throughput Detection of Environmental Cyanobacteria at the Strain Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5024-5034. [PMID: 38454313 PMCID: PMC10956431 DOI: 10.1021/acs.est.3c11096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.
Collapse
Affiliation(s)
- Hao-Yue Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Liang Zhao
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| | - Yanyan Jia
- School
of Ecology, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Fei-Fei Liu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Jiang Chen
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Chih-Min Chang
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Tao Jin
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- One
Health Biotechnology (Suzhou) Co., Ltd., Suzhou 215009, PR China
| | - Jian Yang
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Wen-Sheng Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Miller S, Greenwald H, Kennedy LC, Kantor RS, Jiang R, Pisarenko A, Chen E, Nelson KL. Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. ACS ES&T ENGINEERING 2022; 2:2206-2219. [PMID: 36530600 PMCID: PMC9745798 DOI: 10.1021/acsestengg.2c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla TEM ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log10 reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla TEM genes were reduced below the limit of detection (∼10-2 gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control.
Collapse
Affiliation(s)
- Scott Miller
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Hannah Greenwald
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Lauren C. Kennedy
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, College of Engineering, Stanford University, Stanford, California 94305, United States
| | - Rose S. Kantor
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Renjing Jiang
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Aleksey Pisarenko
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Elise Chen
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
3
|
VanMensel D, Droppo IG, Weisener CG. Identifying chemolithotrophic and pathogenic-related gene expression within suspended sediment flocs in freshwater environments: A metatranscriptomic assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150996. [PMID: 34656597 DOI: 10.1016/j.scitotenv.2021.150996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The introduction and proliferation of pathogenic organisms in aquatic systems is a serious global issue that consequently leads to economic, financial, and health concerns. Health and safety related to recreational water use is typically monitored through water quality assessments that are outdated and can be misleading. These traditional methods focus on broad taxa groups, provide no insight into the active community or source of contamination, and the sediment compartments (bed and suspended) are often overlooked. To bridge this knowledge gap, our study aimed to 1) examine the metatranscriptome of the microbial community associated with suspended sediment (SS) in freshwater systems; 2) explore the influence of SS in tributaries to the littoral zone of the receiving lake; and 3) compare the SS fraction with previously reported nearshore bed sediment data. Samples were collected seasonally from Lake St. Clair and Lake Erie. Beaches in this region are influenced by both agriculture runoff and continued urban expansion. Results show that both adjacent tributary and beach SS have similar microbial functional diversity and are strongly correlated by site and season. We identified expression of transcripts encoding sequences with similarities to genes involved in nine bacterial infectious disease pathways, including legionellosis (sdhA) and Vibrio cholerae pathogenesis. According to MG-RAST gene categories, lake samples typically showed higher overall expression (p < 0.05) of transcripts with similarities to genes involved in infectious disease pathways compared to the tributaries, with summer upregulated (p < 0.05) compared to fall. Our data suggests SS acts as a strong vector for pathogen transport, making this facet an important area for further research as it pertains to human health regarding recreational water use. To our knowledge, this work is the first to investigate SS in aquatic microbial communities using metatranscriptomic analyses and has significant potential to help address growing issues of microbial contamination impacting freshwater security.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, Ontario N9B 3P4, Canada.
| | - Ian G Droppo
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario L7R 4A6, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
4
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
5
|
Brooks YM, Spirito CM, Bae JS, Hong A, Mosier EM, Sausele DJ, Fernandez-Baca CP, Epstein JL, Shapley DJ, Goodman LB, Anderson RR, Glaser AL, Richardson RE. Fecal indicator bacteria, fecal source tracking markers, and pathogens detected in two Hudson River tributaries. WATER RESEARCH 2020; 171:115342. [PMID: 31841955 DOI: 10.1016/j.watres.2019.115342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/08/2023]
Abstract
Volunteer monitoring in the Hudson River watershed since 2012 has identified that the Wallkill River and Rondout Creek tributary complex have elevated concentrations of the fecal indicator bacteria, enterococci. Concentrations of enterococci do not provide insight into the sources of pollution and are imperfect indicators of health risks. In 2017, the regular monthly volunteer monitoring campaign for culturable enterococci at 24 sites on the Wallkill and Rondout expanded to include: (1) culturable measurements of E. coli and quantification of E. coli and Enterococcus specific markers vis nanoscale qPCR, (2) microbial source tracking (MST) assays (avian, human, bovine, and equine) via real time PCR and nanoscale qPCR, and 3) quantification of 12 gastrointestinal pathogens including viruses, bacteria, and protozoa via nanoscale qPCR. Three human associated MST markers (HumM2, HF183, and B. theta) corroborated that human pollution was present in Rondout Creek and widespread in the Wallkill River. The presence of B. theta was associated with increased concentrations of culturable E. coli. Genes for adenovirus 40 and 41 conserved region, rotavirus A NSP3, E. coli eae and stx1, and Giardia lamblia 18S rRNA were detected in >45% of samples. Abundance of rotavirus A NSP3 genes was significantly correlated to the bovine marker gene, CowM3, though wild bird sources cannot be ruled out. This is the first study to investigate potential fecal pollution sources and pathogen concentrations in Hudson tributaries during the months of peak recreational use.
Collapse
Affiliation(s)
- Yolanda M Brooks
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Catherine M Spirito
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Justin S Bae
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Anna Hong
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emma M Mosier
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Desiree J Sausele
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Dan J Shapley
- Riverkeeper Inc, 20 Secor Road, Ossining, NY, 10562, USA
| | - Laura B Goodman
- Population Medicine and Diagnostic Sciences, Cornell University Animal Health Diagnostic Center, Ithaca, NY, 14853, USA
| | - Renee R Anderson
- Population Medicine and Diagnostic Sciences, Cornell University Animal Health Diagnostic Center, Ithaca, NY, 14853, USA
| | - Amy L Glaser
- Population Medicine and Diagnostic Sciences, Cornell University Animal Health Diagnostic Center, Ithaca, NY, 14853, USA
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Ferrari S, Frosth S, Svensson L, Fernström L, Skarin H, Hansson I. Detection of Campylobacter spp. in water by dead-end ultrafiltration and application at farm level. J Appl Microbiol 2019; 127:1270-1279. [PMID: 31291690 PMCID: PMC6851547 DOI: 10.1111/jam.14379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
AIMS The purposes were to evaluate the detection of low levels of Campylobacter in water by dead-end ultrafiltration (DEUF) to determine the sensitivity and suitability for use under field condition. METHODS AND RESULTS The DEUF technique followed by detection according to ISO 10272 was tested on artificially and naturally contaminated water. Campylobacter were detected in all samples spiked with more than 10 CFU 60 l-1 and in four of nine samples with a concentration below 10 CFU 60 l-1 water. Naturally contaminated water from five different broiler producers was analysed. Campylobacter were detected in four of 12 samples from ponds near the houses and in three of 24 samples from water pipes inside the broiler houses, but not in tap water sampled at the entrance of the broiler houses. CONCLUSIONS The results indicate that DEUF is useful for detection of low numbers of Campylobacter in large volumes of water. SIGNIFICANCE AND IMPACT OF THE STUDY Contaminated water is an important source for transmission of Campylobacter to broilers and humans. The concentration of Campylobacter is usually low with a high level of background microbiota. This study shows the advantages of DEUF both in the laboratory and under field conditions.
Collapse
Affiliation(s)
- S. Ferrari
- Department of MicrobiologyNational Veterinary InstituteUppsalaSweden
| | - S. Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Faculty of Veterinary Medicine and Animal ScienceSwedish University of Agricultural SciencesUppsalaSweden
| | - L. Svensson
- Department of Disease Control and EpidemiologyNational Veterinary InstituteUppsalaSweden
| | - L.‐L. Fernström
- Department of Biomedical Sciences and Veterinary Public Health, Faculty of Veterinary Medicine and Animal ScienceSwedish University of Agricultural SciencesUppsalaSweden
| | - H. Skarin
- Department of MicrobiologyNational Veterinary InstituteUppsalaSweden
| | - I. Hansson
- Department of MicrobiologyNational Veterinary InstituteUppsalaSweden
- Department of Biomedical Sciences and Veterinary Public Health, Faculty of Veterinary Medicine and Animal ScienceSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
7
|
Clark GG, Jamal R, Weidhaas J. Roofing material and irrigation frequency influence microbial risk from consuming homegrown lettuce irrigated with harvested rainwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1011-1019. [PMID: 30266046 DOI: 10.1016/j.scitotenv.2018.09.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Rooftop harvested rainwater has become an alternative, potable, and non-potable water source used around the world. In the United States, rooftop harvested rainwater is most commonly used for irrigation. Rooftop harvested rainwater may contain contaminants from bird or animal feces that may present a risk to water users. Different roofing materials may influence the survival of fecal bacteria on the rooftop prior to runoff during rainfall. In this study, three pathogen groups (E. coli, enterococci and Salmonella enterica) in rooftop runoff from three, replicated roof types (asphalt shingle, synthetic slate, and wood shake) were quantified in multiple rain events. Matched roofs were selected from locations with differing amounts of tree cover. Enterococci were the most frequently detected bacteria from all roof types. Wood shake and asphalt shingle roofing materials had the poorest microbial water quality. Rainwater runoff from two of the six buildings failed to meet United States Food and Drug Administration microbial standards for irrigation water. A quantitative microbial risk assessment indicated that the annual probability of illness from consuming lettuce irrigated with rooftop harvested rainwater varied by roofing material, irrigation water withholding period, and exposure frequency. Consuming lettuce immediately after irrigation with rooftop rainwater presented the highest human health risk based on the probability of illness from E. coli and enterococci exposure. Withholding irrigation by 1 day prior to harvest decreased the annual probability of illness from E. coli by 2 log, but had a minimal effect on the risk from enterococci.
Collapse
Affiliation(s)
- Gemma G Clark
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Rubayat Jamal
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Jennifer Weidhaas
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K. Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:100-110. [PMID: 29414329 DOI: 10.1016/j.envpol.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microbial source tracking (MST) DNA-based assays have been used to successfully solve fecal pollution problems in many countries, particularly in developed nations. However, their application in developing countries has been limited but continues to increase. In this study, sixteen endpoint and quantitative PCR (qPCR) assays targeting universal and human-, swine-, and cattle-specific Bacteroidales gene markers were modified for endpoint PCR, evaluated for their performance with sewage and fecal samples from the Tha Chin watershed and subsequently validated with samples from the Chao Phraya watershed, Thailand. Sample sizes of 81 composite samples (from over 1620 individual samples) of farm animals of each type as well as 19 human sewage samples from the Tha Chin watershed were calculated using a stratified random sampling design to achieve a 90% confidence interval and an expected prevalence (i.e., desired assay's sensitivity) of 0.80. The best universal and human-, swine-, and cattle-specific fecal markers were BacUni EP, HF183/BFDrev EP, Pig-2-Bac EP, and Bac3 assays, respectively. The detection limits for these assays ranged from 30 to 3000 plasmid copies per PCR. The positive predictive values were high in universal and swine- and cattle-specific markers (85-100%), while the positive predictive value of the human-specific assay was 52.2%. The negative predictive values in all assays were relatively high (90.8-100%). A suite of PCR assays in Thailand was established for potential MST use in environmental waters, which supports the worldwide applicability of Bacteroidales gene markers. This study also emphasizes the importance of using a proper sample size in assessing the performance of MST markers in a new geographic region.
Collapse
Affiliation(s)
- Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| |
Collapse
|
9
|
Varughese EA, Brinkman NE, Anneken EM, Cashdollar JL, Fout GS, Furlong ET, Kolpin DW, Glassmeyer ST, Keely SP. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1330-1339. [PMID: 29734610 PMCID: PMC6075686 DOI: 10.1016/j.scitotenv.2017.10.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 05/11/2023]
Abstract
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.
Collapse
Affiliation(s)
- Eunice A Varughese
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Nichole E Brinkman
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Emily M Anneken
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Jennifer L Cashdollar
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - G Shay Fout
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Edward T Furlong
- USGS, National Water Quality Laboratory, Denver Federal Center, Bldg 95, Denver, CO 80225, United States.
| | - Dana W Kolpin
- USGS, 400 S. Clinton St, Rm 269, Federal Building, Iowa City, IA 52240, United States.
| | - Susan T Glassmeyer
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Scott P Keely
- USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| |
Collapse
|
10
|
Elucidating Waterborne Pathogen Presence and Aiding Source Apportionment in an Impaired Stream. Appl Environ Microbiol 2018; 84:AEM.02510-17. [PMID: 29305503 DOI: 10.1128/aem.02510-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fecal indicator bacteria (FIB) are the basis for water quality regulations and are considered proxies for waterborne pathogens when conducting human health risk assessments. The direct detection of pathogens in water and simultaneous identification of the source of fecal contamination are possible with microarrays, circumventing the drawbacks to FIB approaches. A multigene target microarray was used to assess the prevalence of waterborne pathogens in a fecally impaired mixed-use watershed. The results indicate that fecal coliforms have improved substantially in the watershed since its listing as a 303(d) impaired stream in 2002 and are now near United States recreational water criterion standards. However, waterborne pathogens are still prevalent in the watershed, as viruses (bocavirus, hepatitis E and A viruses, norovirus, and enterovirus G), bacteria (Campylobacter spp., Clostridium spp., enterohemorrhagic and enterotoxigenic Escherichia coli, uropathogenic E. coli, Enterococcus faecalis, Helicobacter spp., Salmonella spp., and Vibrio spp.), and eukaryotes (Acanthamoeba spp., Entamoeba histolytica, and Naegleria fowleri) were detected. A comparison of the stream microbial ecology with that of sewage, cattle, and swine fecal samples revealed that human sources of fecal contamination dominate in the watershed. The methodology presented is applicable to a wide range of impaired streams for the identification of human health risk due to waterborne pathogens and for the identification of areas for remediation efforts.IMPORTANCE The direct detection of waterborne pathogens in water overcomes many of the limitations of the fecal indicator paradigm. Furthermore, the identification of the source of fecal impairment aids in identifying areas for remediation efforts. Multitarget gene microarrays are shown to simultaneously identify waterborne pathogens and aid in determining the sources of impairment, enabling further focused investigations. This study shows the use of this methodology in a historically impaired watershed in which total maximum daily load reductions have been successfully implemented to reduce risk. The results suggest that while the fecal indicators have been reduced more than 96% and are nearing recreational water criterion levels, pathogens are still detectable in the watershed. Microbial source tracking results show that additional remediation efforts are needed to reduce the impact of human sewage in the watershed.
Collapse
|
11
|
Abstract
ABSTRACT
The science of microbial source tracking has allowed researchers and watershed managers to go beyond general indicators of fecal pollution in water such as coliforms and enterococci, and to move toward an understanding of specific contributors to water quality issues. The premise of microbial source tracking is that characteristics of microorganisms that are strongly associated with particular host species can be used to trace fecal pollution to particular animal species (including humans) or groups, e.g., ruminants or birds. Microbial source tracking methods are practiced largely in the realm of research, and none are approved for regulatory uses on a federal level. Their application in the conventional sense of forensics, i.e., to investigate a crime, has been limited, but as some of these methods become standardized and recognized in a regulatory context, they will doubtless play a larger role in applications such as total maximum daily load assessment, investigations of sewage spills, and contamination from agricultural practices.
Collapse
|
12
|
Iaconelli M, Divizia M, Della Libera S, Di Bonito P, La Rosa G. Frequent Detection and Genetic Diversity of Human Bocavirus in Urban Sewage Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:289-295. [PMID: 27311692 DOI: 10.1007/s12560-016-9251-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 05/18/2023]
Abstract
The prevalence and genetic diversity of human bocaviruses (HBoVs) in sewage water samples are largely unknown. In this study, 134 raw sewage samples from 25 wastewater treatment plants (WTPs) in Italy were analyzed by nested PCR and sequencing using species-specific primer pairs and broad-range primer pairs targeting the capsid proteins VP1/VP2. A large number of samples (106, 79.1 %) were positive for HBoV. Out of these, 49 were classified as HBoV species 2, and 27 as species 3. For the remaining 30 samples, sequencing results showed mixed electropherograms. By cloning PCR amplicons and sequencing, we confirmed the copresence of species 2 and 3 in 29 samples and species 2 and 4 in only one sample. A real-time PCR assay was also performed, using a newly designed TaqMan assay, for quantification of HBoVs in sewage water samples. Viral load quantification ranged from 5.51E+03 to 1.84E+05 GC/L (mean value 4.70E+04 GC/L) for bocavirus 2 and from 1.89E+03 to 1.02E+05 GC/L (mean value 2.27E+04 GC/L) for bocavirus 3. The wide distribution of HBoV in sewages suggests that this virus is common in the population, and the most prevalent are the species 2 and 3. HBoV-4 was also found, representing the first detection of this species in Italy. Although there is no indication of waterborne transmission for HBoV, the significant presence in sewage waters suggests that HBoV may spread to other water environments, and therefore, a potential role of water in the HBoV transmission should not be neglected.
Collapse
Affiliation(s)
- M Iaconelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - M Divizia
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - S Della Libera
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - P Di Bonito
- Department of Infectious Parasitic Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
13
|
Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. WATER 2016. [DOI: 10.3390/w8060231] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|