1
|
Ulgen Gokduman F, Yılmaz S, Bode HB. Enhanced production of trans-cinnamic acid in Photorhabdus luminescens with homolog expression and deletion strategies. J Appl Microbiol 2024; 135:lxae149. [PMID: 38906846 DOI: 10.1093/jambio/lxae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
AIM This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.
Collapse
Affiliation(s)
- Funda Ulgen Gokduman
- Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for terrestrial Microbiology, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Phillips Universität Marburg, 35043 Marburg, Germany
- SYNMIKRO, Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
2
|
Kunat-Budzyńska M, Rysiak A, Wiater A, Grąz M, Andrejko M, Budzyński M, Bryś MS, Sudziński M, Tomczyk M, Gancarz M, Rusinek R, Ptaszyńska AA. Chemical Composition and Antimicrobial Activity of New Honey Varietals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032458. [PMID: 36767825 PMCID: PMC9915547 DOI: 10.3390/ijerph20032458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Michał Budzyński
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Maciej S. Bryś
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Sudziński
- Urban Artistic Apiary, Centre for the Meeting of Cultures, Plac Teatralny 1 Str., 20-029 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2a Str., 15-230 Białystok, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| |
Collapse
|
3
|
Parihar RD, Dhiman U, Bhushan A, Gupta PK, Gupta P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front Microbiol 2022; 13:790339. [PMID: 35422783 PMCID: PMC9002308 DOI: 10.3389/fmicb.2022.790339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.
Collapse
Affiliation(s)
| | | | - Anil Bhushan
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Kumar Gupta
- Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Bauman KD, Li J, Murata K, Mantovani SM, Dahesh S, Nizet V, Luhavaya H, Moore BS. Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chem Biol 2019; 26:724-736.e7. [PMID: 30853419 PMCID: PMC6525064 DOI: 10.1016/j.chembiol.2019.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
The disconnect between the genomic prediction of secondary metabolite biosynthetic potential and the observed laboratory production profile of microorganisms is well documented. While heterologous expression of biosynthetic gene clusters (BGCs) is often seen as a potential solution to bridge this gap, it is not immune to many challenges including impaired regulation, the inability to recruit essential building blocks, and transcriptional and/or translational silence of the biosynthetic genes. Here we report the discovery, cloning, refactoring, and heterologous expression of a cryptic hybrid phenazine-type BGC (spz) from the marine actinomycete Streptomyces sp. CNB-091. Overexpression of the engineered spz pathway resulted in increased production and chemical diversity of phenazine natural products belonging to the streptophenazine family, including bioactive members containing an unprecedented N-formylglycine attachment. An atypical discrete adenylation enzyme in the spz cluster is required to introduce the formylglycine moiety and represents a phylogenetically distinct class of adenylation proteins.
Collapse
Affiliation(s)
- Katherine D Bauman
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Jie Li
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Kazuya Murata
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Simone M Mantovani
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA; Collaborative to Halt Antibiotic Resistant Microbes, University of California at San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Hanna Luhavaya
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA.
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Prabakaran M, Chung IM, Son NY, Chi HY, Kim SY, Yang YJ, Kwon C, An YJ, Ahmad A, Kim SH. Analysis of Selected Phenolic Compounds in Organic, Pesticide-Free, Conventional Rice ( Oryza sativa L.) Using LC-ESI-MS/MS. Molecules 2018; 24:molecules24010067. [PMID: 30585211 PMCID: PMC6337394 DOI: 10.3390/molecules24010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Rice (Oryza sativa L.) contains generous amounts of carbohydrates, proteins, vitamins, and dietary fibers, in addition to secondary metabolites such as phenols and flavonoids that act as antioxidants. The phenolic compounds detected in rice (organic rice (OR), conventional rice (CR), and pesticide-free rice (PFR)), namely, protocatechuic, gentisic, p-hydroxybenzoic, p-coumaric, ferulic, salicylic, and caffeic acids, are notable free radical scavengers. The sum of these phenolic compounds was found to be higher in PFR, followed by CR and OR (p < 0.0001), when the rice types were classified based on the farming system employed. In addition, significant differences were observed in the p-hydroxybenzoic acid levels for the OR and CR groups compared with the PFR groups (p < 0.01). Furthermore, greater quantities of p-coumaric acid were found in CR-08 and OR-02, although these groups contained overall higher and lower sums of phenolic compounds, respectively. Moreover, significance was observed in the sum of the phenolic compounds, although only small quantities were found in polished rice. Further research is thus required to provide a clearer picture regarding the phenolic profiles of different rice brands.
Collapse
Affiliation(s)
- Mayakrishnan Prabakaran
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Na-Young Son
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - So-Yeon Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Yu-Jin Yang
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Chang Kwon
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Yeon-Ju An
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| | - Ateeque Ahmad
- Process Chemistry and Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
7
|
STOCK SPATRICIA, KUSAKABE AYAKO, OROZCO ROUSELA. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J Nematol 2018. [DOI: 10.21307/jofnem-2017-084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Stock SP, Kusakabe A, Orozco RA. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J Nematol 2017; 49:373-383. [PMID: 29353924 PMCID: PMC5770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 06/07/2023] Open
Abstract
Gram-negative Photorhabdus bacteria have a dual lifestyle: they are mutualists of Heterorhabditis nematodes and are pathogens of insects. Together, this nematode-bacterium partnership has been used to successfully control a wide range of agricultural insect pests. Photorhabdus produce a diverse array of small molecules that play key biological roles in regulating their dual roles. In particular, several secondary metabolites (SM) produced by this bacterium are known to play a critical role in the maintenance of a monoxenic infection in the insect host and are also known to prevent contamination of the cadaver from soil microbes and/or predation by arthropods. A few of the SM this bacteria produce have been isolated and identified, and their biological activities have also been tested in laboratory assays. Over the past two decades, analyses of the genomes of several Photorhabdus spp. have revealed the presence of SM numerous gene clusters that comprise more than 6% of these bacteria genomes. Furthermore, genome mining and characterization of biosynthetic pathways, have uncovered the richness of these compounds, which are predicted to vary across different Photorhabdus spp. and strains. Although progress has been made in the identification and function of SM genes and gene clusters, the targeted testing for the bioactivity of molecules has been scarce or mostly focused on medical applications. In this review, we summarize the current knowledge of Photorhabdus SM, emphasizing on their activity against plant pathogens and parasites. We further discuss their potential in the management of agricultural pests and the steps that need to be taken for the implementation of Photorhabdus SM in pest management.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Entomology, University of Arizona, Tucson, AZ 85721
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Ayako Kusakabe
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Rousel A Orozco
- Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
9
|
Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB. Photorhabdus‐nematode symbiosis is dependent onhfq‐mediated regulation of secondary metabolites. Environ Microbiol 2016; 19:119-129. [DOI: 10.1111/1462-2920.13502] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas J. Tobias
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Antje K. Heinrich
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Helena Eresmann
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Patrick R. Wright
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
| | - Nick Neubacher
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
| | - Rolf Backofen
- Department of Computer ScienceBioinformatics Group, Albert Ludwigs University FreiburgFreiburg Germany
- BIOSS Centre for Biological Signaling Studies, University of FreiburgFreiburg Germany
| | - Helge B. Bode
- Fachbereich BiowissenschaftenMerck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität FrankfurtFrankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität FrankfurtFrankfurt am Main Germany
| |
Collapse
|
10
|
Joyce SA, Lango L, Clarke DJ. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:1-25. [PMID: 21924970 DOI: 10.1016/b978-0-12-387048-3.00001-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photorhabdus is a genus of insect-pathogenic Gram-negative bacteria that also maintain a mutualistic interaction with nematodes from the family Heterorhabditis. This complex life cycle, involving different interactions with different invertebrate hosts, coupled with the amenability of the system to laboratory culture has resulted in the development of Photorhabdus as a model system for studying bacterial-host interactions. Photorhabdus is predicted to have an extensive secondary metabolism with the genetic potential to produce >20 different small secondary metabolites. Therefore, this system also presents us with a unique opportunity to study the contribution of secondary metabolism to the environmental fitness of the producing organism in its natural habitat (i.e., the insect and/or the nematode). In vivo and in vitro studies have revealed that the vast majority of the genetic loci in Photorhabdus predicted to be involved in the production of secondary metabolites appear to be cryptic and, to date, although several have been characterized, only three compounds have been studied in any great detail: 3,5-dihydroxy-4-isopropylstilbene, the β-lactam antibiotic carbapenem, and an anthraquinone pigment. In this chapter, we describe how these compounds are made and the role (if any) that they have during the interactions between Photorhabdus and its invertebrate hosts. We will also outline recent work on the regulation of secondary metabolism in Photorhabdus and comment on how this has led to an increased understanding of mutualism in this bacterium.
Collapse
Affiliation(s)
- Susan A Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
11
|
Zhou K, Feng Z, Shen J, Wu B, Luo X, Jiang S, Li L, Zhou X. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 158:29-33. [PMID: 26802538 DOI: 10.1016/j.saa.2016.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/15/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.
Collapse
Affiliation(s)
- Kaining Zhou
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhongshan Feng
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jun Shen
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bing Wu
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiaobing Luo
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Sha Jiang
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Li Li
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xianju Zhou
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
12
|
Bager R, Roghanian M, Gerdes K, Clarke DJ. Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Mol Microbiol 2016; 100:735-47. [PMID: 26845750 DOI: 10.1111/mmi.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 01/21/2023]
Abstract
The enteric gamma-proteobacterium Photorhabdus luminescens kills a wide range of insects, whilst also maintaining a mutualistic relationship with soil nematodes from the family Heterorhabditis. Pathogenicity is associated with bacterial exponential growth, whilst mutualism is associated with post-exponential (stationary) phase. During post-exponential growth, P. luminescens also elaborates an extensive secondary metabolism, including production of bioluminescence, antibiotics and pigment. However, the regulatory network that controls the expression of this secondary metabolism is not well understood. The stringent response is a well-described global regulatory system in bacteria and mediated by the alarmone (p)ppGpp. In this study, we disrupted the genes relA and spoT, encoding the two predicted (p)ppGpp synthases of P. luminescens TTO1, and we showed that (p)ppGpp is required for secondary metabolism. Moreover, we found the (p)ppGpp is not required for pathogenicity of P. luminescens, but is required for bacterial survival within the insect cadaver. Finally, we showed that (p)ppGpp is required for P. luminescens to support normal nematode growth and development. Therefore, the regulatory network that controls the transition from pathogenicity to mutualism in P. luminescens requires (p)ppGpp. This is the first report outlining a role for (p)ppGpp in controlling the outcome of an interaction between a bacteria and its host.
Collapse
Affiliation(s)
- Ragnhild Bager
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark.,School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Mohammad Roghanian
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - David J Clarke
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
|
14
|
Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, Lee IJ, Shin JH. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J Microbiol 2015; 53:127-33. [DOI: 10.1007/s12275-015-4632-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
|
15
|
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 2015. [DOI: 10.1039/c5ra08196c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase, a versatile enzyme with industrial and medical applications.
Collapse
Affiliation(s)
- Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products
- Beijing
- China
| |
Collapse
|
16
|
An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 2014; 19:20913-28. [PMID: 25514230 PMCID: PMC6271226 DOI: 10.3390/molecules191220913] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 02/05/2023] Open
Abstract
A bioassay-guided column chromatographic strategy was adopted in the present study to fractionate the culture extract of Photorhabdus temperata M1021 to identify potential insecticidal and antimicrobial compounds. An ethyl acetate (EtOAc) culture extract of P. temperata was assayed against Galleria mellonella larvae through intra-hemocoel injection and exhibited 100% insect mortality within 60 h. The EtOAc fraction and an isolated compound exhibited phenoloxidase (PO) inhibition of up to 60% and 63%, respectively. The compound was identified as 1,2-benzenedicarboxylic acid (phthalic acid, PA) by gas chromatography-mass spectrometry and nuclear magnetic resonance. PA exhibited insecticidal activity against G. mellonella in a dose-dependent manner, and 100% insect mortality was observed at 108 h after injection of 1 M PA. In a PO inhibition assay, 0.5 and 1 M concentrations of PA were found to inhibit PO activity by 74% and 82%, respectively; and in a melanotic nodule formation assay, nodule formation was significantly inhibited (27 and 10 nodules) by PA (0.5 and 1 M, respectively). PA was furthermore found to have substantial antioxidant activity and maximum antioxidant activity was 64.7% for 0.5 M PA as compare to control. Antibacterial activity was assessed by The MIC values ranged from 0.1 M to 0.5 M of PA. This study reports a multifunctional PA, a potential insecticidal agent, could a factor of insect mortality along with other toxins produced by P. temperata M1021.
Collapse
|
17
|
The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:1-29. [PMID: 24767424 DOI: 10.1016/b978-0-12-800260-5.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photorhabdus is a pathogen of insects that also maintains a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus colonizes the gut of the infective juvenile (IJ) stage of the nematode. The IJ infects an insect and regurgitates the bacteria and the bacteria reproduce to kill the insect. The nematodes feed on the resulting bacterial biomass until a new generation of IJs emerges from the insect cadaver. Therefore, during its life cycle, Photorhabdus must (1) kill the insect host, (2) support nematode growth and development, and (3) be able to colonize the new generation of IJs. In this review, functional genomic studies that have been aimed at understanding the molecular mechanisms underpinning each of these roles will be discussed. These studies have begun to reveal that distinct gene sets may be required for each of these interactions, suggesting that there is only a minimal genetic overlap between pathogenicity and mutualism in Photorhabdus.
Collapse
|
18
|
Wahidullah S, Naik DN, Devi P. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion. PLoS One 2013; 8:e83647. [PMID: 24391802 PMCID: PMC3877071 DOI: 10.1371/journal.pone.0083647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/05/2013] [Indexed: 11/18/2022] Open
Abstract
As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.
Collapse
Affiliation(s)
- Solimabi Wahidullah
- Bioorganic Chemistry Lab, Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa, India
| | - Deepak N. Naik
- Bioorganic Chemistry Lab, Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa, India
| | - Prabha Devi
- Bioorganic Chemistry Lab, Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa, India
| |
Collapse
|
19
|
Lango-Scholey L, Brachmann AO, Bode HB, Clarke DJ. The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation. PLoS One 2013; 8:e82152. [PMID: 24278476 PMCID: PMC3838401 DOI: 10.1371/journal.pone.0082152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022] Open
Abstract
Photorhabdus is a genus of Gram-negative entomopathogenic bacteria that also maintain a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus has an extensive secondary metabolism that is required for the interaction between the bacteria and the nematode. A major component of this secondary metabolism is a stilbene molecule, called ST. The first step in ST biosynthesis is the non-oxidative deamination of phenylalanine resulting in the production of cinnamic acid. This reaction is catalyzed by phenylalanine-ammonium lyase, an enzyme encoded by the stlA gene. In this study we show, using a stlA-gfp transcriptional fusion, that the expression of stlA is regulated by nutrient limitation through a regulatory network that involves at least 3 regulators. We show that TyrR, a LysR-type transcriptional regulator that regulates gene expression in response to aromatic amino acids in E. coli, is absolutely required for stlA expression. We also show that stlA expression is modulated by σS and Lrp, regulators that are implicated in the regulation of the response to nutrient limitation in other bacteria. This work is the first that describes pathway-specific regulation of secondary metabolism in Photorhabdus and, therefore, our study provides an initial insight into the complex regulatory network that controls secondary metabolism, and therefore mutualism, in this model organism.
Collapse
Affiliation(s)
| | - Alexander O. Brachmann
- Molecular Biotechnology, Institute for Molecular Biosciences, Goethe University, Frankfurt, Frankfurt, Germany
| | - Helge B. Bode
- Molecular Biotechnology, Institute for Molecular Biosciences, Goethe University, Frankfurt, Frankfurt, Germany
| | - David J. Clarke
- Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
20
|
Zhou X, Zhou K, Wang Z, Yang S. Preparation, Structure, and Optical Properties of the 1D Chain Red Luminescent Europium Coordination Polymer: {[Eu2L6(DMF)(H2O)]·2DMF·H2O}n(L = C9H6ClO2-). Z Anorg Allg Chem 2012. [DOI: 10.1002/zaac.201200320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 2012; 337:88-93. [PMID: 22767929 PMCID: PMC4006969 DOI: 10.1126/science.1216641] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial populations stochastically generate variants with strikingly different properties, such as virulence or avirulence and antibiotic tolerance or sensitivity. Photorhabdus luminescens bacteria have a variable life history in which they alternate between pathogens to a wide variety of insects and mutualists to their specific host nematodes. Here, we show that the P. luminescens pathogenic variant (P form) switches to a smaller-cell variant (M form) to initiate mutualism in host nematode intestines. A stochastic promoter inversion causes the switch between the two distinct forms. M-form cells are much smaller (one-seventh the volume), slower growing, and less bioluminescent than P-form cells; they are also avirulent and produce fewer secondary metabolites. Observations of form switching by individual cells in nematodes revealed that the M form persisted in maternal nematode intestines, were the first cells to colonize infective juvenile (IJ) offspring, and then switched to P form in the IJ intestine, which armed these nematodes for the next cycle of insect infection.
Collapse
Affiliation(s)
- Vishal S. Somvanshi
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Rudolph E. Sloup
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Jason M. Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R. Martin
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Anthony J. Heidt
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Kwi-suk Kim
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Todd A. Ciche
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Crawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT. Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis. ACTA ACUST UNITED AC 2012; 18:1102-12. [PMID: 21944749 DOI: 10.1016/j.chembiol.2011.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/21/2011] [Accepted: 07/12/2011] [Indexed: 11/28/2022]
Abstract
2,5-Dihydrophenylalanine (H(2)Phe) is a multipotent nonproteinogenic amino acid produced by various Actinobacteria and Gammaproteobacteria. Although the metabolite was discovered over 40 years ago, details of its biosynthesis have remained largely unknown. We show here that L-H(2)Phe is a secreted metabolite in Photorhabdus luminescens cultures and a precursor of a recently described 2,5-dihydrostilbene. Bioinformatic analysis suggested a candidate gene cluster for the processing of prephenate to H(2)Phe, and gene knockouts validated that three adjacent genes plu3042-3044 were required for H(2)Phe production. Biochemical experiments validated Plu3043 as a nonaromatizing prephenate decarboxylase generating an endocyclic dihydro-hydroxyphenylpyruvate. Plu3042 acted next to transaminate the Plu3043 product, precluding spontaneous exocyclic double-bond isomerization and yielding 2,5-dihydrotyrosine. The enzymatic products most plausibly on path to H(2)Phe illustrate the versatile metabolic rerouting of prephenate from aromatic amino acid synthesis to antibiotic synthesis.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Lanois A, Pages S, Bourot S, Canoy AS, Givaudan A, Gaudriault S. Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects. Appl Environ Microbiol 2011; 77:1009-20. [PMID: 21131515 PMCID: PMC3028736 DOI: 10.1128/aem.01696-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/20/2010] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H(2)O(2) and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects.
Collapse
Affiliation(s)
- A. Lanois
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Pages
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Bourot
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A.-S. Canoy
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A. Givaudan
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Gaudriault
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| |
Collapse
|