1
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Marks TJ, Rowland IR. The Diversity of Bacteriophages in Hot Springs. Methods Mol Biol 2024; 2738:73-88. [PMID: 37966592 DOI: 10.1007/978-1-0716-3549-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.
Collapse
Affiliation(s)
- Timothy J Marks
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA.
| | - Isabella R Rowland
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA
| |
Collapse
|
3
|
Zhou Y, Wang Y, Prangishvili D, Krupovic M. Exploring the Archaeal Virosphere by Metagenomics. Methods Mol Biol 2024; 2732:1-22. [PMID: 38060114 DOI: 10.1007/978-1-0716-3515-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.
Collapse
Affiliation(s)
- Yifan Zhou
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - David Prangishvili
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
4
|
Overton MS, Manuel RD, Lawrence CM, Snyder JC. Viruses of the Turriviridae: an emerging model system for studying archaeal virus-host interactions. Front Microbiol 2023; 14:1258997. [PMID: 37808280 PMCID: PMC10551542 DOI: 10.3389/fmicb.2023.1258997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses have played a central role in the evolution and ecology of cellular life since it first arose. Investigations into viral molecular biology and ecological dynamics have propelled abundant progress in our understanding of living systems, including genetic inheritance, cellular signaling and trafficking, and organismal development. As well, the discovery of viral lineages that infect members of all three domains suggest that these lineages originated at the earliest stages of biological evolution. Research into these viruses is helping to elucidate the conditions under which life arose, and the dynamics that directed its early development. Archaeal viruses have only recently become a subject of intense study, but investigations have already produced intriguing and exciting results. STIV was originally discovered in Yellowstone National Park and has been the focus of concentrated research. Through this research, a viral genetic system was created, a novel lysis mechanism was discovered, and the interaction of the virus with cellular ESCRT machinery was revealed. This review will summarize the discoveries within this group of viruses and will also discuss future work.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Manuel
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jamie C. Snyder
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| |
Collapse
|
5
|
Doss RK, Palmer M, Mead DA, Hedlund BP. Functional biology and biotechnology of thermophilic viruses. Essays Biochem 2023; 67:671-684. [PMID: 37222046 PMCID: PMC10423840 DOI: 10.1042/ebc20220209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Viruses have developed sophisticated biochemical and genetic mechanisms to manipulate and exploit their hosts. Enzymes derived from viruses have been essential research tools since the first days of molecular biology. However, most viral enzymes that have been commercialized are derived from a small number of cultivated viruses, which is remarkable considering the extraordinary diversity and abundance of viruses revealed by metagenomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic prokaryotes over the past 40 years, those obtained from thermophilic viruses should be equally potent tools. This review discusses the still-limited state of the art regarding the functional biology and biotechnology of thermophilic viruses with a focus on DNA polymerases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor has revealed new clades of enzymes with strong proofreading and reverse transcriptase capabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodothermus and Thermus phages, with both commercialized for circularization of single-stranded templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus have shown high stability and unusually broad lytic activity against Gram-negative and Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been characterized, with diverse potential applications as molecular shuttles. To gauge the scale of untapped resources for these proteins, we also document over 20,000 genes encoded by uncultivated viral genomes from high-temperature environments that encode DNA polymerase, ligase, endolysin, or coat protein domains.
Collapse
Affiliation(s)
- Ryan K Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, U.S.A
| |
Collapse
|
6
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
7
|
Che R, Bai M, Xiao W, Zhang S, Wang Y, Cui X. Nutrient levels and prokaryotes affect viral communities in plateau lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156033. [PMID: 35597355 DOI: 10.1016/j.scitotenv.2022.156033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Viruses are the most abundant organisms in aquatic environments. Recent advances of viral metagenomic have greatly expanded our understanding of aquatic viral communities. However, little is known about the difference of viral communities and driving factors in freshwater lake. This study seeks to understand the spatio-temporal variation, differences, and driving factors of viral communities in two plateau lakes (Dianchi and Fuxian Lakes) with significant nutritional differences. The viral communities exhibited apparent seasonal variation in Dianchi Lake, while seasonal influences on the viral communities were greater than location-based influences. Two-thirds of all detected viral taxa were shared in two lakes, but there was variation in the composition of viral communities. Correlations between prokaryotic communities, environmental factors and viral communities were analyzed. The nutrients, chlorophyll a were primarily environmental parameters affecting viral communities, and the prokaryotic community was significantly correlated with the viral community. In addition, several viruses infecting humans were identified in two lakes, with the most abundant being Herpesviridae and Poxviridae. Overall, these findings provide information on the dynamics, composition, and differences of viral and prokaryotic communities in plateau lakes with different nutrient levels. These results suggest that nutritional levels and prokaryotic communities could play an important role in shaping viral communities in freshwater lakes.
Collapse
Affiliation(s)
- Raoqiong Che
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meng Bai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shiying Zhang
- Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation, Yunnan Agricultural University, Kunming 650201, China
| | - Yongxia Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
8
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
9
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats. Microbiol Spectr 2021; 9:e0069421. [PMID: 34787442 PMCID: PMC8597652 DOI: 10.1128/spectrum.00694-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses exert diverse ecosystem impacts by controlling their host community through lytic predator-prey dynamics. However, the mechanisms by which lysogenic viruses influence their host-microbial community are less clear. In hot springs, lysogeny is considered an active lifestyle, yet it has not been systematically studied in all habitats, with phototrophic microbial mats (PMMs) being particularly not studied. We carried out viral metagenomics following in situ mitomycin C induction experiments in PMMs from Porcelana hot spring (Northern Patagonia, Chile). The compositional changes of viral communities at two different sites were analyzed at the genomic and gene levels. Furthermore, the presence of integrated prophage sequences in environmental metagenome-assembled genomes from published Porcelana PMM metagenomes was analyzed. Our results suggest that virus-specific replicative cycles (lytic and lysogenic) were associated with specific host taxa with different metabolic capacities. One of the most abundant lytic viral groups corresponded to cyanophages, which would infect the cyanobacteria Fischerella, the most active and dominant primary producer in thermophilic PMMs. Likewise, lysogenic viruses were related exclusively to chemoheterotrophic bacteria from the phyla Proteobacteria, Firmicutes, and Actinobacteria. These temperate viruses possess accessory genes to sense or control stress-related processes in their hosts, such as sporulation and biofilm formation. Taken together, these observations suggest a nexus between the ecological role of the host (metabolism) and the type of viral lifestyle in thermophilic PMMs. This has direct implications in viral ecology, where the lysogenic-lytic switch is determined by nutrient abundance and microbial density but also by the metabolism type that prevails in the host community. IMPORTANCE Hot springs harbor microbial communities dominated by a limited variety of microorganisms and, as such, have become a model for studying community ecology and understanding how biotic and abiotic interactions shape their structure. Viruses in hot springs are shown to be ubiquitous, numerous, and active components of these communities. However, lytic and lysogenic viral communities of thermophilic phototrophic microbial mats (PMMs) remain largely unexplored. In this work, we use the power of viral metagenomics to reveal changes in the viral community following a mitomycin C induction experiment in PMMs. The importance of our research is that it will improve our understanding of viral lifestyles in PMMs via exploring the differences in the composition of natural and induced viral communities at the genome and gene levels. This novel information will contribute to deciphering which biotic and abiotic factors may control the transitions between lytic and lysogenic cycles in these extreme environments.
Collapse
|
11
|
Sorensen JW, Zinke LA, ter Horst AM, Santos-Medellín C, Schroeder A, Emerson JB. DNase Treatment Improves Viral Enrichment in Agricultural Soil Viromes. mSystems 2021; 6:e0061421. [PMID: 34491084 PMCID: PMC8547471 DOI: 10.1128/msystems.00614-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
The small genomes of most viruses make it difficult to fully capture viral diversity in metagenomes dominated by DNA from cellular organisms. Viral size fraction metagenomics (viromics) protocols facilitate the enrichment of viral DNA from environmental samples, and these protocols typically include DNase treatment of the post-0.2-μm-filtered viromic fraction to remove contaminating free DNA prior to virion lysis. However, DNase may also remove desirable viral genomic DNA (e.g., contained in virions compromised due to frozen storage or laboratory processing), suggesting that DNase-untreated viromes might be useful in some cases. In order to understand how virome preparation with and without DNase treatment influences the resultant data, here, we compared 15 soil viromes (7 DNase treated and 8 untreated) from 8 samples collected from agricultural fields prior to tomato planting. DNase-treated viromes yielded significantly more assembled viral contigs, contained significantly less nonviral microbial DNA, and recovered more viral populations (viral operational taxonomic units [vOTUs]) through read mapping. However, DNase-treated and untreated viromes were statistically indistinguishable in terms of ecological patterns across viral communities. Although the results suggest that DNase treatment is preferable where possible, in comparison to previously reported total metagenomes from the same samples, both DNase-treated and untreated viromes were significantly enriched in viral signatures by all metrics compared, including a 225-times-higher proportion of viral reads in untreated viromes compared to total metagenomes. Thus, even without DNase treatment, viromics was preferable to total metagenomics for capturing viral diversity in these soils, suggesting that preparation of DNase-untreated viromes can be worthwhile when DNase treatment is not possible. IMPORTANCE Viromics is becoming an increasingly popular method for characterizing soil viral communities. DNase treatment of the viral size fraction prior to DNA extraction is meant to reduce contaminating free DNA and is a common step within viromics protocols to ensure that sequences are of viral origin. However, some samples may not be amenable to DNase treatment due to viral particles being compromised either in storage (i.e., frozen) or during other sample processing steps. To date, the effect of DNase treatment on the recovery of viruses and downstream ecological interpretations of soil viral communities is not thoroughly understood. This work sheds light on these questions and indicates that while DNase treatment of soil viromes improves the recovery of viral populations, this improvement is modest in comparison to the gains made by viromics over total soil metagenomics. Furthermore, DNase treatment may not be necessary to observe the ecological patterns structuring soil viral communities.
Collapse
Affiliation(s)
- Jackson W. Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Laura A. Zinke
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Anneliek M. ter Horst
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | | | - Alena Schroeder
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
- Genome Center, University of California, Davis, Davis, California, USA
| |
Collapse
|
12
|
Viral footprints across Gulfs of Kathiawar Peninsula and Arabian Sea: Unraveled from pelagic sediment metagenomic data. Virus Res 2021; 302:198485. [PMID: 34146609 DOI: 10.1016/j.virusres.2021.198485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Marine biosphere is one of the largest, diverse and dynamic system hosting numerous of microorganisms. Viruses being the most abundant under explored lifeforms in ocean, represent a reservoir of great genetic diversity. We report the metagenomic insights on the viral communities in the deep sediments of the two Gulfs of Gujarat i.e. Gulf of Khambhat and Gulf of Kutch, with one sample from Arabian Sea, treated as open sea control. The viral reads were filtered from the whole dataset, assembled and studied for viral diversity, which was visualized by Pavian. The sequences were checked for the viral abundance, diversity and functionality. The resulting viral taxonomic classification contained 6 orders, 8 families and 47 genera. The results revealed that the phages infecting Cyanobacterium, Bacillus and Vibrio dominated the sediments. Further, it was observed that majority of viral sequences belonged to double-stranded DNA phages. The present study attempts to provide a primary insight of the viral signals and potential genetic content in the Gulfs of Kathiawar.
Collapse
|
13
|
Viruses in Extreme Environments, Current Overview, and Biotechnological Potential. Viruses 2021; 13:v13010081. [PMID: 33430116 PMCID: PMC7826561 DOI: 10.3390/v13010081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.
Collapse
|
14
|
Palmer M, Hedlund BP, Roux S, Tsourkas PK, Doss RK, Stamereilers C, Mehta A, Dodsworth JA, Lodes M, Monsma S, Glavina del Rio T, Schoenfeld TW, Eloe-Fadrosh EA, Mead DA. Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-Reading Family-A DNA Polymerase. Front Microbiol 2020; 11:583361. [PMID: 33281778 PMCID: PMC7689252 DOI: 10.3389/fmicb.2020.583361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
Despite the high abundance of Aquificae in many geothermal systems, these bacteria are difficult to culture and no viruses infecting members of this phylum have been isolated. Here, we describe the complete, circular dsDNA Uncultivated Virus Genome (UViG) of Thermocrinis Octopus Spring virus (TOSV), derived from metagenomic data, along with eight related UViGs representing three additional viral species. Despite low overall similarity among viruses from different hot springs, the genomes shared a high degree of synteny, and encoded numerous genes for nucleotide metabolism, including a PolA-type DNA polymerase polyprotein with likely accessory functions, a DNA Pol III sliding clamp, a thymidylate kinase, a DNA gyrase, a helicase, and a DNA methylase. Also present were conserved genes predicted to code for phage capsid, large and small subunits of terminase, portal protein, holin, and lytic transglycosylase, all consistent with a distant relatedness to cultivated Caudovirales. These viruses are predicted to infect Aquificae, as multiple CRISPR spacers matching the viral genomes were identified within the genomes and metagenomic contigs from these bacteria. Based on the predicted atypical bi-directional replication strategy, low sequence similarity to known viral genomes, and unique position in gene-sharing networks, we propose a new putative genus, "Pyrovirus," in the order Caudovirales.
Collapse
Affiliation(s)
- Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Philippos K. Tsourkas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Ryan K. Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Casey Stamereilers
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Astha Mehta
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jeremy A. Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Scott Monsma
- Lucigen Corporation, Middleton, WI, United States
| | | | | | | | - David A. Mead
- Varigen Biosciences Corporation, Madison, WI, United States
| |
Collapse
|
15
|
Das S, Kumari A, Sherpa MT, Najar IN, Thakur N. Metavirome and its functional diversity analysis through microbiome study of the Sikkim Himalayan hot spring solfataric mud sediments. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:18-29. [PMID: 34841298 PMCID: PMC8610333 DOI: 10.1016/j.crmicr.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
Viruses are the most prodigious repertory of the genetic material on the earth. They are elusive, breakneck, evolutionary life particles that constitute a riveting concealed world. Environmental viruses have been obscurely explored, and hence, such an intriguing world of viruses was studied in the Himalayan Geothermal Belt of Indian peninsula at Sikkim corridor through hot springs. The hot springs located at the North Sikkim district were selected for the current study. The solfataric mud sediment samples were pooled from both the hot springs. The virus community showed significant diversity among the two hot springs of Yume Samdung. Reads for viruses among the mud sediments at Old Yume Samdung hot springs (OYS) was observed to be 11% and in the case of New Yume Samdung hot springs (NYS) it was 6%. Both the hot springs were abundant in dsDNA viromes. The metavirome reads in both the OYS and NYS hot spring mud sediments showed the predominance of Caudovirales; Herpesvirales; Ortervirales among which viral reads from Siphoviridae, Myoviridae, Phycodnaviridae and Podoviridae were abundantly present. Other viral communities belonged to families like Baculoviridae, Mimiviridae, Parvoviridae, Marseilleviridae etc. Interestingly, in the case of NYS, the unassigned group reads belonged to some unclassified giant DNA viruses like genera Pandoravirus and Pithovirus. Other interesting findings were - reads for Badnavirus having ds (RT-DNA) was exclusively found in NYS whereas Rubulavirus having ss(-)RNA was exclusively found in OYS sample. This is the first ever report on viruses from any hot springs of Sikkim till date.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Ankita Kumari
- Bionivid Technology Private Limited, Bangalore 560043, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| |
Collapse
|
16
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
17
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
18
|
Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MDR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA. A Review on Viral Metagenomics in Extreme Environments. Front Microbiol 2019; 10:2403. [PMID: 31749771 PMCID: PMC6842933 DOI: 10.3389/fmicb.2019.02403] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are the most abundant biological entities in the biosphere, and have the ability to infect Bacteria, Archaea, and Eukaryotes. The virome is estimated to be at least ten times more abundant than the microbiome with 107 viruses per milliliter and 109 viral particles per gram in marine waters and sediments or soils, respectively. Viruses represent a largely unexplored genetic diversity, having an important role in the genomic plasticity of their hosts. Moreover, they also play a significant role in the dynamics of microbial populations. In recent years, metagenomic approaches have gained increasing popularity in the study of environmental viromes, offering the possibility of extending our knowledge related to both virus diversity and their functional characterization. Extreme environments represent an interesting source of both microbiota and their virome due to their particular physicochemical conditions, such as very high or very low temperatures and >1 atm hydrostatic pressures, among others. Despite the fact that some progress has been made in our understanding of the ecology of the microbiota in these habitats, few metagenomic studies have described the viromes present in extreme ecosystems. Thus, limited advances have been made in our understanding of the virus community structure in extremophilic ecosystems, as well as in their biotechnological potential. In this review, we critically analyze recent progress in metagenomic based approaches to explore the viromes in extreme environments and we discuss the potential for new discoveries, as well as methodological challenges and perspectives.
Collapse
Affiliation(s)
- Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hugo G. Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
19
|
Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, Dubilier N, Petersen J. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 2019; 4:2487-2497. [DOI: 10.1038/s41564-019-0572-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
20
|
Heller RC, Chung S, Crissy K, Dumas K, Schuster D, Schoenfeld TW. Engineering of a thermostable viral polymerase using metagenome-derived diversity for highly sensitive and specific RT-PCR. Nucleic Acids Res 2019; 47:3619-3630. [PMID: 30767012 PMCID: PMC6468311 DOI: 10.1093/nar/gkz104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/02/2022] Open
Abstract
Reverse transcription is an essential initial step in the analysis of RNA for most PCR-based amplification and detection methods. Despite advancements in these technologies, efficient conversion of RNAs that form stable secondary structures and double-stranded RNA targets remains challenging as retroviral-derived reverse transcriptases are often not sufficiently thermostable to catalyze synthesis at temperatures high enough to completely relax these structures. Here we describe the engineering and improvement of a thermostable viral family A polymerase with inherent reverse transcriptase activity for use in RT-PCR. Using the 3173 PyroPhage polymerase, previously identified from hot spring metagenomic sampling, and additional thermostable orthologs as a source of natural diversity, we used gene shuffling for library generation and screened for novel variants that retain high thermostability and display elevated reverse transcriptase activity. We then created a fusion enzyme between a high-performing variant polymerase and the 5′→3′ nuclease domain of Taq DNA polymerase that provided compatibility with probe-based detection chemistries and enabled highly sensitive detection of structured RNA targets. This technology enables a flexible single-enzyme RT-PCR system that has several advantages compared with standard heat-labile reverse transcription methods.
Collapse
Affiliation(s)
- Ryan C Heller
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Suhman Chung
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Katarzyna Crissy
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Kyle Dumas
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - David Schuster
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| | - Thomas W Schoenfeld
- Department of Research and Development, QIAGEN Beverly, 100 Cummings Center, Suite 407J, Beverly, MA 01915, USA
| |
Collapse
|
21
|
Survey of high-resolution archaeal virus structures. Curr Opin Virol 2019; 36:74-83. [PMID: 31238245 DOI: 10.1016/j.coviro.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
Archaeal viruses exhibit diverse morphologies whose structures are just beginning to be explored at high-resolution. In this review, we update recent findings on archaeal structural proteins and virion architectures and place them in the biological context in which these viruses replicate. We conclude that many of the unusual structural features and dynamics of archaeal viruses aid their replication and survival in the chemically harsh environments, in which they replicate. Furthermore, we should expect to find more novel features from examining the high-resolution structures of additional archaeal viruses.
Collapse
|
22
|
Liu Y, Brandt D, Ishino S, Ishino Y, Koonin EV, Kalinowski J, Krupovic M, Prangishvili D. New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environ Microbiol 2019; 21:2002-2014. [PMID: 30451355 PMCID: PMC11128462 DOI: 10.1111/1462-2920.14479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | - David Brandt
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jörn Kalinowski
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Mart Krupovic
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | | |
Collapse
|
23
|
Hamza IA, Bibby K. Critical issues in application of molecular methods to environmental virology. J Virol Methods 2019; 266:11-24. [PMID: 30659861 DOI: 10.1016/j.jviromet.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
Waterborne diseases have significant public health and socioeconomic implications worldwide. Many viral pathogens are commonly associated with water-related diseases, namely enteric viruses. Also, novel recently discovered human-associated viruses have been shown to be a causative agent of gastroenteritis or other clinical symptoms. A wide range of analytical methods is available for virus detection in environmental water samples. Viral isolation is historically carried out via propagation on permissive cell lines; however, some enteric viruses are difficult or not able to propagate on existing cell lines. Real-time polymerase chain reaction (qPCR) screening of viral nucleic acid is routinely used to investigate virus contamination in water due to the high sensitivity and specificity. Additionally, the introduction of metagenomic approaches into environmental virology has facilitated the discovery of viruses that cannot be grown in cell culture. This review (i) highlights the applications of molecular techniques in environmental virology such as PCR and its modifications to overcome the critical issues associated with the inability to discriminate between infectious viruses and nonviable viruses, (ii) outlines the strengths and weaknesses of Nucleic Acid Sequence Based Amplification (NASBA) and microarray, (iii) discusses the role of digital PCR as an emerging water quality monitoring assay and its advantages over qPCR, (iv) addresses the viral metagenomics in terms of detecting emerging viral pathogens and diversity in aquatic environment. Indeed, there are many challenges for selecting methods to detect classic and emerging viruses in environmental samples. While the existing techniques have revealed the importance and diversity of viruses in the water environment, further developments are necessary to enable more rapid and accurate methodologies for viral water quality monitoring and regulation.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, USA
| |
Collapse
|
24
|
Stal LJ, Bolhuis H, Cretoiu MS. Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ Microbiol 2018; 21:1529-1551. [PMID: 30507057 DOI: 10.1111/1462-2920.14494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023]
Abstract
Phototrophic biofilms are multispecies, self-sustaining and largely closed microbial ecosystems. They form macroscopic structures such as microbial mats and stromatolites. These sunlight-driven consortia consist of a number of functional groups of microorganisms that recycle the elements internally. Particularly, the sulfur cycle is discussed in more detail as this is fundamental to marine benthic microbial communities and because recently exciting new insights have been obtained. The cycling of elements demands a tight tuning of the various metabolic processes and require cooperation between the different groups of microorganisms. This is likely achieved through cell-to-cell communication and a biological clock. Biofilms may be considered as a macroscopic biological entity with its own physiology. We review the various components of some marine phototrophic biofilms and discuss their roles in the system. The importance of extracellular polymeric substances (EPS) as the matrix for biofilm metabolism and as substrate for biofilm microorganisms is discussed. We particularly assess the importance of extracellular DNA, horizontal gene transfer and viruses for the generation of genetic diversity and innovation, and for rendering resilience to external forcing to these biological entities.
Collapse
Affiliation(s)
- Lucas J Stal
- IBED Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Mariana S Cretoiu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| |
Collapse
|
25
|
Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA Polymerase Phylogeny Uncovers Diversity and Replication Gene Organization in the Virioplankton. Front Microbiol 2018; 9:3053. [PMID: 30619142 PMCID: PMC6302109 DOI: 10.3389/fmicb.2018.03053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Shotgun metagenomics, which allows for broad sampling of viral diversity, has uncovered genes that are widely distributed among virioplankton populations and show linkages to important biological features of unknown viruses. Over 25% of known dsDNA phage carry the DNA polymerase I (polA) gene, making it one of the most widely distributed phage genes. Because of its pivotal role in DNA replication, this enzyme is linked to phage lifecycle characteristics. Previous research has suggested that a single amino acid substitution might be predictive of viral lifestyle. In this study Chesapeake Bay virioplankton were sampled by shotgun metagenomic sequencing (using long and short read technologies). More polA sequences were predicted from this single viral metagenome (virome) than from 86 globally distributed virome libraries (ca. 2,100, and 1,200, respectively). The PolA peptides predicted from the Chesapeake Bay virome clustered with 69% of PolA peptides from global viromes; thus, remarkably the Chesapeake Bay virome captured the majority of known PolA peptide diversity in viruses. This deeply sequenced virome also expanded the diversity of PolA sequences, increasing the number of PolA clusters by 44%. Contigs containing polA sequences were also used to examine relationships between phylogenetic clades of PolA and other genes within unknown viral populations. Phylogenic analysis revealed five distinct groups of phages distinguished by the amino acids at their 762 (Escherichia coli IAI39 numbering) positions and replication genes. DNA polymerase I sequences from Tyr762 and Phe762 groups were most often neighbored by ring-shaped superfamily IV helicases and ribonucleotide reductases (RNRs). The Leu762 groups had non-ring shaped helicases from superfamily II and were further distinguished by an additional helicase gene from superfamily I and the lack of any identifiable RNR genes. Moreover, we found that the inclusion of ribonucleotide reductase associated with PolA helped to further differentiate phage diversity, chiefly within lytic podovirus populations. Altogether, these data show that DNA Polymerase I is a useful marker for observing the diversity and composition of the virioplankton and may be a driving factor in the divergence of phage replication components.
Collapse
Affiliation(s)
- Daniel J Nasko
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jessica Chopyk
- School of Public Health, University of Maryland, College Park, MD, United States
| | - Eric G Sakowski
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
26
|
Sharma A, Schmidt M, Kiesel B, Mahato NK, Cralle L, Singh Y, Richnow HH, Gilbert JA, Arnold W, Lal R. Bacterial and Archaeal Viruses of Himalayan Hot Springs at Manikaran Modulate Host Genomes. Front Microbiol 2018; 9:3095. [PMID: 30619174 PMCID: PMC6302217 DOI: 10.3389/fmicb.2018.03095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Hot spring-associated viruses, particularly the archaeal viruses, remain under-examined compared to bacteriophages. Previous metagenomic studies of the Manikaran hot springs in India suggested an abundance of viral DNA, which prompted us to examine the virus–host (bacterial and archaeal) interactions in sediment and microbial mat samples collected from the thermal discharges. Here, we characterize the viruses (both bacterial and archaeal) from this Himalayan hot spring using both metagenomics assembly and electron microscopy. We utilized four shotgun samples from sediment (78–98°C) and two from microbial mats (50°C) to reconstruct 65 bacteriophage genomes (24–200 kb). We also identified 59 archaeal viruses that were notably abundant across the sediment samples. Whole-genome analyses of the reconstructed bacteriophage genomes revealed greater genomic conservation in sediments (65%) compared to microbial mats (49%). However, a minimal phage genome was still maintained across both sediment and microbial mats suggesting a common origin. To complement the metagenomic data, scanning-electron and helium-ion microscopy were used to reveal diverse morphotypes of Caudovirales and archaeal viruses. The genome level annotations provide further evidence for gene-level exchange between virus and host in these hot springs, and augments our knowledgebase for bacteriophages, archaeal viruses and Clustered Regularly Interspaced Short Palindromic Repeat cassettes, which provide a critical resource for studying viromes in extreme natural environments.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Zoology, University of Delhi, New Delhi, India.,Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Bärbel Kiesel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nitish K Mahato
- Department of Zoology, University of Delhi, New Delhi, India
| | - Lauren Cralle
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jack A Gilbert
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
27
|
Kaushal G, Kumar J, Sangwan RS, Singh SP. Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int J Biol Macromol 2018; 119:882-895. [DOI: 10.1016/j.ijbiomac.2018.07.196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
28
|
Guajardo-Leiva S, Pedrós-Alió C, Salgado O, Pinto F, Díez B. Active Crossfire Between Cyanobacteria and Cyanophages in Phototrophic Mat Communities Within Hot Springs. Front Microbiol 2018; 9:2039. [PMID: 30233525 PMCID: PMC6129581 DOI: 10.3389/fmicb.2018.02039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023] Open
Abstract
Cyanophages are viruses with a wide distribution in aquatic ecosystems, that specifically infect Cyanobacteria. These viruses can be readily isolated from marine and fresh waters environments; however, their presence in cosmopolitan thermophilic phototrophic mats remains largely unknown. This study investigates the morphological diversity (TEM), taxonomic composition (metagenomics), and active infectivity (metatranscriptomics) of viral communities over a thermal gradient in hot spring phototrophic mats from Northern Patagonia (Chile). The mats were dominated (up to 53%) by cosmopolitan thermophilic filamentous true-branching cyanobacteria from the genus Mastigocladus, the associated viral community was predominantly composed of Caudovirales (70%), with most of the active infections driven by cyanophages (up to 90% of Caudovirales transcripts). Metagenomic assembly lead to the first full genome description of a T7-like Thermophilic Cyanophage recovered from a hot spring (Porcelana Hot Spring, Chile), with a temperature of 58°C (TC-CHP58). This could potentially represent a world-wide thermophilic lineage of podoviruses that infect cyanobacteria. In the hot spring, TC-CHP58 was active over a temperature gradient from 48 to 66°C, showing a high population variability represented by 1979 single nucleotide variants (SNVs). TC-CHP58 was associated to the Mastigocladus spp. by CRISPR spacers. Marked differences in metagenomic CRISPR loci number and spacers diversity, as well as SNVs, in the TC-CHP58 proto-spacers at different temperatures, reinforce the theory of co-evolution between natural virus populations and cyanobacterial hosts. Considering the importance of cyanobacteria in hot spring biogeochemical cycles, the description of this new cyanopodovirus lineage may have global implications for the functioning of these extreme ecosystems.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Pedrós-Alió
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pinto
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research, Santiago, Chile
| |
Collapse
|
29
|
Zablocki O, van Zyl L, Trindade M. Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles 2018; 22:827-837. [PMID: 30121708 DOI: 10.1007/s00792-018-1052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Bacterial viruses ("phages") play important roles in the regulation and evolution of microbial communities in most ecosystems. Terrestrial hot springs typically contain thermophilic bacterial communities, but the diversity and impacts of its associated viruses ("thermophilic phages") are largely unexplored. Here, we provide a taxonomic overview of phages that have been isolated strictly from terrestrial hot springs around the world. In addition, we placed 17 thermophilic phage genomes in a global phylogenomic context to detect evolutionary patterns. Thermophilic phages have diverse morphologies (e.g., tailed, filamentous), unique virion structures (e.g., extremely long tailed siphoviruses), and span five taxonomic families encompassing strictly thermophilic phage genera. Within the phage proteomic tree, six thermophilic phage-related clades were identified, with evident genomic relatedness between thermophilic phages and archaeal viruses. Moreover, whole proteome analyses showed clustering between phages that infect distinct host phyla, such as Firmicutes and Deinococcus-Thermus. The potential for discovery of novel phage-host systems in terrestrial hot springs remain mostly untapped, thus additional emphasis on thermophilic phages in ecological prospecting is encouraged to gain insights into the microbial population dynamics of these environments.
Collapse
Affiliation(s)
- Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Leonardo van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
30
|
Parikka KJ, Jacquet S, Colombet J, Guillaume D, Le Romancer M. Abundance and observations of thermophilic microbial and viral communities in submarine and terrestrial hot fluid systems of the French Southern and Antarctic Lands. Polar Biol 2018. [DOI: 10.1007/s00300-018-2288-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Archaeal Viruses from High-Temperature Environments. Genes (Basel) 2018; 9:genes9030128. [PMID: 29495485 PMCID: PMC5867849 DOI: 10.3390/genes9030128] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.
Collapse
|
32
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
33
|
Song J, Liu C, Mauk MG, Peng J, Schoenfeld T, Bau HH. A Multifunctional Reactor with Dry-Stored Reagents for Enzymatic Amplification of Nucleic Acids. Anal Chem 2018; 90:1209-1216. [PMID: 29226671 PMCID: PMC6310013 DOI: 10.1021/acs.analchem.7b03834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To enable inexpensive molecular detection at the point-of-care and at home with minimal or no instrumentation, it is necessary to streamline unit operations and store reagents refrigeration-free. To address this need, a multifunctional enzymatic amplification reactor that combines solid-phase nucleic acid extraction, concentration, and purification; refrigeration-free storage of reagents with just-in-time release; and enzymatic amplification is designed, prototyped, and tested. A nucleic acid isolation membrane is placed at the reactor's inlet, and paraffin-encapsulated reagents are prestored within the reactor. When a sample mixed with chaotropic agents is filtered through the nucleic acid isolation membrane, the membrane binds nucleic acids from the sample. Importantly, the sample volume is decoupled from the reaction volume, enabling the use of relatively large sample volumes for high sensitivity. When the amplification reactor's temperature increases to its operating level, the paraffin encapsulating the reagents melts and moves out of the way. The reagents are hydrated, just-in-time, and the polymerase reaction proceeds. The amplification process can be monitored, in real-time. We demonstrate our reactors' ability to amplify both DNA and RNA targets using polymerase with both reverse-transcriptase and strand displacement activities to obtain sensitivities on-par with benchtop equipment and a shelf life exceeding 6 months.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jing Peng
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Zablocki O, van Zyl LJ, Kirby B, Trindade M. Diversity of dsDNA Viruses in a South African Hot Spring Assessed by Metagenomics and Microscopy. Viruses 2017; 9:E348. [PMID: 29156552 PMCID: PMC5707555 DOI: 10.3390/v9110348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The current view of virus diversity in terrestrial hot springs is limited to a few sampling sites. To expand our current understanding of hot spring viral community diversity, this study aimed to investigate the first African hot spring (Brandvlei hot spring; 60 °C, pH 5.7) by means of electron microscopy and sequencing of the virus fraction. Microscopy analysis revealed a mixture of regular- and 'jumbo'-sized tailed morphotypes (Caudovirales), lemon-shaped virions (Fuselloviridae-like; salterprovirus-like) and pleiomorphic virus-like particles. Metavirome analysis corroborated the presence of His1-like viruses and has expanded the current clade of salterproviruses using a polymerase B gene phylogeny. The most represented viral contig was to a cyanophage genome fragment, which may underline basic ecosystem functioning provided by these viruses. Furthermore, a putative Gemmata-related phage was assembled with high coverage, a previously undocumented phage-host association. This study demonstrated that a moderately thermophilic spring environment contained a highly novel pool of viruses and should encourage future characterization of a wider temperature range of hot springs throughout the world.
Collapse
Affiliation(s)
- Olivier Zablocki
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, 7535 Bellville, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, 7535 Bellville, South Africa.
| | - Bronwyn Kirby
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, 7535 Bellville, South Africa.
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, 7535 Bellville, South Africa.
| |
Collapse
|
35
|
Mahmoud H, Jose L. Phage and Nucleocytoplasmic Large Viral Sequences Dominate Coral Viromes from the Arabian Gulf. Front Microbiol 2017; 8:2063. [PMID: 29114244 PMCID: PMC5660727 DOI: 10.3389/fmicb.2017.02063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 10/09/2017] [Indexed: 11/25/2022] Open
Abstract
Corals that naturally thrive under extreme conditions are gaining increasing attention due to their importance as living models to understand the impact of global warming on world corals. Here, we present the first metagenomic study of viral communities in corals thriving in a thermally variable water body in which the temperature fluctuates between 11 and 39°C in different seasons. The viral assemblages of two of the most abundant massive (Porites harrisoni) and branching (Acropora downingi) corals in offshore and inshore reef systems in the northern Arabian Gulf were investigated. Samples were collected from five reef systems during summer, autumn and winter of 2011/2012. The two coral viromes contain 12 viral families, including 10 dsDNA viral families [Siphoviridae, Podoviridae, Myoviridae, Phycodnaviridae, Baculoviridae, Herpesviridae, Adenoviridae, Alloherpesviridae, Mimiviridae and one unclassified family], one-ssDNA viral family (Microviridae) and one RNA viral family (Retroviridae). Overall, sequences significantly similar to Podoviridae were the most abundant in the P. harrisoni and A. downingi viromes. Various morphological types of virus-like particles (VLPs) were confirmed in the healthy coral tissue by transmission electron microscopy, including large tailless VLPs and electron-dense core VLPs. Tailed bacteriophages were isolated from coral tissue using a plaque assay. Higher functional gene diversity was recorded in A. downingi than in P. harrisoni, and comparative metagenomics revealed that the Gulf viral assemblages are functionally distinct from Pacific Ocean coral viral communities.
Collapse
Affiliation(s)
- Huda Mahmoud
- Faculty of Science, Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
36
|
Herath D, Jayasundara D, Ackland D, Saeed I, Tang SL, Halgamuge S. Assessing Species Diversity Using Metavirome Data: Methods and Challenges. Comput Struct Biotechnol J 2017; 15:447-455. [PMID: 29085573 PMCID: PMC5650650 DOI: 10.1016/j.csbj.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Assessing biodiversity is an important step in the study of microbial ecology associated with a given environment. Multiple indices have been used to quantify species diversity, which is a key biodiversity measure. Measuring species diversity of viruses in different environments remains a challenge relative to measuring the diversity of other microbial communities. Metagenomics has played an important role in elucidating viral diversity by conducting metavirome studies; however, metavirome data are of high complexity requiring robust data preprocessing and analysis methods. In this review, existing bioinformatics methods for measuring species diversity using metavirome data are categorised broadly as either sequence similarity-dependent methods or sequence similarity-independent methods. The former includes a comparison of DNA fragments or assemblies generated in the experiment against reference databases for quantifying species diversity, whereas estimates from the latter are independent of the knowledge of existing sequence data. Current methods and tools are discussed in detail, including their applications and limitations. Drawbacks of the state-of-the-art method are demonstrated through results from a simulation. In addition, alternative approaches are proposed to overcome the challenges in estimating species diversity measures using metavirome data.
Collapse
Affiliation(s)
- Damayanthi Herath
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
- Department of Computer Engineering, University of Peradeniya, Prof. E. O. E. Pereira Mawatha, Peradeniya, 20400, Sri Lanka
| | - Duleepa Jayasundara
- School of Public Health and Community Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - David Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Isaam Saeed
- Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Melbourne, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Nan-Kang, Taipei 11529, Taiwan
| | - Saman Halgamuge
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, ACT, Australia
| |
Collapse
|
37
|
Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 2017; 5:e3817. [PMID: 28948103 PMCID: PMC5610896 DOI: 10.7717/peerj.3817] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Viral metagenomics (viromics) is increasingly used to obtain uncultivated viral genomes, evaluate community diversity, and assess ecological hypotheses. While viromic experimental methods are relatively mature and widely accepted by the research community, robust bioinformatics standards remain to be established. Here we used in silico mock viral communities to evaluate the viromic sequence-to-ecological-inference pipeline, including (i) read pre-processing and metagenome assembly, (ii) thresholds applied to estimate viral relative abundances based on read mapping to assembled contigs, and (iii) normalization methods applied to the matrix of viral relative abundances for alpha and beta diversity estimates. Results Tools specifically designed for metagenomes, specifically metaSPAdes, MEGAHIT, and IDBA-UD, were the most effective at assembling viromes. Read pre-processing, such as partitioning, had virtually no impact on assembly output, but may be useful when hardware is limited. Viral populations with 2–5 × coverage typically assembled well, whereas lesser coverage led to fragmented assembly. Strain heterogeneity within populations hampered assembly, especially when strains were closely related (average nucleotide identity, or ANI ≥97%) and when the most abundant strain represented <50% of the population. Viral community composition assessments based on read recruitment were generally accurate when the following thresholds for detection were applied: (i) ≥10 kb contig lengths to define populations, (ii) coverage defined from reads mapping at ≥90% identity, and (iii) ≥75% of contig length with ≥1 × coverage. Finally, although data are limited to the most abundant viruses in a community, alpha and beta diversity patterns were robustly estimated (±10%) when comparing samples of similar sequencing depth, but more divergent (up to 80%) when sequencing depth was uneven across the dataset. In the latter cases, the use of normalization methods specifically developed for metagenomes provided the best estimates. Conclusions These simulations provide benchmarks for selecting analysis cut-offs and establish that an optimized sample-to-ecological-inference viromics pipeline is robust for making ecological inferences from natural viral communities. Continued development to better accessing RNA, rare, and/or diverse viral populations and improved reference viral genome availability will alleviate many of viromics remaining limitations.
Collapse
Affiliation(s)
- Simon Roux
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Joanne B Emerson
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Emiley A Eloe-Fadrosh
- Joint Genome Institute, Department of Energy, Walnut Creek, CA, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
38
|
An Insight into Phage Diversity at Environmental Habitats using Comparative Metagenomics Approach. Curr Microbiol 2017; 75:132-141. [PMID: 28929212 DOI: 10.1007/s00284-017-1357-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Bacteriophages play significant role in driving microbial diversity; however, little is known about the diversity of phages in different ecosystems. A dynamic predator-prey mechanism called "kill the winner" suggests the elimination of most active bacterial populations through phages. Thus, interaction between phage and host has an effect on the composition of microbial communities in ecosystems. In this study, secondary phage metagenome data from aquatic habitats: wastewater treatment plant (WWTP), fresh, marine, and hot water spring habitat were analyzed using MG-RAST and STAMP tools to explore the diversity of the viruses. Differential relative abundance of phage families-Siphoviridae (34%) and Myoviridae (26%) in WWTP, Myoviridae (30%) and Podoviridae (23%) in fresh water, and Myoviridae (41%) and Podoviridae (8%) in marine-was found to be a discriminating factor among four habitats while Rudiviridae (9%), Globuloviridae (8%), and Lipothrixviridae (1%) were exclusively observed in hot water spring. Subsequently, at genera level, Bpp-1-like virus, Chlorovirus, and T4-like virus were found abundant in WWTP, fresh, and marine habitat, respectively. PCA analysis revealed completely disparate composition of phage in hot water spring from other three ecosystems. Similar analysis of relative abundance of functional features corroborated observations from taxa analysis. Functional features corresponding to phage packaging machinery, replication, integration and excision, and gene transfer discriminated among four habitats. The comparative metagenomics approach exhibited genetically distinct phage communities among four habitats. Results revealed that selective distribution of phage communities would help in understanding the role of phages in food chains, nutrient cycling, and microbial ecology. Study of specific phages would also help in controlling environmental pathogens including MDR bacterial populations using phage therapy approach by selective mining and isolation of phages against specific pathogens persisting in a given environment.
Collapse
|
39
|
Corinaldesi C, Tangherlini M, Dell'Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Sci Rep 2017; 7:8355. [PMID: 28827715 PMCID: PMC5566222 DOI: 10.1038/s41598-017-08783-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Viruses are the most abundant and, likely, one of the most diverse biological components in the oceans. By infecting their hosts, they play key roles in biogeochemical cycles and ecosystem functioning at a global scale. The ocean interior hosts most of the microbial life, and, despite deep-sea sediments represent the main repository of this component and the largest biome on Earth, viral diversity in these ecosystems remains almost completely unknown. We compared a physical-chemical procedure and a previously published sediment washing-based procedure for isolating viruses from benthic deep-sea ecosystems to generate viromes through high-throughput sequencing. The procedure based on a physical-chemical dislodgment of viral particles from the sediments, followed by vacuum filtration was much more efficient allowing us to recover >85% of the extractable viruses. By using this procedure, a high fraction of viral DNA was recovered and new viromes from different benthic deep-sea sites were generated. Such viromes were diversified in terms of both viral families and putative functions. Overall, the results presented here provide new insights for evaluating benthic deep-sea viral diversity through metagenomic analyses, and reveal that deep-sea sediments are a hot spot of novel viral genotypes and functions.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Michael Tangherlini
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
40
|
Orosco FL, Lluisma AO. Variation in virome diversity in wild populations of Penaeus monodon (Fabricius 1798) with emphasis on pathogenic viruses. Virusdisease 2017; 28:262-271. [PMID: 29291212 DOI: 10.1007/s13337-017-0389-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022] Open
Abstract
Marine animals typically harbor a community of viruses, a number of which are known to cause diseases. In shrimp aquaculture, viral pathogens are the principal causes of major economic losses. However, the composition of the viral load of shrimps in wild population is poorly known. In this study, we explored the viral diversity in the microbiome of wild Penaeus monodon collected from six sites in the Philippines, with a view to detecting pathogenic forms. We employed a metagenomic approach via particle-associated nucleic acid isolation, sequence-independent single primer amplification, and pyrosequencing. Virome analysis of shrimp samples from different sites revealed distinct virome profiles, and hence significant differences in diversity, among the various sites based on number of OTUs, Shannon-Weaver Index, and Inverse Simpson Index. Sequences of key shrimp pathogens were detected such as the white spot syndrome virus (WSSV), and Penaeus stylirostris densovirus (PstDV). However, the patterns of distribution of the pathogenic viruses varied; whereas WSSV was found only in three out of six sites and PstDV were found in all but one site. The results also revealed shrimp-associated viruses that have not yet been observed in P. monodon such as avian virus-like, insect virus-like, plankton virus-like and bacteriophage-like sequences. Despite the diverse array of viruses detected in the study, a large proportion remains unidentified (i.e., similarity to sequences in the database was lower than the threshold required for definitive identification), and therefore could represent unexplored virus sequences and viral genomes in the environment.
Collapse
Affiliation(s)
- Fredmoore L Orosco
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines.,Institute of Biology, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| | - Arturo O Lluisma
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
41
|
Rastrojo A, Alcamí A. Aquatic viral metagenomics: Lights and shadows. Virus Res 2016; 239:87-96. [PMID: 27889617 DOI: 10.1016/j.virusres.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Viruses are the most abundant biological entities on Earth, exceeding bacteria in most of the ecosystems. Specially in oceans, viruses are thought to be the major planktonic predators shaping microorganism communities and controlling ocean biological capacity. Plankton lysis by viruses plays an important role in ocean nutrient and energy cycles. Viral metagenomics has emerged as a powerful tool to uncover viral diversity in aquatic ecosystems through the use of Next Generation Sequencing. However, many of the commonly used viral sample preparation steps have several important biases that must be considered to avoid a misinterpretation of the results. In addition to biases caused by the purification of virus particles, viral DNA/RNA amplification and the preparation of genomic libraries could also introduce biases, and a detailed knowledge about such protocols is required. In this review, the main steps in the viral metagenomic workflow are described paying special attention to the potential biases introduced by each one.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
42
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
43
|
Davison M, Treangen TJ, Koren S, Pop M, Bhaya D. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers. PLoS One 2016; 11:e0160574. [PMID: 27611571 PMCID: PMC5017753 DOI: 10.1371/journal.pone.0160574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP) are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2–13), Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838) domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.
Collapse
Affiliation(s)
- Michelle Davison
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| | - Todd J. Treangen
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Sergey Koren
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
- Department of Computer Science, University of Maryland, College Park, MD, 20742, United States of America
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| |
Collapse
|
44
|
Uyaguari-Diaz MI, Chan M, Chaban BL, Croxen MA, Finke JF, Hill JE, Peabody MA, Van Rossum T, Suttle CA, Brinkman FSL, Isaac-Renton J, Prystajecky NA, Tang P. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. MICROBIOME 2016; 4:20. [PMID: 27391119 PMCID: PMC5011856 DOI: 10.1186/s40168-016-0166-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/04/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Studies of environmental microbiota typically target only specific groups of microorganisms, with most focusing on bacteria through taxonomic classification of 16S rRNA gene sequences. For a more holistic understanding of a microbiome, a strategy to characterize the viral, bacterial, and eukaryotic components is necessary. RESULTS We developed a method for metagenomic and amplicon-based analysis of freshwater samples involving the concentration and size-based separation of eukaryotic, bacterial, and viral fractions. Next-generation sequencing and culture-independent approaches were used to describe and quantify microbial communities in watersheds with different land use in British Columbia. Deep amplicon sequencing was used to investigate the distribution of certain viruses (g23 and RdRp), bacteria (16S rRNA and cpn60), and eukaryotes (18S rRNA and ITS). Metagenomic sequencing was used to further characterize the gene content of the bacterial and viral fractions at both taxonomic and functional levels. CONCLUSION This study provides a systematic approach to separate and characterize eukaryotic-, bacterial-, and viral-sized particles. Methodologies described in this research have been applied in temporal and spatial studies to study the impact of land use on watershed microbiomes in British Columbia.
Collapse
Affiliation(s)
- Miguel I. Uyaguari-Diaz
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Michael Chan
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Bonnie L. Chaban
- South Kensington Campus, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ UK
| | - Matthew A. Croxen
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Jan F. Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Michael A. Peabody
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8 Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Judith Isaac-Renton
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Natalie A. Prystajecky
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| |
Collapse
|
45
|
Tangherlini M, Dell'Anno A, Zeigler Allen L, Riccioni G, Corinaldesi C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci Rep 2016; 6:28428. [PMID: 27329207 PMCID: PMC4916513 DOI: 10.1038/srep28428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022] Open
Abstract
In benthic deep-sea ecosystems, which represent the largest biome on Earth, viruses have a recognised key ecological role, but their diversity is still largely unknown. Identifying the taxonomic composition of viruses is crucial for understanding virus-host interactions, their role in food web functioning and evolutionary processes. Here, we compared the performance of various bioinformatic tools (BLAST, MG-RAST, NBC, VMGAP, MetaVir, VIROME) for analysing the viral taxonomic composition in simulated viromes and viral metagenomes from different benthic deep-sea ecosystems. The analyses of simulated viromes indicate that all the BLAST tools, followed by MetaVir and VMGAP, are more reliable in the affiliation of viral sequences and strains. When analysing the environmental viromes, tBLASTx, MetaVir, VMGAP and VIROME showed a similar efficiency of sequence annotation; however, MetaVir and tBLASTx identified a higher number of viral strains. These latter tools also identified a wider range of viral families than the others, providing a wider view of viral taxonomic diversity in benthic deep-sea ecosystems. Our findings highlight strengths and weaknesses of available bioinformatic tools for investigating the taxonomic diversity of viruses in benthic ecosystems in order to improve our comprehension of viral diversity in the oceans and its relationships with host diversity and ecosystem functioning.
Collapse
Affiliation(s)
- M Tangherlini
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - A Dell'Anno
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - L Zeigler Allen
- Microbial and Environmental Genomics, J Craig Venter Institute, San Diego, CA, USA
| | - G Riccioni
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - C Corinaldesi
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
46
|
Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism. Extremophiles 2016; 20:525-36. [DOI: 10.1007/s00792-016-0846-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
47
|
Colangelo-Lillis J, Wing BA, Whyte LG. Low viral predation pressure in cold hypersaline Arctic sediments and limits on lytic replication. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:250-260. [PMID: 26743115 DOI: 10.1111/1758-2229.12375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Viruses are ubiquitous drivers of microbial ecology and evolution and contribute to biogeochemical cycling. Attention to these attributes has been more substantial for marine viruses than viruses of other environments. Microscopy-based investigation of the viral communities from two cold, hypersaline Arctic springs was undertaken to explore the effects of these conditions on microbe-viral ecology. Sediments and water samples were collected along transects from each spring, from anoxic spring outlets through oxygenated downstream channels. Viral abundance, virus-microbe ratios and modelled virus-microbe contact rates were lower than comparable aqueous and sedimentary environments and most similar to deep subsurface sediments. No individual cell from either spring was visibly infected. Viruses in these springs appear to play a smaller role in controlling microbial populations through lytic activity than in marine water column or surface sedimentary environments. Relief from viral predation indicates the microbial communities are primarily controlled by nutrient limitation. The similarity of these springs to deep subsurface sediments suggests a biogeographic divide in viral replication strategy in marine sediments.
Collapse
Affiliation(s)
- Jesse Colangelo-Lillis
- Earth and Planetary Science, McGill University, Montreal, Quebec, H3A 0E8, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
| | - Boswell A Wing
- Earth and Planetary Science, McGill University, Montreal, Quebec, H3A 0E8, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
| | - Lyle G Whyte
- McGill Space Institute, McGill University, Montreal, Quebec, H3A 2A7, Canada
- Natural Resource Science, McGill University, St-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
48
|
Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China. Viruses 2016; 8:v8020035. [PMID: 26848678 PMCID: PMC4776190 DOI: 10.3390/v8020035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14% ± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| |
Collapse
|
49
|
Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods. J Virol 2016; 90:3458-68. [PMID: 26763997 DOI: 10.1128/jvi.03098-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In this research, we report a virus-centered approach to virus discovery and characterization, linking viral metagenomic sequences to a virus particle, its sequenced genome, and its host directly in environmental samples, without using culture-dependent methods. This approach provides a pathway for the discovery, isolation, and characterization of new viruses. While this study used an acidic hot spring environment to characterize a new archaeal virus, Acidianus tailed spindle virus (ATSV), the approach can be generally applied to any environment to expand knowledge of virus diversity in all three domains of life.
Collapse
|
50
|
Adriaenssens EM, van Zyl LJ, Cowan DA, Trindade MI. Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses 2016; 8:v8010014. [PMID: 26761024 PMCID: PMC4728574 DOI: 10.3390/v8010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| |
Collapse
|