1
|
Ouboter HT, Arshad A, Berger S, Saucedo Sanchez JG, Op den Camp HJM, Jetten MSM, Welte CU, Kurth JM. Acetate and Acetyl-CoA Metabolism of ANME-2 Anaerobic Archaeal Methanotrophs. Appl Environ Microbiol 2023; 89:e0036723. [PMID: 37272802 PMCID: PMC10304654 DOI: 10.1128/aem.00367-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Acetyl-CoA synthetase (ACS) and acetate ligase (ACD) are widespread among microorganisms, including archaea, and play an important role in their carbon metabolism, although only a few of these enzymes have been characterized. Anaerobic methanotrophs (ANMEs) have been reported to convert methane anaerobically into CO2, polyhydroxyalkanoate, and acetate. Furthermore, it has been suggested that they might be able to use acetate for anabolism or aceticlastic methanogenesis. To better understand the potential acetate metabolism of ANMEs, we characterized an ACS from ANME-2a as well as an ACS and an ACD from ANME-2d. The conversion of acetate into acetyl-CoA (Vmax of 8.4 μmol mg-1 min-1 and Km of 0.7 mM acetate) by the monomeric 73.8-kDa ACS enzyme from ANME-2a was more favorable than the formation of acetate from acetyl-CoA (Vmax of 0.4 μmol mg-1 min-1 and Km of 0.2 mM acetyl-CoA). The monomeric 73.4-kDa ACS enzyme from ANME-2d had similar Vmax values for both directions (Vmax,acetate of 0.9 μmol mg-1 min-1 versus Vmax,acetyl-CoA of 0.3 μmol mg-1 min-1). The heterotetrameric ACD enzyme from ANME-2d was active solely in the acetate-producing direction. Batch incubations of an enrichment culture dominated by ANME-2d fed with 13C2-labeled acetate produced 3 μmol of [13C]methane in 7 days, suggesting that this anaerobic methanotroph might have the potential to reverse its metabolism and perform aceticlastic methanogenesis using ACS to activate acetate albeit at low rates (2 nmol g [dry weight]-1 min-1). Together, these results show that ANMEs may have the potential to use acetate for assimilation as well as to use part of the surplus acetate for methane production. IMPORTANCE Acetyl-CoA plays a key role in carbon metabolism and is found at the junction of many anabolic and catabolic reactions. This work describes the biochemical properties of ACS and ACD enzymes from ANME-2 archaea. This adds to our knowledge of archaeal ACS and ACD enzymes, only a few of which have been characterized to date. Furthermore, we validated the in situ activity of ACS in ANME-2d, showing the conversion of acetate into methane by an enrichment culture dominated by ANME-2d.
Collapse
Affiliation(s)
- Heleen T. Ouboter
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Arslan Arshad
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
| | - Stefanie Berger
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Jesus Gerardo Saucedo Sanchez
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
| | - Huub J. M. Op den Camp
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
| | - Mike S. M. Jetten
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Cornelia U. Welte
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Julia M. Kurth
- Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
- Microcosm Earth Center, Philipps-Universität Marburg and Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Cummings S, Ardor Bellucci LM, Seabrook S, Raineault NA, McPhail KL, Thurber AR. Variations and gradients between methane seep and off-seep microbial communities in a submarine canyon system in the Northeast Pacific. PeerJ 2023; 11:e15119. [PMID: 37009161 PMCID: PMC10064993 DOI: 10.7717/peerj.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46-47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats.
Collapse
Affiliation(s)
- Susie Cummings
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States of America
| | - Lila M. Ardor Bellucci
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Sarah Seabrook
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | | | - Kerry L. McPhail
- College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Andrew R. Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
3
|
Benito Merino D, Zehnle H, Teske A, Wegener G. Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane. Front Microbiol 2022; 13:988871. [PMID: 36212815 PMCID: PMC9539880 DOI: 10.3389/fmicb.2022.988871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023] Open
Abstract
In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
4
|
Wegener G, Laso-Pérez R, Orphan VJ, Boetius A. Anaerobic Degradation of Alkanes by Marine Archaea. Annu Rev Microbiol 2022; 76:553-577. [PMID: 35917471 DOI: 10.1146/annurev-micro-111021-045911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alkanes are saturated apolar hydrocarbons that range from its simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Current affiliation: Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Victoria J Orphan
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Division of Geological and Planetary Sciences and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University Bremen, Bremen, Germany; , .,Max Planck Institute for Marine Microbiology, Bremen, Germany.,Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
5
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
7
|
Wang G, Olofsson-Dolk M, Hansson FG, Donati S, Li X, Chang H, Cheng J, Dahlin J, Borodina I. Engineering Yeast Yarrowia lipolytica for Methanol Assimilation. ACS Synth Biol 2021; 10:3537-3550. [PMID: 34797975 DOI: 10.1021/acssynbio.1c00464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conferring methylotrophy on industrial microorganisms would enable the production of diverse products from one-carbon feedstocks and contribute to establishing a low-carbon society. Rebuilding methylotrophs, however, requires a thorough metabolic refactoring and is highly challenging. Only recently was synthetic methylotrophy achieved in model microorganisms─Escherichia coli and baker's yeast Saccharomyces cerevisiae. Here, we have engineered industrially important yeast Yarrowia lipolytica to assimilate methanol. Through rationally constructing a chimeric assimilation pathway, rewiring the native metabolism for improved precursor supply, and laboratory evolution, we improved the methanol assimilation from undetectable to a level of 1.1 g/L per 72 h and enabled methanol-supported cellular maintenance. By transcriptomic analysis, we further found that fine-tuning of methanol assimilation and ribulose monophosphate/xylulose monophosphate (RuMP/XuMP) regeneration and strengthening formate dehydrogenation and the serine pathway were beneficial for methanol assimilation. This work paves the way for creating synthetic methylotrophic yeast cell factories for low-carbon economy.
Collapse
Affiliation(s)
- Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mattis Olofsson-Dolk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Frederik Gleerup Hansson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaolin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hong Chang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
8
|
Allen KD, Wegener G, Matthew Sublett D, Bodnar RJ, Feng X, Wendt J, White RH. Biogenic formation of amorphous carbon by anaerobic methanotrophs and select methanogens. SCIENCE ADVANCES 2021; 7:eabg9739. [PMID: 34705502 PMCID: PMC8550235 DOI: 10.1126/sciadv.abg9739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/08/2021] [Indexed: 06/01/2023]
Abstract
Elemental carbon exists in different structural forms including graphite, diamond, fullerenes, and amorphous carbon. In nature, these materials are produced through abiotic chemical processes under high temperature and pressure but are considered generally inaccessible to biochemical synthesis or breakdown. Here, we identified and characterized elemental carbon isolated from consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), which together carry out the anaerobic oxidation of methane (AOM). Two different AOM consortia, ANME-1a/HotSeep-1 and ANME-2a/c/Seep-SRB, produce a black material with similar characteristics to disordered graphite and amorphous carbon. Stable isotope probing studies revealed that the carbon is microbially generated during AOM. In addition, we found that select methanogens also produce amorphous carbon with similar characteristics to the carbon from AOM consortia. Biogenic amorphous carbon may serve as a conductive element to facilitate electron transfer, or redox active functional groups associated with the carbon could act as electron donors and acceptors.
Collapse
Affiliation(s)
- Kylie D. Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, D-28359 Bremen, Germany
- Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | | | - Robert J. Bodnar
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xu Feng
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jenny Wendt
- MARUM, Center for Marine Environmental Sciences, University Bremen, D-28359 Bremen, Germany
| | - Robert H. White
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Kong Y, Lei H, Zhang Z, Cheng W, Wang B, Pan F, Huang F, Huang F, Li W. Depth profiles of geochemical features, geochemical activities and biodiversity of microbial communities in marine sediments from the Shenhu area, the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146233. [PMID: 34030248 DOI: 10.1016/j.scitotenv.2021.146233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The biogeochemical processes, anaerobic oxidation of methane (AOM) and methanogenesis, control methane emission and create distinct geochemical profiles with depth in marine sediments. Correlating the capacities and biodiversity of the microbial communities in marine sediments remains challenging. We therefore investigated the geochemical constituents and the capabilities and diversity of microbial communities in sediments at different depths in two cores from the Shenhu area in the northern South China Sea, which is characterized by underlying gas hydrates. The geochemical features, sulfate concentration decreased linearly and the acid volatile sulfur accumulated from 4 m below the seafloor (mbsf) to the bottom, indicating significant sulfate reduction. However, the methane concentration was relatively low and showed irregular trends, indicating that our study cores did not reach the sulfate-methane transition zone (SMTZ). Nevertheless, incubation experiments showed that the microbial groups in sediments performed AOM and methanogenesis in the region where sulfate decreased linearly above the SMTZ. We mapped the diversity and abundance of microbial communities in sediments with depth using high-throughput sequencing. A small proportion of known methanogens (<0.3%) may have been responsible for the methanogenesis during incubation. No classical archaeal anaerobic methanotroph (ANME) sequences were detected across all samples; only a small amount of SEEP-SRB1 were detected, and their abundance did not increase with increasing depth. Thus, unknown or unconventional phylotypes may have participated in AOM during the incubation, and the dominant phylum Bathyarchaeota or the small number of detected methanogens are the most likely performers of AOM.
Collapse
Affiliation(s)
- Yuan Kong
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Huaiyan Lei
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China.
| | - Zilian Zhang
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Weidong Cheng
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Bin Wang
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Fulong Pan
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Fanfan Huang
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Fanli Huang
- Department of Geological Oceanography, College of Ocean & Earth Science, Xiamen University, Xiamen 361102, PR China
| | - Wenqing Li
- Key Laboratory of Mineral Resources Evaluation in Northeast China, Ministry of Land and Resources, Changchun 130061, PR China
| |
Collapse
|
10
|
Marlow JJ, Hoer D, Jungbluth SP, Reynard LM, Gartman A, Chavez MS, El-Naggar MY, Tuross N, Orphan VJ, Girguis PR. Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proc Natl Acad Sci U S A 2021; 118:e2006857118. [PMID: 34161255 PMCID: PMC8237665 DOI: 10.1073/pnas.2006857118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| | - Daniel Hoer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Sean P Jungbluth
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94720
| | - Linda M Reynard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Amy Gartman
- US Geological Survey Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
11
|
Wegener G, Gropp J, Taubner H, Halevy I, Elvert M. Sulfate-dependent reversibility of intracellular reactions explains the opposing isotope effects in the anaerobic oxidation of methane. SCIENCE ADVANCES 2021; 7:7/19/eabe4939. [PMID: 33952515 PMCID: PMC8099194 DOI: 10.1126/sciadv.abe4939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 06/01/2023]
Abstract
The anaerobic oxidation of methane (AOM) is performed by methanotrophic archaea (ANME) in distinct sulfate-methane interfaces of marine sediments. In these interfaces, AOM often appears to deplete methane in the heavy isotopes toward isotopic compositions similar to methanogenesis. Here, we shed light on this effect and its physiological underpinnings using a thermophilic ANME-1-dominated culture. At high sulfate concentrations, residual methane is enriched in both 13C and 2H (13α = 1.016 and 2α = 1.155), as observed previously. In contrast, at low sulfate concentrations, the residual methane is substantially depleted in 13C (13α = 0.977) and, to a lesser extent, in 2H. Using a biochemical-isotopic model, we explain the sulfate dependence of the net isotopic fractionation through the thermodynamic drive of the involved intracellular reactions. Our findings relate these isotopic patterns to the physiology and environment of the ANME, thereby explaining a commonly observed isotopic enigma.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Heidi Taubner
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
12
|
Mo Y, Qi XE, Li A, Zhang X, Jia Z. Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai-Tibetan Plateau. Front Microbiol 2020; 11:580866. [PMID: 33281775 PMCID: PMC7689253 DOI: 10.3389/fmicb.2020.580866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022] Open
Abstract
Methanotrophs are the only biofilters for reducing the flux of global methane (CH4) emissions in water-logged wetlands. However, adaptation of aerobic methanotrophs to low concentrations of oxygen and nitrogen in typical swamps, such as that of the Qinghai-Tibetan Plateau, is poorly understood. In this study, we show that Methylobacter-like methanotrophs dominate methane oxidation and nitrogen fixation under suboxic conditions in alpine swamp soils. Following incubation with 13C-CH4 and 15N-N2 for 90 days under suboxic conditions with repeated flushing using an inert gas (i.e., argon), microbial carbon and nitrogen turnover was measured in swamp soils at different depths: 0-20 cm (top), 40-60 cm (intermediate), and 60-80 cm (deep). Results show detectable methane oxidation and nitrogen fixation in all three soil depths. In particular, labeled carbon was found in CO2 enrichment (13C-CO2), and soil organic carbon (13C-SOC), whereas labeled nitrogen (15N) was detected in soil organic nitrogen (SON). The highest values of labeled isotopes were found at intermediate soil depths. High-throughput amplicon sequencing and Sanger sequencing indicated the dominance of Methylobacter-like methanotrophs in swamp soils, which comprised 21.3-24.0% of the total bacterial sequences, as measured by 13C-DNA at day 90. These results demonstrate that aerobic methanotroph Methylobacter is the key player in suboxic methane oxidation and likely catalyzes nitrogen fixation in swamp wetland soils in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yongliang Mo
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xing-e Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Aorui Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
13
|
Abstract
Microbes are social organisms, interacting primarily through secreted biomolecules. Many traits have evolved based solely on their effects upon other community members, yet even individually beneficial traits often create social side effects that are mediated by spatial population structure. Predicting the evolution of many microbial traits thus requires a comprehensive understanding of their social consequences. In this review, we examine the critical role of population spatial structure in microbial social evolution. We briefly review key mechanisms structuring microbial communities, focusing primarily on the universal roles of cellular death and reproduction. Finally, we explain how spatial assortment can be efficiently calculated in two-dimensional, surface-attached populations.
Collapse
|
14
|
Cassarini C, Rene ER, Bhattarai S, Vogt C, Musat N, Lens PNL. Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. CHEMOSPHERE 2019; 236:124290. [PMID: 31310977 DOI: 10.1016/j.chemosphere.2019.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to evaluate the performance of a biotrickling filter (BTF) packed with polyurethane foam and pall rings for the enrichment of microorganisms mediating anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) by activity tests and microbial community analysis. A BTF was inoculated with microorganisms from a known AOM active deep sea sediment collected at a depth of 528 m below the sea level (Alpha Mound, Gulf of Cadiz). The microbial community analysis was performed by catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and 16S rRNA sequence analysis. The AOM occurrence and rates in the BTF were assessed by performing batch activity assays using 13C-labelled methane (13CH4). After an estimated start-up time of ∼20 days, AOM rates of ∼0.3 mmol l-1 day-1 were observed in the BTF, values almost 20 times higher than previously reported in a polyurethane foam packed BTF. The microbial community consisted mainly of anaerobic methanotrophs (ANME-2, 22% of the total number of cells) and sulfate reducing bacteria (SRB, 47% of the total number of cells). This study showed that the BTF is a suitable reactor configuration for the enrichment of microbial communities involved in AOM coupled to SR at ambient pressure and temperature with a relatively short start-up time.
Collapse
Affiliation(s)
- Chiara Cassarini
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands; National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Susma Bhattarai
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Carsten Vogt
- Helmholtz-Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoser Strasse 15, 04318, Leipzig, Germany
| | - Niculina Musat
- Helmholtz-Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoser Strasse 15, 04318, Leipzig, Germany
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601, DA, Delft, the Netherlands; National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Bird LR, Dawson KS, Chadwick GL, Fulton JM, Orphan VJ, Freeman KH. Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methane-oxidizing archaea. GEOBIOLOGY 2019; 17:611-627. [PMID: 31364272 DOI: 10.1111/gbi.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Archaeal ANaerobic MEthanotrophs (ANME) facilitate the anaerobic oxidation of methane (AOM), a process that is believed to proceed via the reversal of the methanogenesis pathway. Carbon isotopic composition studies indicate that ANME are metabolically diverse and able to assimilate metabolites including methane, methanol, acetate, and dissolved inorganic carbon (DIC). Our data support the interpretation that ANME in marine sediments at methane seeps assimilate both methane and DIC, and the carbon isotopic compositions of the tetrapyrrole coenzyme F430 and the membrane lipids archaeol and hydroxy-archaeol reflect their relative proportions of carbon from these substrates. Methane is assimilated via the methyl group of CH3 -tetrahydromethanopterin (H4 MPT) and DIC from carboxylation reactions that incorporate free intracellular DIC. F430 was enriched in 13 C (mean δ13 C = -27‰ for Hydrate Ridge and -80‰ for the Santa Monica Basin) compared to the archaeal lipids (mean δ13 C = -97‰ for Hydrate Ridge and -122‰ for the Santa Monica Basin). We propose that depending on the side of the tricarboxylic acid (TCA) cycle used to synthesize F430, its carbon was derived from 76% DIC and 24% methane via the reductive side or 57% DIC and 43% methane via the oxidative side. ANME lipids are predicted to contain 42% DIC and 58% methane, reflecting the amount of each assimilated into acetyl-CoA. With isotope models that include variable fractionation during biosynthesis for different carbon substrates, we show the estimated amounts of DIC and methane can result in carbon isotopic compositions of - 73‰ to - 77‰ for F430 and - 105‰ for archaeal lipids, values close to those for Santa Monica Basin. The F430 δ13 C value for Hydrate Ridge was 13 C-enriched compared with the modeled value, suggesting there is divergence from the predicted two carbon source models.
Collapse
Affiliation(s)
- Laurence R Bird
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - James M Fulton
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Katherine H Freeman
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev 2019; 83:e00074-18. [PMID: 31366606 PMCID: PMC6710461 DOI: 10.1128/mmbr.00074-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
Collapse
Affiliation(s)
- S Bhattarai
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
| | - C Cassarini
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Appl Environ Microbiol 2019; 85:AEM.02638-18. [PMID: 30709818 DOI: 10.1128/aem.02638-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Methane is a primary greenhouse gas which is responsible for global warming. The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles, and it is considered to be the overriding methane sink in marine ecosystem. However, there have been few studies regarding the role of S-AOM process and the distribution of ANME archaea in intertidal ecosystem. The intertidal zone is a buffer zone between sea and land and plays an important role in global geochemical cycle. In the present study, the abundance, potential methane oxidation rate, and community structure of ANME archaea in the intertidal zone were studied by quantitative PCR, stable isotope tracing method and high-throughput sequencing. The results showed that the potential S-AOM activity ranged from 0 to 0.77 nmol 13CO2 g-1 (dry sediment) day-1 The copy number of 16S rRNA gene of ANME archaea reached 106 ∼ 107 copies g-1 (dry sediment). The average contribution of S-AOM to total anaerobic methane oxidation was up to 34.5%, while denitrifying anaerobic methane oxidation accounted for the rest, which implied that S-AOM process was an essential methane sink that cannot be overlooked in intertidal ecosystem. The simulated column experiments also indicated that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.IMPORTANCE The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles. We conducted a research into the spatial-temporal pattern of S-AOM process and the distribution of ANME archaea in coastal sediments collected from the intertidal zone. The results implied that S-AOM process was a methane sink that cannot be overlooked in the intertidal ecosystem. We also found that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.
Collapse
|
18
|
Tarnovetskii IY, Merkel AY, Kanapatskiy TA, Ivanova EA, Gulin MB, Toshchakov S, Pimenov NV. Decoupling between sulfate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black sea. FEMS Microbiol Lett 2018; 365:5106339. [PMID: 30252039 DOI: 10.1093/femsle/fny235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/22/2018] [Indexed: 01/24/2023] Open
Abstract
Methane seepages are widespread in the Black Sea. However, microbiological research has been carried out only at the continental shelf seeps. The present work dealt with coastal gas seepages of the Kalamit Bay (Black Sea). High-throughput 16S rRNA gene sequencing and radiotracer analysis (14С and 35S) were used to determine the composition of the microbial community and the rates of microbial sulfate reduction and methane oxidation. The phylum Proteobacteria, represented mainly by sulfate reducers of the class Deltaproteobacteria, was the predominant in sequence dataset. Bacteroidetes and Planctomycetes were other numerous phyla. Among archaea, the phylum Woesearchaeota and Marine Benthic Group B were predominant in the upper horizons. Relative abundance of Euryarchaeota of the families Methanomicrobiaceae and Methanosarcinaceae (including ANME-3 archaea) increased in deeper sediment layers. Sulfate reduction rate (up to 2.9 mmol/L × day) was considerably higher than the rate of anaerobic methane oxidation (up to 43.4 μmol/L × day), which indicated insignificant contribution of anaerobic methane oxidation to the total sulfide production.
Collapse
Affiliation(s)
- I Yu Tarnovetskii
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119899, Russia
| | - A Yu Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - T A Kanapatskiy
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - E A Ivanova
- Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Nakhimov avenue 2, Sevastopol, 299011, Russia
| | - M B Gulin
- Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Nakhimov avenue 2, Sevastopol, 299011, Russia
| | - S Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| | - N V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, Moscow 117312, Russia
| |
Collapse
|
19
|
Insight into anaerobic methanotrophy from 13C/ 12C- amino acids and 14C/ 12C-ANME cells in seafloor microbial ecology. Sci Rep 2018; 8:14070. [PMID: 30250249 PMCID: PMC6155224 DOI: 10.1038/s41598-018-31004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Oceanic methane from global deep-sea sediment is largely consumed through microbially mediated sulfate-coupled oxidation, resulting in 13C-depleted cell biomass of anaerobic methanotrophic archaea (ANME). The general ecological importance of subseafloor ANME has been well recognized in the last two decades. However, the crucial biochemical pathways for the overall anaerobic oxidation of methane (AOM) still remain enigmatic. Here, methanotrophic pathways were analyzed to trace 13C-depleted amino acid biosynthesis in two clades of ANME (ANME-1 and ANME-2) from the Black Sea. Compound-specific analysis of ANME-dominated microbial mats showed a significant 13C-depletion trend in association with increasing carbon numbers in protein-derived amino acid families (e.g., the pyruvate family in the order of alanine, valine, isoleucine and leucine was down to −114‰). This result indicates a stepwise elongation of 13C-depleted carbon during amino acid biosynthesis. The overall results suggest that intracellular protein amino acids and the most 13C-depleted signature of leucine, which has a specific branched-chain structure, are potentially propagated as isoprenoid precursor molecules into archaeal biosynthesis, resulting in the extremely 13C- and 14C-depleted nature of ANME cells in the deep microbial oasis.
Collapse
|
20
|
Pimenov NV, Merkel AY, Tarnovetskii IY, Malakhova TV, Samylina OS, Kanapatskii TA, Tikhonova EN, Vlasova MA. Structure of Microbial Mats in the Mramornaya Bay (Crimea) Coastal Areas. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Bhattarai S, Cassarini C, Rene ER, Zhang Y, Esposito G, Lens PNL. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter. BIORESOURCE TECHNOLOGY 2018; 259:433-441. [PMID: 29602106 DOI: 10.1016/j.biortech.2018.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF.
Collapse
Affiliation(s)
- Susma Bhattarai
- UNESCO-IHE, Institute for Water Education, Westvest 7, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Chiara Cassarini
- UNESCO-IHE, Institute for Water Education, Westvest 7, P.O. Box 3015, 2601 DA Delft, The Netherlands; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, Westvest 7, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, China; Institute of Oceanography, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, P.O. Box 3015, 2601 DA Delft, The Netherlands; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
22
|
Bhattarai S, Cassarini C, Rene ER, Kümmel S, Esposito G, Lens PNL. Enrichment of ANME-2 dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Eng Life Sci 2018; 18:368-378. [PMID: 32624917 DOI: 10.1002/elsc.201700148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 11/08/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a microbially mediated unique natural phenomenon with an ecological relevance in the global carbon balance and potential application in biotechnology. This study aimed to enrich an AOM performing microbial community with the main focus on anaerobic methanotrophic archaea (ANME) present in sediments from the Ginsburg mud volcano (Gulf of Cadiz), a known site for AOM, in a membrane bioreactor (MBR) for 726 days at 22 (± 3)°C and at ambient pressure. The MBR was equipped with a cylindrical external ultrafiltration membrane, fed a defined medium containing artificial seawater and operated at a cross flow velocity of 0.02 m/min. Sulfide production with simultaneous sulfate reduction was in equimolar ratio between days 480 and 585 of MBR operation, whereas methane consumption was in oscillating trend. At the end of the MBR operation (day 726), the enriched biomass was incubated with 13C labeled methane, 13C labeled inorganic carbon was produced and the AOM rate based on 13C-inorganic carbon was 1.2 μmol/(gdw d). Microbial analysis of the enriched biomass at 400 and 726 days of MBR operation showed that ANME-2 and Desulfosarcina type sulfate reducing bacteria were enriched in the MBR, which formed closely associated aggregates. The major relevance of this study is the enrichment of an AOM consortium in a MBR system which can assist to explore the ecophysiology of ANME and provides an opportunity to explore the potential application of AOM.
Collapse
Affiliation(s)
| | - Chiara Cassarini
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education The Netherlands
| | - Steffen Kümmel
- Department for Isotope Biogeochemistry Helmholtz-Centre for Environmental Research (UFZ) Leipzig Germany
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering University of Cassino and Southern Lazio Cassino (FR) Italy
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education The Netherlands.,Department of Microbiology National University of Ireland Galway Ireland
| |
Collapse
|
23
|
Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, Girguis P. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas. Biotechnol Bioeng 2018; 115:1450-1464. [PMID: 29460958 PMCID: PMC5947824 DOI: 10.1002/bit.26576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023]
Abstract
Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Amit Kumar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brandon C Enalls
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Linda M Reynard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
24
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Bhattarai S, Cassarini C, Gonzalez-Gil G, Egger M, Slomp CP, Zhang Y, Esposito G, Lens PNL. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. MICROBIAL ECOLOGY 2017; 74:608-622. [PMID: 28389729 DOI: 10.1007/s00248-017-0978-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The microbial community inhabiting the shallow sulfate-methane transition zone in coastal sediments from marine Lake Grevelingen (The Netherlands) was characterized, and the ability of the microorganisms to carry out anaerobic oxidation of methane coupled to sulfate reduction was assessed in activity tests. In vitro activity tests of the sediment with methane and sulfate demonstrated sulfide production coupled to the simultaneous consumption of sulfate and methane at approximately equimolar ratios over a period of 150 days. The maximum sulfate reduction rate was 5 μmol sulfate per gram dry weight per day during the incubation period. Diverse archaeal and bacterial clades were retrieved from the sediment with the majority of them clustered with Euryarchaeota, Thaumarcheota, Bacteroidetes, and Proteobacteria. The 16S rRNA gene sequence analysis showed that the sediment from marine Lake Grevelingen contained anaerobic methanotrophic Archaea (ANME) and methanogens as archaeal clades with a role in the methane cycling. ANME at the studied site mainly belong to the ANME-3 clade. This study provides one of the few reports for the presence of ANME-3 in a shallow coastal sediment. Sulfate-reducing bacteria from Desulfobulbus clades were found among the sulfate reducers, however, with very low relative abundance. Desulfobulbus has previously been commonly found associated with ANME, whereas in our study, ANME-3 and Desulfobulbus were not observed simultaneously in clusters, suggesting the possibility of independent AOM by ANME-3.
Collapse
Affiliation(s)
- Susma Bhattarai
- UNESCO-IHE, Westvest-7, P.O. Box 3015, Delft, 2601, DA, The Netherlands.
| | - Chiara Cassarini
- UNESCO-IHE, Westvest-7, P.O. Box 3015, Delft, 2601, DA, The Netherlands
| | | | - Matthias Egger
- Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus, Denmark
| | - Caroline P Slomp
- Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, People's Republic of China
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino, FR, Italy
| | - Piet N L Lens
- UNESCO-IHE, Westvest-7, P.O. Box 3015, Delft, 2601, DA, The Netherlands
| |
Collapse
|
26
|
Cassarini C, Rene ER, Bhattarai S, Esposito G, Lens PNL. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter. BIORESOURCE TECHNOLOGY 2017; 240:214-222. [PMID: 28318933 DOI: 10.1016/j.biortech.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll-1day-1. A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll-1day-1) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction.
Collapse
Affiliation(s)
- Chiara Cassarini
- UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - Susma Bhattarai
- UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Giovanni Esposito
- University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
27
|
Reverse Methanogenesis and Respiration in Methanotrophic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:1654237. [PMID: 28154498 PMCID: PMC5244752 DOI: 10.1155/2017/1654237] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.
Collapse
|
28
|
Hu R, Bloom AA, Gao P, Miller CE, Yung YL. Hypotheses for Near-Surface Exchange of Methane on Mars. ASTROBIOLOGY 2016; 16:539-550. [PMID: 27315136 DOI: 10.1089/ast.2015.1410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol(-1) to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere. KEY WORDS Mars-Methane-Astrobiology-Regolith. Astrobiology 16, 539-550.
Collapse
Affiliation(s)
- Renyu Hu
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - A Anthony Bloom
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Peter Gao
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - Charles E Miller
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Yuk L Yung
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| |
Collapse
|
29
|
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci U S A 2016; 113:E4069-78. [PMID: 27357680 DOI: 10.1073/pnas.1603757113] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.
Collapse
|
30
|
Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ 2016; 4:e1913. [PMID: 27114874 PMCID: PMC4841229 DOI: 10.7717/peerj.1913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.
Collapse
Affiliation(s)
- Elizabeth Trembath-Reichert
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - David H Case
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| |
Collapse
|
31
|
Ruff SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy. Front Microbiol 2016; 7:374. [PMID: 27065954 PMCID: PMC4814501 DOI: 10.3389/fmicb.2016.00374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct microbial habitats due to their unique biogeochemical and physical characteristics. To link AOM phylotypes with seep habitats and to enable future meta-analyses we thus propose that seep environment ontology needs to be further specified.
Collapse
Affiliation(s)
- S Emil Ruff
- Department for Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Hanna Kuhfuss
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Gunter Wegener
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; MARUM Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Christian Lott
- HYDRA Institute for Marine Sciences, Elba Field Station Campo nell'Elba, Italy
| | - Alban Ramette
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Johanna Wiedling
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Katrin Knittel
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Miriam Weber
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
32
|
Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane. Front Microbiol 2016; 7:46. [PMID: 26870011 PMCID: PMC4736303 DOI: 10.3389/fmicb.2016.00046] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022] Open
Abstract
In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as syntrophic interaction of obligate methanotrophic archaea that transfer non-molecular reducing equivalents (i.e., via direct interspecies electron transfer) to obligate sulfate-reducing partner bacteria. Additional katabolic processes in these enrichments but also in sulfate methane interfaces are likely performed by minor community members.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine MicrobiologyBremen, Germany; MARUM, Center for Marine Environmental SciencesBremen, Germany
| | | | - S Emil Ruff
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Matthias Y Kellermann
- MARUM, Center for Marine Environmental SciencesBremen, Germany; Department of Earth Science and Marine Science Institute, University of California, Santa BarbaraSanta Barbara, CA, USA
| | - Katrin Knittel
- Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
33
|
Suarez-Zuluaga DA, Weijma J, Timmers PHA, Buisman CJN. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3697-3704. [PMID: 25256585 DOI: 10.1007/s11356-014-3606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.
Collapse
Affiliation(s)
- Diego A Suarez-Zuluaga
- Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6700 AA, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Mueller TJ, Grisewood MJ, Nazem-Bokaee H, Gopalakrishnan S, Ferry JG, Wood TK, Maranas CD. Methane oxidation by anaerobic archaea for conversion to liquid fuels. ACTA ACUST UNITED AC 2015; 42:391-401. [DOI: 10.1007/s10295-014-1548-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
Abstract
Given the recent increases in natural gas reserves and associated drawbacks of current gas-to-liquids technologies, the development of a bioconversion process to directly convert methane to liquid fuels would generate considerable industrial interest. Several clades of anaerobic methanotrophic archaea (ANME) are capable of performing anaerobic oxidation of methane (AOM). AOM carried out by ANME offers carbon efficiency advantages over aerobic oxidation by conserving the entire carbon flux without losing one out of three carbon atoms to carbon dioxide. This review highlights the recent advances in understanding the key enzymes involved in AOM (i.e., methyl-coenzyme M reductase), the ecological niches of a number of ANME, the putative metabolic pathways for AOM, and the syntrophic consortia that they typically form.
Collapse
Affiliation(s)
- Thomas J Mueller
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
| | - Matthew J Grisewood
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
| | - Hadi Nazem-Bokaee
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
| | - Saratram Gopalakrishnan
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
| | - James G Ferry
- grid.29857.31 0000000120974281 Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park PA USA
| | - Thomas K Wood
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
- grid.29857.31 0000000120974281 Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park PA USA
| | - Costas D Maranas
- grid.29857.31 0000000120974281 Department of Chemical Engineering The Pennsylvania State University University Park PA USA
| |
Collapse
|
35
|
Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: an "active" microbial process. Microbiologyopen 2015; 4:1-11. [PMID: 25530008 PMCID: PMC4335971 DOI: 10.1002/mbo3.232] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/01/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce methane. Subsequently, it has been found that AOM can also be coupled with denitrification. The known microbes responsible for this process are Candidatus Methylomirabilis oxyfera (M. oxyfera) and Candidatus Methanoperedens nitroreducens (M. nitroreducens). Candidatus Methylomirabilis oxyfera belongs to the NC10 bacteria, can catalyze nitrite reduction through an "intra-aerobic" pathway, and may catalyze AOM through an aerobic methane oxidation pathway. However, M. nitroreducens, which is affiliated with ANME-2d archaea, may be able to catalyze AOM through the reverse methanogenesis pathway. Moreover, manganese (Mn(4+) ) and iron (Fe(3+) ) can also be used as electron acceptors of AOM. This review summarizes the mechanisms and associated microbes of AOM. It also discusses recent progress in some unclear key issues about AOM, including ANME-1 in hypersaline environments, the effect of oxygen on M. oxyfera, and the relationship of M. nitroreducens with ANME.
Collapse
Affiliation(s)
- Mengmeng Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, 100085, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, 100085, China
| | - Hongyan Qi
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, 100085, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, 100085, China
| |
Collapse
|
36
|
Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring. Extremophiles 2014; 19:1-15. [DOI: 10.1007/s00792-014-0703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
37
|
Wessel AK, Hmelo L, Parsek MR, Whiteley M. Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 2013; 11:337-48. [PMID: 23588251 DOI: 10.1038/nrmicro3010] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms lead social lives and use coordinated chemical and physical interactions to establish complex communities. Mechanistic insights into these interactions have revealed that there are remarkably intricate systems for coordinating microbial behaviour, but little is known about how these interactions proceed in the spatially organized communities that are found in nature. This Review describes the technologies available for spatially organizing small microbial communities and the analytical methods for characterizing the chemical environment surrounding these communities. Together, these complementary technologies have provided novel insights into the impact of spatial organization on both microbial behaviour and the development of phenotypic heterogeneity within microbial communities.
Collapse
Affiliation(s)
- Aimee K Wessel
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5000, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
38
|
Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R. Methanogenic capabilities of ANME-archaea deduced from13C-labelling approaches. Environ Microbiol 2013; 15:2384-93. [DOI: 10.1111/1462-2920.12112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/20/2012] [Accepted: 02/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Sebastian Bertram
- Institute for Biogeochemistry and Marine Chemistry; University of Hamburg; Bundesstr. 55; 20146; Hamburg; Germany
| | - Martin Blumenberg
- Geobiology Group, Geoscience Centre; Georg-August-University Göttingen; Goldschmidtstr. 3; 37077; Göttingen; Germany
| | - Walter Michaelis
- Institute for Biogeochemistry and Marine Chemistry; University of Hamburg; Bundesstr. 55; 20146; Hamburg; Germany
| | - Michael Siegert
- Pennsylvania State University; 127 Sackett Building; University Park; PA; 16802; USA
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources; Section Geomicrobiology; Stilleweg 2; 30655; Hannover; Germany
| | - Richard Seifert
- Institute for Biogeochemistry and Marine Chemistry; University of Hamburg; Bundesstr. 55; 20146; Hamburg; Germany
| |
Collapse
|
39
|
Archaea in symbioses. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:596846. [PMID: 23326206 PMCID: PMC3544247 DOI: 10.1155/2012/596846] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
During the last few years, the analysis of microbial diversity in various habitats greatly increased our knowledge on the kingdom Archaea. At the same time, we became aware of the multiple ways in which Archaea may interact with each other and with organisms of other kingdoms. The large group of euryarchaeal methanogens and their methane oxidizing relatives, in particular, take part in essential steps of the global methane cycle. Both of these processes, which are in reverse to each other, are partially conducted in a symbiotic interaction with different partners, either ciliates and xylophagous animals or sulfate reducing bacteria. Other symbiotic interactions are mostly of unknown ecological significance but depend on highly specific mechanisms. This paper will give an overview on interactions between Archaea and other organisms and will point out the ecological relevance of these symbiotic processes, as long as these have been already recognized.
Collapse
|
40
|
Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 2012; 491:541-6. [DOI: 10.1038/nature11656] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 01/15/2023]
|
41
|
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 2012; 109:19321-6. [PMID: 23129626 DOI: 10.1073/pnas.1208795109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope-probing experiments with and without methane. The relative incorporation of (13)C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both (13)C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.
Collapse
|
42
|
Milucka J, Widdel F, Shima S. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia. Environ Microbiol 2012; 15:1561-71. [PMID: 23095164 DOI: 10.1111/1462-2920.12003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.
Collapse
Affiliation(s)
- Jana Milucka
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | | | | |
Collapse
|
43
|
Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S, Akhmetzhanov A, Boon N. Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol Ecol 2012; 83:214-31. [PMID: 22882187 DOI: 10.1111/j.1574-6941.2012.01466.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022] Open
Abstract
Life in hypersaline environments is typically limited by bioenergetic constraints. Microbial activity at the thermodynamic edge, such as the anaerobic oxidation of methane (AOM) coupled to sulphate reduction (SR), is thus unlikely to thrive in these environments. In this study, carbon and sulphur cycling was investigated in the extremely hypersaline cold seep sediments of Mercator mud volcano. AOM activity was partially inhibited but still present at salinity levels of 292 g L(-1) (c. eightfold sea water concentration) with rates of 2.3 nmol cm(-3) day(-1) and was even detectable under saturated conditions. Methane and evaporite-derived sulphate comigrated in the ascending geofluids, which, in combination with a partial activity inhibition, resulted in AOM activity being spread over unusually wide depth intervals. Up to 79% of total cells in the AOM zone were identified by fluorescence in situ hybridization (FISH) as anaerobic methanotrophs of the ANME-1. Most ANME-1 cells formed monospecific chains without any attached partner. At all sites, AOM activity co-occurred with SR activity and sometimes significantly exceeded it. Possible causes of these unexpected results are discussed. This study demonstrates that in spite of a very low energy yield of AOM, microorganisms carrying this reaction can thrive in salinity up to halite saturation.
Collapse
Affiliation(s)
- Loïs Maignien
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 2012; 36:486-511. [DOI: 10.1111/j.1574-6976.2011.00303.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
|
45
|
Jagersma CG, Meulepas RJ, Timmers PH, Szperl A, Lens PN, Stams AJ. Enrichment of ANME-1 from Eckernförde Bay sediment on thiosulfate, methane and short-chain fatty acids. J Biotechnol 2012; 157:482-9. [DOI: 10.1016/j.jbiotec.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 11/16/2022]
|
46
|
Holler T, Wegener G, Niemann H, Deusner C, Ferdelman TG, Boetius A, Brunner B, Widdel F. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc Natl Acad Sci U S A 2011; 108:E1484-90. [PMID: 22160711 PMCID: PMC3248532 DOI: 10.1073/pnas.1106032108] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal-bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from (14)C-bicarbonate and (35)S-sulfide to (14)C-methane and (35)S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.
Collapse
Affiliation(s)
- Thomas Holler
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| | - Helge Niemann
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
- Institute for Environmental Geosciences, University of Basel, 4056 Basel, Switzerland; and
| | - Christian Deusner
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| | - Timothy G. Ferdelman
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
- Alfred Wegener Institute for Polar and Marine Research, Research Group for Deep Sea Ecology and Technology, 27515 Bremerhaven, Germany
| | - Benjamin Brunner
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| | - Friedrich Widdel
- Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany
| |
Collapse
|
47
|
House CH, Beal EJ, Orphan VJ. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy. Life (Basel) 2011; 1:19-33. [PMID: 25382054 PMCID: PMC4187123 DOI: 10.3390/life1010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 11/17/2022] Open
Abstract
On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total of about 1020 microbial cells could be supported through methanotrophy with the cells concentrated in regions of methane release.
Collapse
Affiliation(s)
- Christopher H House
- Department of Geosciences and Penn State Astrobiology Research Center, The Pennsylvania State University, 220 Deike Building, University Park, PA 16802, USA.
| | - Emily J Beal
- Department of Geosciences and Penn State Astrobiology Research Center, The Pennsylvania State University, 220 Deike Building, University Park, PA 16802, USA.
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
48
|
Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci U S A 2011; 108:18295-300. [PMID: 21987801 DOI: 10.1073/pnas.1107763108] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.
Collapse
|
49
|
Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2011; 2:e00159-11. [PMID: 21862629 PMCID: PMC3157894 DOI: 10.1128/mbio.00159-11] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/02/2011] [Indexed: 01/01/2023] Open
Abstract
Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.
Collapse
Affiliation(s)
| | | | - Ashley E. Franks
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zarath M. Summers
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Amelia E. Rotaru
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Camelia Rotaru
- Civil and Environmental Engineering Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
50
|
Abstract
Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H2), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated “species” of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm must contain cells that are physiologically and possibly genetically differentiated with respect to each other. These results are especially interesting considering the possibility that the first cells originated and evolved in hydrothermal systems similar to Lost City.
Collapse
|