1
|
Cheng G, Jian S, Li W, Yan L, Chen T, Cheng T, Liu Z, Ye G, Tang H, Zhang L. Epigallocatechin gallate protects mice from Salmonella enterica ser. Typhimurium infection by modulating bacterial virulence through quorum sensing inhibition. Front Cell Infect Microbiol 2024; 14:1432111. [PMID: 39479281 PMCID: PMC11521958 DOI: 10.3389/fcimb.2024.1432111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Salmonella enterica ser. Typhimurium is a common pathogen that poses a considerable public health threat, contributing to severe gastrointestinal diseases and widespread foodborne illnesses. The virulence of S. Typhimurium is regulated by quorum sensing (QS) and the type III secretion system (T3SS). This study investigated the inhibitory effects and anti-QS activity of epigallocatechin gallate (EGCG), which is a bioactive ingredient found in green tea, on the virulence of S. Typhimurium. In vitro bacterial experiments demonstrated that EGCG inhibited the production of autoinducers, biofilm formation, and flagellar activity by downregulating the expression of AI-1, AI-2, Salmonella pathogenicity islands (SPI)-1, SPI-2, and genes related to flagella, fimbriae, and curli fibers. In a mouse model of S. Typhimurium-induced enteritis, EGCG considerably reduced intestinal colonization by S. Typhimurium and alleviated intestinal damage. In conclusion, EGCG protects the intestines of mice infected with S. Typhimurium by inhibiting QS-induced virulence gene expression, demonstrating its potential as a therapeutic agent for controlling S. Typhimurium infections.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Shanqiu Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wen Li
- Department of Science, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liangchun Yan
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tiezhu Chen
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tingting Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zongxiu Liu
- Department of Innovation, Chengdu Qiankun Animal Pharmaceutical Co., Ltd, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Zhang
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
2
|
Mishra R, Chiang Tan Y, Adel Ahmed Abd El-Aal A, Lahiri C. Computational Identification of the Plausible Molecular Vaccine Candidates of Multidrug-Resistant Salmonella enterica. SALMONELLA SPP. - A GLOBAL CHALLENGE 2021. [DOI: 10.5772/intechopen.95856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Salmonella enterica serovars are responsible for the life-threatening, fatal, invasive diseases that are common in children and young adults. According to the most recent estimates, globally, there are approximately 11–20 million cases of morbidity and between 128,000 and 161,000 mortality per year. The high incidence rates of diseases like typhoid, caused by the serovars Typhi and Paratyphi, and gastroenteritis, caused by the non-typhoidal Salmonellae, have become worse, with the ever-increasing pathogenic strains being resistant to fluoroquinolones or almost even the third generation cephalosporins, such as ciprofloxacin and ceftriaxone. With vaccination still being one of the chosen methods of eradicating this disease, identification of candidate proteins, to be utilized for effective molecular vaccines, has probably remained a challenging issue. In our study here, we portray the usage of computational tools to analyze and predict potential vaccine candidate(s) for the multi-drug resistant serovars of S. enterica.
Collapse
|
3
|
Chakroun I, Fedhila K, Mahdhi A, Mzoughi R, Saidane D, Esteban MÁ, Bakhrouf A. Atypical Salmonella Typhimurium persistence in the pacific oyster, Crassostrea gigas, and its effect on the variation of gene expression involved in the oyster's immune system. Microb Pathog 2021; 160:105185. [PMID: 34520817 DOI: 10.1016/j.micpath.2021.105185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Salmonella is one of the most important pathogens involved in food intoxication outbreaks, and in many cases, the intoxication has been linked to shellfish which is typically consumed raw. While much is understood about the interactions between Salmonella and vertebrates, much less is known about its relationships with invertebrates, which could be an overlooked and important aspect to better understand the Salmonella interaction with its diversified hosts. The aim of this study was to investigate the effect of preadaptation in seawater microcosms during 12 months on Salmonella Typhimurium by determining its survival capacity within this mollusk over a period of 30 days. The results showed that the stressed bacteria are able to survive in this mollusk at a higher concentration even after thirty days of infection compared to bacteria in the normal state. In order to minimize the effect of an experimental device for one month on the survival of Salmonella, we carried out an in vitro study to determine the number of viable Salmonella in the hemocytes of oysters. Interestingly, we evaluated the effect of the antibacterial activity of different extracts of C. gigas using the solvents (Methanol, Ethanol and acetic acid) specifically against stressed and unstressed Salmonella. Furthermore, we compared the expression of three genes in the oyster Cg-big-def1, timp and sod in response to experimental infections of this mollusk with Vibrio splendidus kb133 and S. Typhimurium LT2DT104 in normal and stressed states. These findings are very important to contribute to explaining several questions about the persistence of S. Typhimurium for a long time in C. gigas and the host's immune response to this microorganism which is considered to be non-virulent for molluscs.
Collapse
Affiliation(s)
- Ibtissem Chakroun
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia.
| | - Kais Fedhila
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Dalila Saidane
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Ma Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100. Murcia, Spain
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| |
Collapse
|
4
|
Polymicrobial Interactions Operative during Pathogen Transmission. mBio 2021; 12:mBio.01027-21. [PMID: 34006664 PMCID: PMC8262881 DOI: 10.1128/mbio.01027-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pathogen transmission is a key point not only for infection control and public health interventions but also for understanding the selective pressures in pathogen evolution. The “success” of a pathogen lies not in its ability to cause signs and symptoms of illness but in its ability to be shed from the initial hosts, survive between hosts, and then establish infection in a new host. Recent insights have shown the importance of the interaction between the pathogen and both the commensal microbiome and coinfecting pathogens on shedding, environmental survival, and acquisition of infection. Pathogens have evolved in the context of cooperation and competition with other microbes, and the roles of these cooperations and competitions in transmission can inform novel preventative and therapeutic strategies.
Collapse
|
5
|
Luiz de Freitas L, Pereira da Silva F, Fernandes KM, Carneiro DG, Licursi de Oliveira L, Martins GF, Dantas Vanetti MC. The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 2021; 152:104730. [PMID: 33444697 DOI: 10.1016/j.micpath.2021.104730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
Salmonella is a food and waterborne pathogen responsible for outbreaks worldwide, and it can survive during passage through the stomach and inside host phagocytic cells. Virulence genes are required for infection and survival in macrophages, and some are under the regulation of the quorum sensing (QS) system. This study investigated the influence of the autoinducer 1 (AI-1), N-dodecanoyl-homoserine lactone (C12-HSL), on the virulence of Salmonella PT4 using Galleria mellonella as an infection model. Salmonella PT4 was grown in the presence and absence of C12-HSL under anaerobic conditions for 7 h, and the expression of rpoS, arcA, arcB, and invA genes was evaluated. After the inoculation of G. mellonella with the median lethal dose (LD50) of Salmonella PT4, the survival of bacteria inside the larvae and their health status (health index scoring) were monitored, as well as the pigment, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) production. Also, the hemocyte viability, the induction of caspase-3, and microtubule-associated light chain 3 (LC3) protein in hemocytes were evaluated. Salmonella PT4 growing in the presence of C12-HSL showed increased rpoS, arcA, arcB, and invA expression and promoted higher larvae mortality and worse state of health after 24 h of infection. The C12-HSL also increased the persistence of Salmonella PT4 in the hemolymph and in the hemocytes. The highest pigmentation, NO production, and antioxidant enzymes were verified in the larva hemolymph infected with Salmonella PT4 grown with C12-HSL. Hemocytes from larvae infected with Salmonella PT4 grown with C12-HSL showed lower viability and higher production of caspase-3 and LC3. Taken together, these findings suggest that C12-HSL could be involved in the virulence of Salmonella PT4.
Collapse
Affiliation(s)
- Leonardo Luiz de Freitas
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Deisy Guimarães Carneiro
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
López Hernández K, Pardío Sedas V, Rodríguez Dehaibes S, Suárez Valencia V, Rivas Mozo I, Martínez Herrera D, Flores Primo A, Uscanga Serrano R. Improved Microbial Safety of Direct Ozone-Depurated Shellstock Eastern Oysters ( Crassostrea virginica) by Superchilled Storage. Front Microbiol 2018; 9:2802. [PMID: 30524405 PMCID: PMC6262401 DOI: 10.3389/fmicb.2018.02802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022] Open
Abstract
The effect of superchilled storage at -1°C on the microbial safety of oyster depurated with 0.2, 0.4, and 0.6 mg/L ozone was studied for 14 days. Fecal coliforms (4,100–16,000 MPN/100 g), Escherichia coli (1,500–3,650 MPN/100 g), Vibrio cholerae non-O1/non-O139 (13.0–102.0 MPN/g), and Salmonella spp. (2.270–3.035 × 103 CFU/g) were initially present in raw oysters. After 6 h depuration, fecal coliform counts decreased (P < 0.05) to 300, 20 and 20 MPN/100 g for 0.2, 0.4, and 0.6 mg/L treatments, while a 0.3 log decrease in control oysters was observed. Initial E. coli counts decreased (P < 0.05) in oysters to 50, 20, and 20 MPN/100 g for 0.2, 0.4, and 0.6 mg/L treatments, respectively. A 1 log reduction in V. cholerae non-O1/non-139 levels were observed in 0.4 and 0.6 mg/L-treatments after 2 and 4 h depuration. Salmonella spp. was not detected in oyster samples after 6 h depuration in 0.4 and 0.6 mg/L-ozone treatments. Considering the bacterial loads after depuration, at the end of superchilled storage the 0.4 mg/L-ozonated oysters attained lower (P < 0.05) fecal coliform levels (280 MPN/100 g) and E. coli counts in 0.4 and 0.6 mg/L-ozonated oysters (20 and 95 MPN/100 g, respectively). A 2-log decrease in V. cholerae non-O1/non-O139 levels on day 5 in 0.4 and 0.6 mg/L-ozonated oysters (< 0.3 MPN/g) was attained. V. cholerae non-O1/non-O139 counts in control oysters decreased 1 log on day 9 of superchilled storage. Salmonella spp. was not detected in ozonated and superchilled stored oysters. Levels of fecal coliforms, E. coli, Salmonella spp., and V. cholerae non-O1/non-O139 in non-ozone depurated oyster samples were higher than in control, 0.4 and 0.6 mg/L ozonated oyster samples during superchilled storage. The cumulative mortality rates after 14 days of storage for superchilled oysters (22.2%) was higher (P < 0.05) than 0.6 mg/L O3 (7.2%) and 0.4 mg/L O3 (5.8%) treatments, and control oysters (5.6%). pH values in control oysters decreased significantly (P < 0.05) throughout the storage period but not in oysters of both ozone treatments, indicating no detrimental effects on oyster survival. The results of this study suggest that superchilled storage enables ozonated shellstock oysters (0.4 mg/L-6 h) stored for 9 days to be safe human consumption.
Collapse
Affiliation(s)
- Karla López Hernández
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - Violeta Pardío Sedas
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - Sóstenes Rodríguez Dehaibes
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | | | - Isaura Rivas Mozo
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - David Martínez Herrera
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - Argel Flores Primo
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - Roxana Uscanga Serrano
- Doctorate Program in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|