1
|
Jones KR, Tardieu L. Giardia and Cryptosporidium in Neo-Tropical Rodents and Marsupials: Is There Any Zoonotic Potential? Life (Basel) 2021; 11:life11030256. [PMID: 33804628 PMCID: PMC8003710 DOI: 10.3390/life11030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidiosis and giardiasis have been identified as emerging diseases in both developed and developing countries. Wildlife has been highlighted to play a major role in the spread of these diseases to humans. This review aims to highlight the research findings that relate to Cryptosporidium spp. and Giardia spp., with a focus on (1) parasitism of neo-tropical hystricomorphic rodents and marsupials from the genus Didelphis and (2) prevention and treatment strategies for humans and animals for the neo-tropical region. It was found that there are few studies conducted on neo-tropical rodent and marsupial species, but studies that were found illustrated the potential role these animals may play as zoonotic carriers of these two parasites for the neo-tropical region. Thus, it is recommended that further studies be done to assess the threat of protozoan parasites in neo-tropical wildlife to humans and domestic animals, and to further determine the most effective prophylaxis adapted for the unique conditions of the region.
Collapse
Affiliation(s)
- Kegan Romelle Jones
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), St. Augustine Campus, University of the West Indies (UWI), St. Augustine, Trinidad and Tobago;
- Department of Basic Veterinary Sciences (DBVS), Faculty of Medical Sciences (FMS), School of Veterinary Medicine (SVM), Mt. Hope Campus, University of the West Indies (UWI), Mount Hope, Trinidad and Tobago
- Correspondence: ; Tel.: +1-868-787-0833
| | - Laura Tardieu
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), St. Augustine Campus, University of the West Indies (UWI), St. Augustine, Trinidad and Tobago;
| |
Collapse
|
2
|
Ecological and public health significance of Enterocytozoon bieneusi. One Health 2020; 12:100209. [PMID: 33426263 PMCID: PMC7779778 DOI: 10.1016/j.onehlt.2020.100209] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Enterocytozoon bieneusi, a fungus-like protist parasite, causes symptomatic and asymptomatic intestinal infections in terrestrial animals and is also abundant in the environment. This parasite has been isolated from a variety of host types including humans, livestock, companion animals, birds, and wildlife, as well as the natural and urban environments including drinking source water, coastal water, recreational water, wastewater, vegetables in retail markets, and raw milk on farms. E. bieneusi exhibits high genetic diversity among host species and environmental sources and at least 500 genotypes have been identified thus far. Since its discovery in AIDS patients in 1985, scientists across the world have worked to demonstrate the natural history and public health potential of this pathogen. Here we review molecular typing studies on E. bieneusi and summarize relevant data to identify the potential sources of human and nonhuman infections and environmental contamination. This review also discusses the possible transmission routes of E. bieneusi and the associated risk factors, and advocates the importance of the One Health approach to tackle E. bieneusi infections.
Collapse
|
3
|
Li W, Feng Y, Xiao L. Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Res Vet Sci 2020; 133:251-261. [PMID: 33035931 DOI: 10.1016/j.rvsc.2020.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular fungus-like parasite with high genetic diversity among mammalian and avian hosts. Based on polymorphism analysis of the ribosomal internal transcribed spacer (ITS), nearly 500 genotypes were identified within E. bieneusi. Those genotypes form several genetic groups that exhibit phenotypic differences in host specificity and zoonotic potential and probably have varying public health implications. Some of the genotypes in Group 1 (e.g., D, EbpC, and Type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) are the most common ones that infect a variety of hosts including humans and thus are of public health importance. By contrast, those genotypes in other genetic groups (Groups 3-11) are mostly restricted to the hosts from which they were originally isolated, which would have unknown or limited impacts on public health. Advances on diagnosis and molecular typing of E. bieneusi are introduced in this review. Genotype distribution pattern of E. bieneusi in major domestic animal groups (pigs, cattle, sheep, goats, cats, and dogs), the role of those animals in zoonotic transmission of microsporidiosis, and food and water as potential vehicles for transmission are interpreted here as well. This review highlights the importance of including more genetic or epidemiological data obtained in the same geographical areas and using more reliable genetic markers to analyze the actual extent of host specificity in E. bieneusi, for the purpose of fully appreciating zoonotic risks of those domestic animals in close contacts with men and enhancing our understanding of the modes of transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Shingare RP, Thawale PR, Raghunathan K, Mishra A, Kumar S. Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:444-461. [PMID: 31200179 DOI: 10.1016/j.jenvman.2019.05.157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Water stress has become a perennial concern in most of the developing countries due to rapid urbanization and population growth. As the growing population requires more fresh water and better ways for wastewater disposal, the demand for wastewater reclamation has increased drastically in recent years. Wastewater, either raw or treated, is being widely used for agricultural irrigation in developing countries, which cause a serious threat to human health mainly because of its pathogenic content. One of the alternative methods to treat wastewater and make it reusable for agricultural irrigation is to implement constructed wetland (CW); a sustainable and cost-effective technology that is applicable for the elimination of both pollutants and pathogens from wastewater. Despite its wide application, the role of macrophytes that form an integral part of CW and specific mechanisms involved in pathogen removal by them is still barely understood due to complexities involved and influencing factors. This has, therefore, attracted various scientific studies to reveal further functional mechanisms involved in vegetated CW to increase its proficiencies. This review paper illustrates the comparative studies of different CW and their pathogen removal efficiencies with major emphasis on macrophytes involved and factors influencing related mechanism. Further, the paper also covers detailed information on the enteric pathogens present in wastewater and the associated health risks involved in its reuse. The ultimate objective is to further clarify the role of CW in enteric pathogen removal and its efficiency for wastewater purification in perspective with safe reuse in agriculture.
Collapse
Affiliation(s)
- Rita P Shingare
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| | | | - Karthik Raghunathan
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Apurva Mishra
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sunil Kumar
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
5
|
Microbiological Constraints for Use of Reclaimed and Reconditioned Water in Food Production and Processing Operations. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
7
|
Chen JS, Hsu BM, Tsai HC, Chen YP, Huang TY, Li KY, Ji DD, Lee HS. Molecular surveillance of Vittaforma-like microsporidia by a small-volume procedure in drinking water source in Taiwan: evidence for diverse and emergent pathogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18823-18837. [PMID: 29713979 DOI: 10.1007/s11356-018-2081-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Vittaforma corneae belongs to microsporidia, which include over 1500 species of opportunistic obligate intracellular fungi infecting almost all known animal taxa. Although outbreaks of ocular infections caused by waterborne V. corneae have been reported in recent years, little is known about the occurrence of this pathogen in aquatic environments. In this study, 50 water samples from rivers and reservoirs around Taiwan in two seasons were analyzed to explore the presence of this pathogen in natural aquatic environments. A high detection rate of Vittaforma-like amplicons (94%; 47/50) was observed in the water samples when examined by nested PCR with primer pairs specific to the small ribosomal subunit (SSU) rRNA gene. After electrophoresis, many lanes showed multiband patterns with expected molecular weights. After confirmation by DNA sequencing and by sequence alignment in the NCBI database, we identified a variety of Vittaforma-like microsporidia with weak sequence similarity, with approximately 85% identity to V. corneae, thus indicating high diversity of microsporidia in aquatic environments. Phylogenetic analysis showed clear-cut microsporidian clade classification and indicated that the most Vittaforma-like microsporidia in this study belong to clade IV and cluster into four major groups. The first group is similar to the microsporidia associated with ocular microsporidiosis. The second group is associated with the diarrheal pathogens, whereas the third and fourth groups are a novel group and a zoonotic group, respectively. This study provides abundant sequencing information, which will be useful for future molecular biological studies on microsporidia. Because microsporidia are important pathogens of animals and humans, it is urgently necessary to determine via a survey whether there are species with potential threats that have not yet been revealed.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei City, 114, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Yu-Pin Chen
- Department of Orthopaedic Surgery, Taipei Medical University-Wan Fang Hospital, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yi Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Kuan-Ying Li
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Dar-Der Ji
- Department of Tropical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Herng-Sheng Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei City, 114, Taiwan.
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Road, Zuoying District, Kaohsiung, 81362, Taiwan.
| |
Collapse
|
8
|
Molecular and phylogenetic evidences of dispersion of human-infecting microsporidia to vegetable farms via irrigation with treated wastewater: One-year follow up. Int J Hyg Environ Health 2018; 221:642-651. [DOI: 10.1016/j.ijheh.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 12/07/2022]
|
9
|
Cui Q, Fang T, Huang Y, Dong P, Wang H. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR. J Environ Sci (China) 2017. [PMID: 28647233 DOI: 10.1016/j.jes.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 104-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR.
Collapse
Affiliation(s)
- Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Nasser AM. Removal of Cryptosporidium by wastewater treatment processes: a review. JOURNAL OF WATER AND HEALTH 2016; 14:1-13. [PMID: 26837825 DOI: 10.2166/wh.2015.131] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryptosporidium is a protozoan parasite that infects humans and various animal species. The environmental stability and the low infectious dose of Cryptosporidium facilitate its transmission by water and food. Discharge of untreated wastewater may result in waterborne or foodborne Cryptosporidium outbreaks, therefore a suitable treatment may prevent its dissemination. Most studies on the prevalence of Cryptosporidium oocysts in wastewater have reported a concentration range between 10 and 200 oocysts/L and a prevalence of 6 to 100%. Activated sludge has been found to be ineffective for the removal of Cryptosporidium oocysts. Stabilization ponds and constructed wetlands are efficient for the reduction of Cryptosporidium from wastewater, especially when the retention time is longer than 20 days at suitable sunlight and temperature. High rate filtration and chlorine disinfection are inefficient for the reduction of Cryptosporidium from effluents, whereas ultrafiltration and UV irradiation were found to be very efficient for the reduction of Cryptosporidium oocysts. Adequate tertiary treatment may result in high quality effluent with low risk of Cryptosporidium for unrestricted irrigation and other non-potable applications.
Collapse
Affiliation(s)
- Abidelfatah M Nasser
- Water Quality Research Laboratory, Ministry of Health, Ben Zvi Rd 69, Tel Aviv, Israel E-mail:
| |
Collapse
|
11
|
Wu S, Carvalho PN, Müller JA, Manoj VR, Dong R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:8-22. [PMID: 26398446 DOI: 10.1016/j.scitotenv.2015.09.047] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Removal of human pathogens from wastewater is a critical factor with linkage to human health. Constructed Wetlands (CWs) are environmental friendly ecosystems that are applicable not only for chemical pollution control, but also for the reduction of pathogens from wastewater. Yet the knowledge on the fate and removal of such indicator bacteria in CWs is still not sufficient due to the complexity of removal mechanisms and influencing factors. This review serves to provide a better understanding of this state-of-the-art technology, which is necessary for further investigations and design development. The fecal indicator bacteria in CWs mainly come from three sources, namely, influent wastewaters, regrowth within the CWs, and animal activities. The properties of microbial contamination vary depending on the different sources. The removal of pathogens is a complex process that is influenced by operational parameters such as hydraulic regime and retention time, vegetation, seasonal fluctuation, and water composition. The most frequent and well-validated removal mechanisms include natural die-off due to starvation or predation, sedimentation and filtration, and adsorption. The concentration of the main fecal indicator bacteria in the effluent was found to be exponentially related to the loading rate. Generally, horizontal subsurface flow CWs have better reduction capacity than free water surface flow CWs, and hybrid wetland systems were found to be the most efficient due to a longer retention time. Further improvement of fecal indicator bacteria removal in CWs is needed, however, levels in CW effluents are still higher than most of the regulation standards for reuse.
Collapse
Affiliation(s)
- Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China.
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, 8000C Aarhus, Denmark
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Germany
| | | | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| |
Collapse
|
12
|
Challenges and Innovative Strategies to Interrupt Cryptosporidium Transmission in Resource-Limited Settings. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0057-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Abstract
The preliminary tests is physically and visually observed to estimate the concentrations of contaminants that can give negative effects on plants growth and at which concentration the plants can tolerate and survive. In this study, bulrush of Lepironia articulate was subjected to diesel to assess its ability to survive when exposed to diesel contaminants with different concentrations (0, 5, 10, 20, 30, 35 and 40 mL diesel/L water). The investigation was conducted in 30 days with two flow systems, free surface (FSF) and sub-surface flow (SSF), were adopted to observe in which system the plant can tolerate to diesel better. These findings will be applied in future study of phytotoxicity test to assess its ability to phytoremediate polycyclic aromatic hydrocarbon (PAHs) contamination in wastewater. At the end of diesel exposure, the result indicated that the plant growth in SFS was better compared to FSF system. The plant had shown that it could only grow and survive in concentrations of 5, 10, 20, 30, 35 and 40 mL diesel/L water in SSF and in concentrations of 5, 10 and 20 mL/L in FSF system. The results of this study will be a basis for future study that aims to study PAHs removal from water using L. articulate plants.
Collapse
|
14
|
Tsukada R, Tsuchiyama A, Sasaki M, Park CH, Fujii Y, Takesue M, Hatai H, Kudo N, Ikadai H. Encephalitozoon infections in Rodentia and Soricomorpha in Japan. Vet Parasitol 2013; 198:193-6. [PMID: 24060383 DOI: 10.1016/j.vetpar.2013.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Encephalitozoon is an obligate intracellular microsporidian parasite that infects a wide range of mammalian hosts. In this study, we used nested PCR to investigate the presence of Encephalitozoon infection in Rodentia and Soricomorpha in Japan. We attempted to amplify and sequence Encephalitozoon-specific DNA from brain and viscera samples of 180 animals collected between 2008 and 2010. Forty-three samples (23.9%) from the orders Rodentia and Soricomorpha were positive for Encephalitozoon. This study is the first report of Encephalitozoon infection in Rodentia and Soricomorpha in Japan, and our findings suggest that these hosts may play a role in the spread of microsporidian spores in the environment.
Collapse
Affiliation(s)
- Ryusuke Tsukada
- Department of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nasser A, Vaizel-Ohayon D, Aharoni A, Revhun M. Prevalence and fate of giardia cysts in wastewater treatment plants. J Appl Microbiol 2012; 113:477-84. [DOI: 10.1111/j.1365-2672.2012.05335.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Izquierdo F, Castro Hermida JA, Fenoy S, Mezo M, González-Warleta M, del Aguila C. Detection of microsporidia in drinking water, wastewater and recreational rivers. WATER RESEARCH 2011; 45:4837-4843. [PMID: 21774958 DOI: 10.1016/j.watres.2011.06.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system. Microsporidian spores were identified by Weber's stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis. To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen.
Collapse
Affiliation(s)
- Fernando Izquierdo
- Universidad San Pablo CEU, Laboratorio de Parasitología, Facultad de Farmacia, Urbanización Montepríncipe, CP 28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Cheng HWA, Lucy FE, Graczyk TK, Broaders MA, Mastitsky SE. Municipal wastewater treatment plants as removal systems and environmental sources of human-virulent microsporidian spores. Parasitol Res 2011; 109:595-603. [PMID: 21360095 DOI: 10.1007/s00436-011-2291-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/09/2011] [Indexed: 11/25/2022]
Abstract
Municipal wastewater treatment plants play a vital role in reducing the microbial load of sewage before the end-products are discharged to surface waters (final effluent) or local environments (biosolids). This study was to investigate the presence of human-virulent microsporidian spores (Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Encephalitozoon hellem) and enterococci during treatment processes at four Irish municipal secondary wastewater treatment plants (plants A-D). Microsporidian abundance was significantly related to seasonal increase in water temperature. Plant A had the least efficient removal of E. intestinalis spores (32%) in wastewater, with almost 100% removal at other plants both in April and July. Some negative removal efficiencies were obtained for E. bieneusi (at plants C and D, -100%) and for E. hellem (at plants A and D, -90% and -50%). In addition, a positive correlation was found between the levels of enterococci and E. bieneusi in July (r (s) = 0.72, P < 0.05). In terms of the dewatered biosolids, a median concentration as high as 32,000 spores/Kg of E. hellem was observed at plant D in July. Plant C sewage sludge contained the lowest microsporidian loadings (E. bieneusi; 450 spores/L and 1,000 spores/L in April and July, respectively). This study highlights the seasonal variation in concentrations of microsporidian spores in the incoming sewage. Spores in final effluents and dewatered biosolids can be the source of human-virulent microsporidian contamination to the local environment. This emphasizes a considerably high public health risk when sewage-derived biosolids are spread during summer months. This study also suggested enterococci as a potential indicator of the presence of microsporidian spores in wastewater, especially for E. bieneusi.
Collapse
Affiliation(s)
- Hui-Wen A Cheng
- Department of Research, School of Science, Institute of Technology, Sligo, Ireland
| | | | | | | | | |
Collapse
|
18
|
Collinet-Adler S, Ward HD. Cryptosporidiosis: environmental, therapeutic, and preventive challenges. Eur J Clin Microbiol Infect Dis 2010; 29:927-35. [PMID: 20521158 PMCID: PMC4049176 DOI: 10.1007/s10096-010-0960-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cryptosporidium spp. are responsible for endemic and epidemic disease worldwide. Clinical manifestations may include acute, persistent, or chronic diarrhea, biliary, and pulmonary disease. Disease severity ranges from asymptomatic or mild to severe, intractable diarrhea with wasting depending on immune status, nutrition, and age. Transmission is fecal-oral with both human and animal reservoirs. Disease is often self limited in healthy individuals, but therapy remains a challenge in the immune-compromised. Prevention currently depends on appropriate hygiene and proper water management and treatment.
Collapse
Affiliation(s)
- S Collinet-Adler
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
19
|
Harhay MO, Horton J, Olliaro PL. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev Anti Infect Ther 2010; 8:219-34. [PMID: 20109051 PMCID: PMC2851163 DOI: 10.1586/eri.09.119] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parasites found in the human gastrointestinal tract can be largely categorized into two groups, protozoa and helminths. The soil-transmitted helminths (Ascaris lumbricoides, hookworm and Trichuris trichiura) are the most prevalent, infecting an estimated one-sixth of the global population. Infection rates are highest in children living in sub-Saharan Africa, followed by Asia and then Latin America and the Caribbean. The current momentum towards global drug delivery for their control is at a historical high through the efforts of numerous initiatives increasingly acting in coordination with donors, governments and local communities. Together, they have delivered enormous quantities of drugs, especially anthelmintics to children through nationwide annual or biannual mass drug administration largely coordinated through schools. However, a much larger and rapidly growing childhood population in these regions remains untreated and suffering from more than one parasite. Mass drug administration has profound potential for control but is not without considerable challenges and concerns. A principal barrier is funding. Stimulating a research and development pipeline, supporting the necessary clinical trials to refine treatment, in addition to procuring and deploying drugs (and sustaining these supply chains), requires substantial funding and resources that do not presently exist. Limited options for chemotherapy raise concerns about drug resistance developing through overuse, however, satisfactory pharmaco-epidemiology and monitoring for drug resistance requires more developed health infrastructures than are generally available. Further, the limited pharmacopeia does not include any effective second-line options if resistance emerges, and the research and development pipeline is severely depressed. Herein, we discuss the major gastrointestinal protozoa and helminths reviewing their impact on child health, changing epidemiology and how this relates to their control.
Collapse
Affiliation(s)
- Michael O Harhay
- Graduate Group in Demography, Population Studies Center, University of Pennsylvania, 239 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-16298, USA, Tel.: +1 215 898 6441, Fax: +1 215 898 2124,
| | - John Horton
- 24 The Paddock, Hitchin, SG4 9EF, UK, Tel.: +44 146 262 4081, Fax: +44 146 264 8693,
| | - Piero L Olliaro
- Centre for Tropical Medicine, University of Oxford & United Nations Children’s Fund/United Nations Development Programme/World Bank/World Health Organization, Special Programme for Research and Training in Tropical Diseases (TDR), 20 Avenue Appia, CH-1211, Geneva 27, Switzerland, Tel.: +41 227 913 734, Fax: +41 227 914 774,
| |
Collapse
|