1
|
Kim SH, Lee JI, Kang DH. Effects of Na + adaptation on Bacillus cereus endospores inactivation and transcriptome changes. Food Res Int 2024; 195:114975. [PMID: 39277241 DOI: 10.1016/j.foodres.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
As Bacillus cereus endospores exist in various vegetables grown in soil, the possibility of contamination in food products with high salt concentrations cannot be ignored. Recent studies revealed that harsh conditions affect the resistance of bacteria; thus, we investigated the developmental aspect of heat resistance of B. cereus after sporulation with high NaCl concentration. RNA sequencing was conducted for transcriptomic changes when B. cereus endospores formed at high salinity, and membrane fluidity and hydrophobicity were measured to verify the transcriptomic analysis. Our data showed that increasing NaCl concentration in sporulation media led to a decrease in heat resistance. Also, endospore hydrophobicity, membrane fluidity, and endospore density decreased with sporulation at higher NaCl concentrations. When the transcript changes of B. cereus sporulated at NaCl concentrations of 0.5 and 7% were analyzed by transcriptome analysis, it was confirmed that the NaCl 7% endospores had significantly lower expression levels (FDR<0.05) of genes related to sporulation stages 3 and 4, which led to a decrease in expression of spore-related genes such as coat proteins and small acid-soluble proteins. Our findings indicated that high NaCl concentrations inhibited sporulation stages 3 and 4, thereby preventing proper cell maturation in the forespores and adequate formation of the coat protein and cortex. This inhibition led to decreased endospore density and hydrophobicity, ultimately resulting in reduced heat resistance.resistanceWe expect that this study will be utilized as a baseline for further studies and enhance sterilization strategies.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
2
|
Nakaya Y, Uchiike M, Hattori M, Moriyama M, Abe K, Kim E, Eichenberger P, Imamura D, Sato T. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Mol Microbiol 2023; 120:384-396. [PMID: 37485949 DOI: 10.1111/mmi.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain. First, we showed that the crust proteins CotVWXYZ and CgeA were all contained in the peeled SPS layer obtained from a strain missing CotE, the outer coat morphogenetic protein, suggesting that the SPS is indeed bound to at least one of the spore surface proteins. Second, CgeA is known to be located at the most downstream position in the crust assembly pathway. An analysis of truncated variants of CgeA suggested that its N-terminal half is required for localization to the spore surface, while its C-terminal half is necessary for SPS addition. Third, an amino acid substitution strategy revealed that SPS was anchored at threonine 112 (T112), which constitutes a probable O-glycosylation site on CgeA. Our results indicated that CgeA is a glycoprotein required to initiate SPS assembly and serves as an anchor protein linking the crust and SPS layers.
Collapse
Affiliation(s)
- Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Miu Uchiike
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Mayuko Hattori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Momoka Moriyama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Ella Kim
- Department of Biology, New York University, New York, New York, USA
| | | | - Daisuke Imamura
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Tsutomu Sato
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
3
|
Hamiot A, Lemy C, Krzewinski F, Faille C, Dubois T. Sporulation conditions influence the surface and adhesion properties of Bacillus subtilis spores. Front Microbiol 2023; 14:1219581. [PMID: 37720141 PMCID: PMC10502511 DOI: 10.3389/fmicb.2023.1219581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus subtilis group are responsible for recurrent contamination of processing lines in the food industry which can lead to food spoilage. The persistence of B. subtilis would be due to the high resistance of spores to extreme environmental condition and their propensity to contaminate surfaces. While it is well known that sporulation conditions modulate spore resistance properties, little is known about their effect on surface and adhesion properties. Here, we studied the impact of 13 sporulation conditions on the surface and adhesion properties of B. subtilis 168 spores. We showed that Ca2+ or Mg2+ depletion, lower oxygen availability, acidic pH as well as oxidative stresses during sporulation lead to the release of more hydrophobic and adherent spores. The consequences of these sporulation conditions on crust composition in carbohydrates and proteins were also evaluated. The crust glycans of spores produced in a sporulation medium depleted in Ca2+ or Mg2+ or oxygen-limited conditions were impaired and contained lower amounts of rhamnose and legionaminic acid. In addition, we showed that lower oxygen availability or addition of hydrogen peroxide during sporulation decreases the relative amount of two crust proteins (CgeA and CotY) and the changes observed in these conditions could be due to transcriptional repression of genes involved in crust synthesis in late stationary phase. The fact that sporulation conditions affect the ease with which spores can contaminate surfaces could explain the frequent and recurrent presence of B. subtilis spores in food processing lines.
Collapse
Affiliation(s)
- Audrey Hamiot
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Christelle Lemy
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Frederic Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Thomas Dubois
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| |
Collapse
|
4
|
Vittoria M, Saggese A, Di Gregorio Barletta G, Castaldi S, Isticato R, Baccigalupi L, Ricca E. Sporulation efficiency and spore quality in a human intestinal isolate of Bacillus cereus. Res Microbiol 2023; 174:104030. [PMID: 36738815 DOI: 10.1016/j.resmic.2023.104030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Bacteria classified as Bacillus cereus sensu stricto cause two different type of gastrointestinal diseases associated with food poisoning. Outbreaks of this opportunistic pathogen are generally due to the resistance of its spores to heat, pH and desiccation that makes hard their complete inactivation from food products. B. cereus is commonly isolated from a variety of environments, including intestinal samples of infected and healthy people. We report the genomic and physiological characterization of MV19, a human intestinal strain closely related (ANI value of 98.81%) to the reference strain B. cereus ATCC 14579. MV19 cells were able to grow in a range of temperatures between 20 and 44 °C. At the optimal temperature the sporulation process was rapidly induced and mature spores efficiently released, however these appeared structurally and morphologically defective. At the sub-optimal growth temperature of 25 °C sporulation was slow and less efficient but a high total number of fully functional spores was produced. These results indicate that the reduced rapidity and efficiency of sporulation at 25 °C are compensated by a high quality and quantity of released spores, suggesting the relevance of different performances at different growth conditions for the adaptation of this bacterium to diverse environmental niches.
Collapse
Affiliation(s)
- Maria Vittoria
- Department of Biology, Federico II University of Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University of Naples, Italy
| | | | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| |
Collapse
|
5
|
Saggese A, Baccigalupi L, Donadio G, Ricca E, Isticato R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int J Mol Sci 2023; 24:10880. [PMID: 37446054 DOI: 10.3390/ijms241310880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, 80126 Naples, Italy
| |
Collapse
|
6
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
7
|
Castaldi S, Valkov VT, Ricca E, Chiurazzi M, Isticato R. Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu. Microbiol Res 2023; 268:127274. [PMID: 36527786 DOI: 10.1016/j.micres.2022.127274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Halotolerant (HT) bacteria are a group of microorganisms able to thrive in environments with relatively high salt concentrations. HT-microorganisms with plant growth-promoting (PGP) characteristics have been proposed to increase plant tolerance in salty soil. Here, we evaluated the PGP properties at increasing NaCl concentrations of HT-Bacillus strains, previously shown to have beneficial effects under physiological conditions. Most of the isolated showed indole acetic acid and ammonia production and were able to solubilize phosphate and suppress the proliferation of the phytopathogenic fungus Macrophomina phaseolina 2013-1 at high salt concentrations. One of the selected strains, Bacillus amyloliquefaciens RHF6, which retained its beneficial properties up to 400 mM NaCl in vitro, was tested on the legume model plant Lotus japonicus cv Gifu under salt stress. The inoculation with RHF6 significantly improved the survival of plants under high salinity conditions, as reflected in seedling root and shoot growth and total fresh weight (increased by 40%) when compared with non-inoculated plants. The ability of RHF6 to induce a plant antioxidant response, secrete the osmoprotectant proline and reduce ethylene level via the enzymatic ACC deaminase activity indicated this strain as a potentially helpful PGPB for the treatment of degraded soils.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, NA, Italy; National Biodiversity Future Center (NBFC), Palermo 90133, Italy.
| |
Collapse
|
8
|
Abstract
Proteins and glycoproteins that form the surface layers of the Bacillus spore assemble into semipermeable arrays that surround and protect the spore cytoplasm. Such layers, acting like molecular sieves, exclude large molecules but allow small nutrients (germinants) to penetrate. We report that CotG, a modular and abundant component of the Bacillus subtilis spore coat, controls spore permeability through its central region, formed by positively charged tandem repeats. These repeats act as spacers between the N and C termini of the protein, which are responsible for the interaction of CotG with at least one other coat protein. The deletion but not the replacement of the central repeats with differently charged repeats affects the spore resistance to lysozyme and the efficiency of germination-probably by reducing the coat permeability to external molecules. The presence of central repeats is a common feature of the CotG-like proteins present in most Bacillus species, and such a wide distribution of this protein family is suggestive of a relevant role for the structure and function of the Bacillus spore. IMPORTANCE Bacterial spores are quiescent cells extremely resistant to a variety of unphysiological conditions, including the presence of lytic enzymes. Such resistance is also due to the limited permeability of the spore surface, which does not allow lytic enzymes to reach the spore interior. This article proposes that the spore permeability in B. subtilis is mediated by CotG, a modular protein formed by a central region of repeats of positively charged amino acid acting as a "spacer" between the N and C termini. These, in turn, interact with other coat proteins, generating a protein layer whose permeability to external molecules is controlled by the distance between the N and C termini of CotG. This working model is most likely expandable to most sporeformers of the Bacillus genus, since they all have CotG-like proteins, not homologous to CotG of B. subtilis but similarly characterized by central repeats.
Collapse
|
9
|
Plant Growth-Promoting Bacterial Consortia as a Strategy to Alleviate Drought Stress in Spinacia oleracea. Microorganisms 2022; 10:microorganisms10091798. [PMID: 36144400 PMCID: PMC9501077 DOI: 10.3390/microorganisms10091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Drought stress is one of the most severe abiotic stresses affecting soil fertility and plant health, and due to climate change, it is destined to increase even further, becoming a serious threat to crop production. An efficient, eco-friendly alternative is the use of plant growth-promoting bacteria (PGPB), which can promote plant fitness through direct and indirect approaches, protecting plants from biotic and abiotic stresses. The present study aims to identify bacterial consortia to promote Spinacia oleracea L. cv Matador’s seed germination and protect its seedlings from drought stress. Eight PGPB strains belonging to the Bacillus, Azotobacter, and Pseudomonas genera, previously characterized in physiological conditions, were analyzed under water-shortage conditions, and a germination bioassay was carried out by biopriming S. oleracea seeds with either individual strains or consortia. The consortia of B. amyloliquefaciens RHF6, B. amyloliquefaciens LMG9814, and B. sp. AGS84 displayed the capacity to positively affect seed germination and seedlings’ radical development in both standard and drought conditions, ameliorating the plants’ growth rate compared to the untreated ones. These results sustain using PGPB consortia as a valid ameliorating water stress strategy in the agro-industrial field.
Collapse
|
10
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
11
|
Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Most of the bacteria that are used to produce fermentation products, such as enzymes, additives and flavorings, belong to the Bacillus subtilis group. Recently, unexpected contaminations with unauthorized genetically modified (GM) bacteria (viable cells and associated DNA) that were carrying antimicrobial resistance (AMR) genes was noticed in several microbial fermentation products that have been commercialized on the food and feed market. These contaminations consisted of GM Bacillus species belonging to the B. subtilis group. In order to screen for the potential presence of such contaminations, in this study we have developed a new real-time PCR method targeting the B. subtilis group, including B. subtilis, B. licheniformis, B. amyloliquefaciens and B. velezensis. The method’s performance was successfully assessed as specific and sensitive, complying with the Minimum Performance Requirements for Analytical Methods of GMO Testing that is used as a standard by the GMO enforcement laboratories. The method’s applicability was also tested on 25 commercial microbial fermentation products. In addition, this method was developed to be compatible with the PCR-based strategy that was recently developed for the detection of unauthorized GM bacteria. This taxon-specific method allows the strengthening of the set of screening markers that are targeting key sequences that are frequently found in GM bacteria (AMR genes and shuttle vector), reinforcing control over the food and feed chain in order to guarantee its safety and traceability.
Collapse
|
12
|
Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, Isticato R. Genomic and Physiological Characterization of Bacilli Isolated From Salt-Pans With Plant Growth Promoting Features. Front Microbiol 2021; 12:715678. [PMID: 34589073 PMCID: PMC8475271 DOI: 10.3389/fmicb.2021.715678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution to food demand has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of agrochemicals is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests known as Plant-Growth-Promoting Bacteria (PGPB). Aim of the present study was to isolate and characterize PGPB from salt-pans sand samples with activities associated to plant fitness increase. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for phyto-beneficial traits and compared with other two members of Bacillus genus recently isolated from the rhizosphere of the same collection site and characterized as potential biocontrol agents. Whole-genome analysis on seven selected strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant growth and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vitro results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.
Collapse
Affiliation(s)
- Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, Italy.,Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States.,Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| |
Collapse
|
13
|
Castaldi S, Petrillo C, Donadio G, Piaz FD, Cimmino A, Masi M, Evidente A, Isticato R. Plant Growth Promotion Function of Bacillus sp. Strains Isolated from Salt-Pan Rhizosphere and Their Biocontrol Potential against Macrophomina phaseolina. Int J Mol Sci 2021; 22:3324. [PMID: 33805133 PMCID: PMC8036593 DOI: 10.3390/ijms22073324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| |
Collapse
|
14
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
15
|
Fraiture MA, Joly L, Vandermassen E, Delvoye M, Van Geel D, Michelet JY, Van Hoeck E, De Jaeger N, Papazova N, Roosens NH. Retrospective survey of unauthorized genetically modified bacteria harbouring antimicrobial resistance genes in feed additive vitamin B2 commercialized in Belgium: Challenges and solutions. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Ricca E, Baccigalupi L, Isticato R. Spore-adsorption: Mechanism and applications of a non-recombinant display system. Biotechnol Adv 2020; 47:107693. [PMID: 33387640 DOI: 10.1016/j.biotechadv.2020.107693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Surface display systems have been developed to express target molecules on almost all types of biological entities from viruses to mammalian cells and on a variety of synthetic particles. Various approaches have been developed to achieve the display of many different target molecules, aiming at several technological and biomedical applications. Screening of libraries, delivery of drugs or antigens, bio-catalysis, sensing of pollutants and bioremediation are commonly considered as fields of potential application for surface display systems. In this review, the non-recombinant approach to display antigens and enzymes on the surface of bacterial spores is discussed. Examples of molecules displayed on the spore surface and their potential applications are summarized and a mechanism of display is proposed.
Collapse
Affiliation(s)
- Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | | |
Collapse
|
17
|
The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis. mBio 2020; 11:mBio.01153-20. [PMID: 32817102 PMCID: PMC7439481 DOI: 10.1128/mbio.01153-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCE Bacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.
Collapse
|
18
|
Isticato R, Lanzilli M, Petrillo C, Donadio G, Baccigalupi L, Ricca E. Bacillus subtilisbuilds structurally and functionally different spores in response to the temperature of growth. Environ Microbiol 2019; 22:170-182. [DOI: 10.1111/1462-2920.14835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Rachele Isticato
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Mariamichela Lanzilli
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Claudia Petrillo
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Giuliana Donadio
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical BiotechnologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Ezio Ricca
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| |
Collapse
|
19
|
Bartels J, Blüher A, López Castellanos S, Richter M, Günther M, Mascher T. The
Bacillus subtilis
endospore crust: protein interaction network, architecture and glycosylation state of a potential glycoprotein layer. Mol Microbiol 2019; 112:1576-1592. [DOI: 10.1111/mmi.14381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Julia Bartels
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| | - Anja Blüher
- School of Engineering Science Institute of Materials Science Technische Universität (TU) Dresden Dresden 01062Germany
| | | | - Marcus Richter
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| | - Markus Günther
- Institute of Botany Technische Universität (TU) Dresden Dresden 01062Germany
| | - Thorsten Mascher
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| |
Collapse
|
20
|
Expansion of the Spore Surface Polysaccharide Layer in Bacillus subtilis by Deletion of Genes Encoding Glycosyltransferases and Glucose Modification Enzymes. J Bacteriol 2019; 201:JB.00321-19. [PMID: 31235516 DOI: 10.1128/jb.00321-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Polysaccharides (PS) decorate the surface of dormant endospores (spores). In the model organism for sporulation, Bacillus subtilis, the composition of the spore PS is not known in detail. Here, we have assessed how PS synthesis enzymes produced during the late stages of sporulation affect spore surface properties. Using four methods, bacterial adhesion to hydrocarbons (BATH) assays, India ink staining, transmission electron microscopy (TEM) with ruthenium red staining, and scanning electron microscopy (SEM), we characterized the contributions of four sporulation gene clusters, spsABCDEFGHIJKL, yfnHGF-yfnED, ytdA-ytcABC, and cgeAB-cgeCDE, on the morphology and properties of the crust, the outermost spore layer. Our results show that all mutations in the sps operon result in the production of spores that are more hydrophobic and lack a visible crust, presumably because of reduced PS deposition, while mutations in cgeD and the yfnH-D cluster noticeably expand the PS layer. In addition, yfnH-D mutant spores exhibit a crust with an unusual weblike morphology. The hydrophobic phenotype from sps mutant spores was partially rescued by a second mutation inactivating any gene in the yfnHGF operon. While spsI, yfnH, and ytdA are paralogous genes, all encoding glucose-1-phosphate nucleotidyltransferases, each paralog appears to contribute in a distinct manner to the spore PS. Our data are consistent with the possibility that each gene cluster is responsible for the production of its own respective deoxyhexose. In summary, we found that disruptions to the PS layer modify spore surface hydrophobicity and that there are multiple saccharide synthesis pathways involved in spore surface properties.IMPORTANCE Many bacteria are characterized by their ability to form highly resistant spores. The dormant spore state allows these species to survive even the harshest treatments with antimicrobial agents. Spore surface properties are particularly relevant because they influence spore dispersal in various habitats from natural to human-made environments. The spore surface in Bacillus subtilis (crust) is composed of a combination of proteins and polysaccharides. By inactivating the enzymes responsible for the synthesis of spore polysaccharides, we can assess how spore surface properties such as hydrophobicity are modulated by the addition of specific carbohydrates. Our findings indicate that several sporulation gene clusters are responsible for the assembly and allocation of surface polysaccharides. Similar mechanisms could be modulating the dispersal of infectious spore-forming bacteria.
Collapse
|
21
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
22
|
Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol Microbiol 2019; 111:825-843. [PMID: 30582883 DOI: 10.1111/mmi.14194] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.
Collapse
Affiliation(s)
- Bentley Shuster
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Xiaoyu Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Nina Maryn
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Sally Buttar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adriana N Gonzalez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Tsutomu Sato
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
23
|
Abstract
Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.
Collapse
Affiliation(s)
- Peter Setlow
- Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305;
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353;
| |
Collapse
|
24
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
25
|
McIlroy SJ, Kirkegaard RH, Dueholm MS, Fernando E, Karst SM, Albertsen M, Nielsen PH. Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge. Front Microbiol 2017; 8:1134. [PMID: 28690595 PMCID: PMC5481317 DOI: 10.3389/fmicb.2017.01134] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion for biogas production is reliant on the tightly coupled synergistic activities of complex microbial consortia. Members of the uncultured A6 phylotype, within the phylum Chloroflexi, are among the most abundant genus-level-taxa of mesophilic anaerobic digester systems treating primary and surplus sludge from wastewater treatment plants, yet are known only by their 16S rRNA gene sequence. This study applied metagenomics to obtain a complete circular genome (2.57 Mbp) from a representative of the A6 taxon. Preliminary annotation of the genome indicates these organisms to be anaerobic chemoorganoheterotrophs with a fermentative metabolism. Given their observed abundance, they are likely important primary fermenters in digester systems. Application of fluorescence in situ hybridisation probes designed in this study revealed their morphology to be short filaments present within the flocs. The A6 were sometimes co-located with the filamentous Archaea Methanosaeta spp. suggesting potential undetermined synergistic relationships. Based on its genome sequence and morphology we propose the species name Brevefilum fermentans gen. nov. sp. nov.
Collapse
Affiliation(s)
- Simon J McIlroy
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Rasmus H Kirkegaard
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Morten S Dueholm
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Eustace Fernando
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- The Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
26
|
The use of a simple flow cytometry method for rapid detection of spores in probiotic Bacillus licheniformis-containing tablets. Food Sci Biotechnol 2017; 26:167-171. [PMID: 30263524 DOI: 10.1007/s10068-017-0022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022] Open
Abstract
Detection of the number of vegetative cells and endospores is necessary for quality control during the production of orally administered probiotic Bacillus licheniformis-containing tablets (BCT). However, there is no standard method for the rapid detection of vegetative cells and endospores in China. In this study, a simple flow cytometry (FCM) method was used to monitor the population dynamics of BCT. Using a specific fluorescent stain, SYBR green I, flow cytometric analysis could easily differentiate two morphological states of B. licheniformis. Compared with plate count assay (PCA) for determining the number of vegetative cells and endospores, the percentage of endospores determined by FCM was ~10% higher than that by PCA. Advantages of the FCM method over conventional methods include lower labor work, shorter detection time, and higher accuracy. Therefore, this simple FCM method could be a practical tool for monitoring quality control during the production of probiotic BCT.
Collapse
|
27
|
Lanzilli M, Donadio G, Addevico R, Saggese A, Cangiano G, Baccigalupi L, Christie G, Ricca E, Isticato R. The Exosporium of Bacillus megaterium QM B1551 Is Permeable to the Red Fluorescence Protein of the Coral Discosoma sp. Front Microbiol 2016; 7:1752. [PMID: 27867376 PMCID: PMC5095127 DOI: 10.3389/fmicb.2016.01752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022] Open
Abstract
Bacterial spores spontaneously interact and tightly bind heterologous proteins. A variety of antigens and enzymes have been efficiently displayed on spores of Bacillus subtilis, the model system for spore formers. Adsorption on B. subtilis spores has then been proposed as a non-recombinant approach for the development of mucosal vaccine/drug delivery vehicles, biocatalysts, bioremediation, and diagnostic tools. We used spores of B. megaterium QM B1551 to evaluate their efficiency as an adsorption platform. Spores of B. megaterium are significantly larger than those of B. subtilis and of other Bacillus species and are surrounded by the exosporium, an outermost surface layer present only in some Bacillus species and lacking in B. subtilis. Strain QM B1551 of B. megaterium and a derivative strain totally lacking the exosporium were used to localize the adsorbed monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp., used as a model heterologous protein. Our results indicate that spores of B. megaterium adsorb mRFP more efficiently than B. subtilis spores, that the exosporium is essential for mRFP adsorption, and that most of the adsorbed mRFP molecules are not exposed on the spore surface but rather localized in the space between the outer coat and the exosporium.
Collapse
Affiliation(s)
| | - Giuliana Donadio
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Roberta Addevico
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Anella Saggese
- Department of Biology, University of Naples Federico II Naples, Italy
| | | | | | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge, UK
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II Naples, Italy
| |
Collapse
|
28
|
Donadio G, Lanzilli M, Sirec T, Ricca E, Isticato R. Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2016; 15:153. [PMID: 27609116 PMCID: PMC5016992 DOI: 10.1186/s12934-016-0551-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. RESULTS We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. CONCLUSIONS Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | | | - Teja Sirec
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL UK
| | - Ezio Ricca
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| |
Collapse
|
29
|
CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli. J Bacteriol 2016; 198:1513-20. [PMID: 26953338 DOI: 10.1128/jb.00023-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central "modular" region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis.
Collapse
|
30
|
Isticato R, Sirec T, Vecchione S, Crispino A, Saggese A, Baccigalupi L, Notomista E, Driks A, Ricca E. The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis. PLoS One 2015; 10:e0141040. [PMID: 26484546 PMCID: PMC4618286 DOI: 10.1371/journal.pone.0141040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction.
Collapse
Affiliation(s)
| | - Teja Sirec
- Department of Biology, Federico II University, Naples, Italy
| | | | - Anna Crispino
- Department of Biology, Federico II University, Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University, Naples, Italy
| | | | | | - Adam Driks
- Department of Microbiology and Immunology, Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, IL, United States of America
| | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
- * E-mail:
| |
Collapse
|