1
|
Tierney BT, Foox J, Ryon KA, Butler D, Damle N, Young BG, Mozsary C, Babler KM, Yin X, Carattini Y, Andrews D, Lucaci AG, Solle NS, Kumar N, Shukla B, Vidović D, Currall B, Williams SL, Schürer SC, Stevenson M, Amirali A, Beaver CC, Kobetz E, Boone MM, Reding B, Laine J, Comerford S, Lamar WE, Tallon JJ, Wain Hirschberg J, Proszynski J, Al Ghalith G, Can Kurt K, Sharkey ME, Church GM, Grills GS, Solo-Gabriele HM, Mason CE. Towards geospatially-resolved public-health surveillance via wastewater sequencing. Nat Commun 2024; 15:8386. [PMID: 39333485 PMCID: PMC11436780 DOI: 10.1038/s41467-024-52427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Wastewater is a geospatially- and temporally-linked microbial fingerprint of a given population, making it a potentially valuable tool for tracking public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (N = 2238 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County, USA, from 2020-2022. We used targeted amplicon sequencing to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with positive PCR tests from University students and Miami-Dade hospital patients. Additionally, in bulk metatranscriptomic data, we demonstrate that the bacterial content of different wastewater sampling locations serving small population sizes can be used to detect putative, host-derived microorganisms that themselves have known associations with human health and diet. We also detect multiple enteric pathogens (e.g., Norovirus) and characterize viral diversity across sites. Moreover, we observed an enrichment of antimicrobial resistance genes (ARGs) in hospital wastewater; antibiotic-specific ARGs correlated to total prescriptions of those same antibiotics (e.g Ampicillin, Gentamicin). Overall, this effort lays the groundwork for systematic characterization of wastewater that can potentially influence public health decision-making.
Collapse
Affiliation(s)
- Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin G Young
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Kristina M Babler
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Xue Yin
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Yamina Carattini
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Andrews
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Naresh Kumar
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bhavarth Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dušica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan C Schürer
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Cynthia Campos Beaver
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brian Reding
- Environmental Health and Safety, University of Miami, Miami, FL, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL, USA
| | - Samuel Comerford
- Environmental Health and Safety, University of Miami, Miami, FL, USA
| | - Walter E Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL, USA
| | | | | | | | - Kübra Can Kurt
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Mark E Sharkey
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George M Church
- Harvard Medical School and the Wyss Institute, Boston, MA, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Shanks OC, Diedrich A, Sivaganesan M, Willis JR, Sharifi A. Quantitative fecal source characterization of urban municipal storm sewer system outfall 'wet' and 'dry' weather discharges. WATER RESEARCH 2024; 259:121857. [PMID: 38851116 DOI: 10.1016/j.watres.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Urban areas are built environments containing substantial amounts of impervious surfaces (e.g., streets, sidewalks, roof tops). These areas often include elaborately engineered drainage networks designed to collect, transport, and discharge untreated stormwater into local surface waters. When left uncontrolled, these discharges may contain unsafe levels of fecal waste from sources such as sanitary sewage and wildlife even under dry weather conditions. This study evaluates paired measurements of host-associated genetic markers (log10 copies per reaction) indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal sources, 12-hour cumulative precipitation (mm), four catchment land use metrics determined by global information system (GIS) mapping, and Escherichia coli (MPN/100 ml) from seven municipal separate storm sewer system outfall locations situated at the southern portion of the Anacostia River Watershed (District of Columbia, U.S.A.). A total of 231 discharge samples were collected twice per month (n = 24 sampling days) and after rain events (n = 9) over a 13-month period. Approximately 50 % of samples (n = 116) were impaired, exceeding the local E. coli single sample maximum of 2.613 log10 MPN/100 ml. Genetic quality controls indicated the absence of amplification inhibition in 97.8 % of samples, however 14.7 % (n = 34) samples showed bias in DNA recovery. Of eligible samples, quantifiable levels were observed for avian (84.1 %), human (57.4 % for HF183/BacR287 and 40 % for HumM2), canine (46.7 %), and ruminant (15.9 %) host-associated genetic markers. Potential links between paired measurements are explored with a recently developed Bayesian qPCR censored data analysis approach. Findings indicate that human, pet, and urban wildlife all contribute to storm outfall discharge water quality in the District of Columbia, but pollutant source contributions vary based on 'wet' and 'dry' conditions and catchment land use, demonstrating that genetic-based fecal source identification methods combined with GIS land use mapping can complement routine E. coli monitoring to improve stormwater management in urban areas.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Amirreza Sharifi
- Department of Energy and Environment, 1200 First St NE, Washington, D.C., USA
| |
Collapse
|
3
|
Skiendzielewski K, Burch T, Stokdyk J, McGinnis S, McLoughlin S, Firnstahl A, Spencer S, Borchardt M, Murphy HM. Two risk assessments: Evaluating the use of indicator HF183 Bacteroides versus pathogen measurements for modelling recreational illness risks in an urban watershed. WATER RESEARCH 2024; 259:121852. [PMID: 38889662 DOI: 10.1016/j.watres.2024.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The purpose of this study was to evaluate the performance of HF183 Bacteroides for estimating pathogen exposures during recreational water activities. We compared the use of Bacteroides-based exposure assessment to exposure assessment that relied on pathogen measurements. We considered two types of recreational water sites: those impacted by combined sewer overflows (CSOs) and those not impacted by CSOs. Samples from CSO-impacted and non-CSO-impacted urban creeks were analysed by quantitative polymerase chain reaction (qPCR) for HF183 Bacteroides and eight human gastrointestinal pathogens. Exposure assessment was conducted two ways for each type of site (CSO-impacted vs. non-CSO impacted): 1) by estimating pathogen concentrations from HF183 Bacteroides concentrations using published ratios of HF183 to pathogens in sewage and 2) by estimating pathogen concentrations from qPCR measurements. QMRA (quantitative microbial risk assessment) was then conducted for swimming, wading, and fishing exposures. Overall, mean risk estimates varied from 0.27 to 53 illnesses per 1,000 recreators depending on exposure assessment, site, activity, and norovirus dose-response model. HF183-based exposure assessment identified CSO-impacted sites as higher risk, and the recommended HF183 risk-based threshold of 525 genomic copies per 100 mL was generally protective of public health at the CSO-impacted sites but was not as protective at the non-CSO-impacted sites. In the context of our urban watershed, HF183-based exposure assessment over- and under-estimated risk relative to exposure assessment based on pathogen measurements, and the etiology of predicted pathogen-specific illnesses differed significantly. Across all sites, the HF183 model overestimated risk for norovirus, adenovirus, and Campylobacter jejuni, and it underestimated risk for E. coli and Cryptosporidium. To our knowledge, this study is the first to directly compare health risk estimates using HF183 and empirical pathogen measurements from the same waterways. Our work highlights the importance of site-specific hazard identification and exposure assessment to decide whether HF183 is applicable for monitoring risk.
Collapse
Affiliation(s)
- K Skiendzielewski
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States.
| | - T Burch
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - J Stokdyk
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S McGinnis
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - S McLoughlin
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - A Firnstahl
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S Spencer
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - M Borchardt
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - H M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States; Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Lobos AE, Brandt AM, Gallard-Góngora JF, Korde R, Brodrick E, Harwood VJ. Persistence of sewage-associated genetic markers in advanced and conventional treated recycled water: implications for microbial source tracking in surface waters. mBio 2024; 15:e0065524. [PMID: 38864636 PMCID: PMC11253620 DOI: 10.1128/mbio.00655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Sewage contamination of environmental waters is increasingly assessed by measuring DNA from sewage-associated microorganisms in microbial source tracking (MST) approaches. However, DNA can persist through wastewater treatment and reach surface waters when treated sewage/recycled water is discharged, which may falsely indicate pollution from untreated sewage. Recycled water discharged from an advanced wastewater treatment (AWT) facility into a Florida stream elevated the sewage-associated HF183 marker 1,000-fold, with a minimal increase in cultured Escherichia coli. The persistence of sewage-associated microorganisms was compared by qPCR in untreated sewage and recycled water from conventional wastewater treatment (CWT) and AWT facilities. E. coli (EC23S857) and sewage-associated markers HF183, H8, and viral crAssphage CPQ_056 were always detected in untreated sewage (6.5-8.7 log10 GC/100 mL). Multivariate analysis found a significantly greater reduction of microbial variables via AWT vs CWT. Bacterial markers decayed ~4-5 log10 through CWT, but CPQ_056 was ~100-fold more persistent. In AWT facilities, the log10 reduction of all variables was ~5. In recycled water, bacterial marker concentrations were significantly correlated (P ≤ 0.0136; tau ≥ 0.44); however, CPQ_056 was not correlated with any marker, suggesting varying drivers of decay. Concentrations of cultured E. coli carrying the H8 marker (EcH8) in untreated sewage were 5.24-6.02 log10 CFU/100 mL, while no E. coli was isolated from recycled water. HF183 and culturable EcH8 were also correlated in contaminated surface waters (odds ratio β1 = 1.701). Culturable EcH8 has a strong potential to differentiate positive MST marker signals arising from treated (e.g., recycled water) and untreated sewage discharged into environmental waters. IMPORTANCE Genes in sewage-associated microorganisms are widely accepted indicators of sewage pollution in environmental waters. However, DNA persists through wastewater treatment and can reach surface waters when recycled water is discharged, potentially causing false-positive indications of sewage contamination. Previous studies have found that bacterial and viral sewage-associated genes persist through wastewater treatment; however, these studies did not compare different facilities or identify a solution to distinguish sewage from recycled water. In this study, we demonstrated the persistence of bacterial marker genes and the greater persistence of a viral marker gene (CPQ_056 of crAssphage) through varying wastewater treatment facilities. We also aim to provide a tool to confirm sewage contamination in surface waters with recycled water inputs. This work showed that the level of wastewater treatment affects the removal of microorganisms, particularly viruses, and expands our ability to identify sewage in surface waters.
Collapse
Affiliation(s)
- Aldo E. Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Amanda M. Brandt
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Javier F. Gallard-Góngora
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Ruchi Korde
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Eleanor Brodrick
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
6
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
7
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
9
|
Flores ME, Jafarzadeh A, Moghadam SV, Vadde KK, Dhar DA, Nunu RR, Kapoor V. Occurrence and removal of fecal bacteria and microbial source tracking markers in a stormwater detention basin overlying the Edwards Aquifer recharge zone in Texas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103836-103850. [PMID: 37691063 DOI: 10.1007/s11356-023-29636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
The Edwards Aquifer is the primary water resource for over 2 million people in Texas and faces challenges including fecal contamination of water recharging the aquifer, while effectiveness of best management practices (BMPs) such as detention basins in mitigating fecal pollution remains poorly understood. For this study, the inlet and outlet of a detention basin overlying the aquifer's recharge zone were sampled following storm events using automated samplers. Microbial source tracking and culture-based methods were used to determine the occurrence and removal of fecal genetic markers and fecal coliform bacteria in collected water samples. Markers included E. coli (EC23S857), Enterococcus (Entero1), human (HF183), canine (BacCan), and bird (GFD). Fecal coliforms, EC23S857, and Entero1 were detected following each storm event. GFD was the most frequent host-associated marker detected (91% of samples), followed by BacCan (46%), and HF183 (17%). Wilcoxon signed rank tests indicated significantly lower outlet concentrations for fecal coliforms, EC23S857, and Entero1, but not for HF183, GFD, and BacCan. Higher GFD and BacCan outlet concentrations may be due to factors independent of basin design, such as the non-point source nature of bird fecal contamination and domestic dog care practices in neighborhoods contributing to the basin. Mann-Whitney tests showed marker concentrations were not significantly higher during instances of fecal coliform water quality criterion exceedance, except for E. coli, and that fecal coliform concentrations were not significantly different based on marker detection. Overall, results suggest that the detention basin is effective in attenuating fecal contamination associated with fecal coliforms and the general markers, but not for host-associated markers. Consequently, management efforts should focus on mitigating dog and bird-associated fecal pollution in the study region.
Collapse
Affiliation(s)
- Mauricio Eduardo Flores
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Sina Vedadi Moghadam
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Dipti Anik Dhar
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Rebecca R Nunu
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
10
|
Tierney BT, Foox J, Ryon KA, Butler D, Damle N, Young BG, Mozsary C, Babler KM, Yin X, Carattini Y, Andrews D, Solle NS, Kumar N, Shukla B, Vidovic D, Currall B, Williams SL, Schürer SC, Stevenson M, Amirali A, Beaver CC, Kobetz E, Boone MM, Reding B, Laine J, Comerford S, Lamar WE, Tallon JJ, Hirschberg JW, Proszynski J, Sharkey ME, Church GM, Grills GS, Solo-Gabriele HM, Mason CE. Geospatially-resolved public-health surveillance via wastewater sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290781. [PMID: 37398062 PMCID: PMC10312847 DOI: 10.1101/2023.05.31.23290781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wastewater, which contains everything from pathogens to pollutants, is a geospatially-and temporally-linked microbial fingerprint of a given population. As a result, it can be leveraged for monitoring multiple dimensions of public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (n=1,419 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County from 2020-2022. First, we used targeted amplicon sequencing (n=966) to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with clinical caseloads from University students (N = 1,503) and Miami-Dade County hospital patients (N = 3,939 patients), as well as an 8-day earlier detection of the Delta variant in wastewater vs. in patients. Additionally, in 453 metatranscriptomic samples, we demonstrate that different wastewater sampling locations have clinically and public-health-relevant microbiota that vary as a function of the size of the human population they represent. Through assembly, alignment-based, and phylogenetic approaches, we also detect multiple clinically important viruses (e.g., norovirus ) and describe geospatial and temporal variation in microbial functional genes that indicate the presence of pollutants. Moreover, we found distinct profiles of antimicrobial resistance (AMR) genes and virulence factors across campus buildings, dorms, and hospitals, with hospital wastewater containing a significant increase in AMR abundance. Overall, this effort lays the groundwork for systematic characterization of wastewater to improve public health decision making and a broad platform to detect emerging pathogens.
Collapse
|
11
|
Li S, Wang S, Wong MH, Zaynab M, Wang K, Zhong L, Ouyang L. Changes in the composition of bacterial communities and pathogen levels during wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1232-1243. [PMID: 35913690 DOI: 10.1007/s11356-022-21947-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants have been described as a potential source of spreading pathogens to the receiving water. However, few studies are reporting the presence and concentration changes of pathogens in these matrices. High-throughput sequencing provides new insights into understanding the changes of bacterial communities throughout wastewater treatment plants (WWTPs). In this study, the changes in microbial community composition and the levels of representative pathogens of effluents during the wastewater treatment process in two municipal WWTPs (A and B) were analyzed using Illumina NovaSeq sequencing and qPCR. Proteobacteria was the most abundant phylum in all samples, accounting for 45.0-75.2% of the bacterial community, followed by Firmicutes, Bacteroidetes, Actinobacteria, and Nitrospirae. A slight difference was observed between the bacterial community compositions of WWTPs A and B. However, a significant difference in the community compositions of effluent samples at different treatment stages was observed. Nutrients had a more substantial impact on bacterial community composition than physicochemical factors. Most human-associated Bacteroides and Mycobacterium were eliminated during the wastewater treatment process in both WWTPs. The bacterial community richness in WWTP A was significantly higher than that in WWTP B. The results of this study will provide insights into the potential problems that exist in WWTPs. In turn, these insights can enable the efficient and stable operation of WWTPs and help prevent the spread of pathogens.
Collapse
Affiliation(s)
- Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Shilin Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Ming Hung Wong
- Environment, Education and Research (CHEER), Consortium On Health, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Keju Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Liping Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Liao Ouyang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Rao G, Kahler A, Voth-Gaeddert LE, Cranford H, Libbey S, Galloway R, Molinari NA, Ellis EM, Yoder JS, Mattioli MC, Ellis BR. Microbial Characterization, Factors Contributing to Contamination, and Household Use of Cistern Water, U.S. Virgin Islands. ACS ES&T WATER 2022; 2:2634-2644. [PMID: 36530952 PMCID: PMC9745795 DOI: 10.1021/acsestwater.2c00389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 05/09/2023]
Abstract
Households in the United States Virgin Islands (USVI) heavily rely on roof-harvested rainwater stored in cisterns for their daily activities. However, there are insufficient data on cistern water microbiological and physicochemical characteristics to inform appropriate cistern water management. Cistern and kitchen tap water samples were collected from 399 geographically representative households across St. Croix, St. Thomas, and St. John and an administered survey captured household site and cistern characteristics and water use behaviors. Water samples were analyzed for Escherichia coli by culture, and a subset of cistern water samples (N = 47) were analyzed for Salmonella, Naegleria fowleri, pathogenic Leptospira, Cryptosporidium, Giardia, and human-specific fecal contamination using real-time polymerase chain reaction (PCR). Associations between E. coli cistern contamination and cistern and site characteristics were evaluated to better understand possible mechanisms of contamination. E. coli was detected in 80% of cistern water samples and in 58% of kitchen tap samples. For the subset of samples tested by PCR, at least one of the pathogens was detected in 66% of cisterns. Our results suggest that covering overflow pipes with screens, decreasing animal presence at the household, and preventing animals or insects from entering the cisterns can decrease the likelihood of E. coli contamination in USVI cistern water.
Collapse
Affiliation(s)
- Gouthami Rao
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Amy Kahler
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Lee E. Voth-Gaeddert
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Hannah Cranford
- United
States Virgin Islands Department of Health, St. Croix, U.S. Virgin Islands 00820, United States
| | - Stephen Libbey
- Love
City Strong, St. John, U.S. Virgin Islands 00830, United States
| | - Renee Galloway
- Division
of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Noelle-Angelique Molinari
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Esther M. Ellis
- United
States Virgin Islands Department of Health, St. Croix, U.S. Virgin Islands 00820, United States
| | - Jonathan S. Yoder
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Mia C. Mattioli
- Division
of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329, United States
| | - Brett R. Ellis
- United
States Virgin Islands Department of Health, St. Croix, U.S. Virgin Islands 00820, United States
| |
Collapse
|
13
|
Gerrity D, Papp K, Dickenson E, Ejjada M, Marti E, Quinones O, Sarria M, Thompson K, Trenholm RA. Characterizing the chemical and microbial fingerprint of unsheltered homelessness in an urban watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156714. [PMID: 35709998 DOI: 10.1016/j.scitotenv.2022.156714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Unsheltered homelessness is rapidly becoming a critical issue in many cities worldwide. The worsening situation not only highlights the socioeconomic plight, but it also raises awareness of ancillary issues such as the potential implications for urban water quality. The objective of this study was to simultaneously leverage diverse source tracking tools to develop a chemical and microbial fingerprint describing the relative contribution of direct human inputs into Las Vegas' tributary washes. By evaluating a wide range of urban water matrices using general water quality parameters, fecal indicator bacteria (FIB), human-associated microbial markers [e.g., HF183, crAssphage, and pepper mild mottle virus (PMMoV)], 16S rRNA gene sequencing data, and concentrations of 52 anthropogenic trace organic compounds (TOrCs), this study was able to differentiate principal sources of these constituents, including contributions from unsheltered homelessness. For example, HF183 (31% vs. 0%), crAssphage (61% vs. 5%), and PMMoV (72% vs. 55%) were more frequently detected in tributary washes with higher homeless census counts vs. 'control' tributary washes. Illicit drugs or their metabolites (e.g., heroin, acetylmorphine, amphetamine, and cocaine) and select TOrCs (e.g., acetaminophen, caffeine, ibuprofen, and naproxen) were also detected more frequently and at higher concentrations in the more anthropogenically-impacted washes. These data can be used to raise awareness of the shared interests between the broader community and those who are experiencing homelessness, notably the importance of protecting environmental health and water quality. Ultimately, this may lead to more rapid adoption of proven strategies for achieving functional zero homelessness, or at least additional resources for unsheltered individuals.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States.
| | - Katerina Papp
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Meena Ejjada
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Erica Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Mayra Sarria
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Kyle Thompson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Carollo Engineers, 8911 N. Capital of Texas Hwy, Austin, TX 78759, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
14
|
Cyterski M, Shanks OC, Wanjugi P, McMinn B, Korajkic A, Oshima K, Haugland R. Bacterial and viral fecal indicator predictive modeling at three Great Lakes recreational beach sites. WATER RESEARCH 2022; 223:118970. [PMID: 35985141 PMCID: PMC9724166 DOI: 10.1016/j.watres.2022.118970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Coliphage are viruses that infect Escherichia coli (E. coli) and may indicate the presence of enteric viral pathogens in recreational waters. There is an increasing interest in using these viruses for water quality monitoring and forecasting; however, the ability to use statistical models to predict the concentrations of coliphage, as often done for cultured fecal indicator bacteria (FIB) such as enterococci and E. coli, has not been widely assessed. The same can be said for FIB genetic markers measured using quantitative polymerase chain reaction (qPCR) methods. Here we institute least-angle regression (LARS) modeling of previously published concentrations of cultured FIB (E. coli, enterococci) and coliphage (F+, somatic), along with newly reported genetic concentrations measured via qPCR for E. coli, enterococci, and general Bacteroidales. We develop site-specific models from measures taken at three beach sites on the Great Lakes (Grant Park, South Milwaukee, WI; Edgewater Beach, Cleveland, OH; Washington Park, Michigan City, IN) to investigate the efficacy of a statistical predictive modeling approach. Microbial indicator concentrations were measured in composite water samples collected five days per week over a beach season (∼15 weeks). Model predictive performance (cross-validated standardized root mean squared error of prediction [SRMSEP] and R2PRED) were examined for seven microbial indicators (using log10 concentrations) and water/beach parameters collected concurrently with water samples. Highest predictive performance was seen for qPCR-based enterococci and Bacteroidales models, with F+ coliphage consistently yielding poor performing models. Influential covariates varied by microbial indicator and site. Antecedent rainfall, bird abundance, wave height, and wind speed/direction were most influential across all models. Findings suggest that some fecal indicators may be more suitable for water quality forecasting than others at Great Lakes beaches.
Collapse
Affiliation(s)
- Mike Cyterski
- U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, 30605, United States.
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Pauline Wanjugi
- New York State Department of Health, Center for Environmental Health, Bureau of Water Supply Protection, New York City Watershed Section, Albany, NY 12201, United States
| | - Brian McMinn
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Asja Korajkic
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Kevin Oshima
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Rich Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| |
Collapse
|
15
|
Korajkic A, Kelleher J, Shanks OC, Herrmann MP, McMinn BR. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154861. [PMID: 35358531 PMCID: PMC9291237 DOI: 10.1016/j.scitotenv.2022.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Orin C Shanks
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States.
| |
Collapse
|
16
|
Wang Y, Zheng G, Wang D, Zhou L. Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114802. [PMID: 35228166 DOI: 10.1016/j.jenvman.2022.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
17
|
Guo Y, Sivakumar M, Jiang G. Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152000. [PMID: 34843787 DOI: 10.1016/j.scitotenv.2021.152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Measurement of pathogens in raw wastewater from a population within certain sewer catchments can provide quantitative information on public health status within the sampled urban area. This so-called wastewater-based epidemiology (WBE) approach has the potential of becoming a powerful tool to monitor pathogen circulation and support timely intervention during outbreaks. However, many WBE studies failed to account for the pathogen decay during wastewater transportation in back calculating the disease prevalence. Various sewer process factors, including water temperature and infiltration/inflow, can lead to the variation of pathogen decay rates. This paper firstly reviewed the effects of temperature and types of water, i.e., wastewater, freshwater, and saline water, on the decay of four selected enteric pathogens, i.e., Campylobacter, Salmonella, Norovirus, and Adenovirus. To elucidate the importance of the pathogen decay rates (measured by culture and molecular methods) to WBE, a sensitivity analysis was conducted on the back-calculation equation for infection prevalence with decay rates collected from published literature. It was found that WBE back-calculation is more sensitive to decay rates under the condition of high wastewater temperature (i.e., over 25 °C) or if wastewater is diluted by saline water (i.e., sewer infiltration or use of seawater as an alternative source of freshwater constituting around 1/3 household water demand in some cities). Stormwater dilution of domestic wastewater (i.e., sewer inflow might achieve 10 times volumetric dilution) was shown to play a role in increasing the sensitivity of WBE back-calculation to bacterial pathogens, but not viral pathogens. Hence, WBE back-calculation in real sewers should account for in-sewer decay of specific pathogen species under different wastewater temperatures and dilutions. Overall, this review contributes to a better understanding of pathogen decay in wastewater which can lead to improved accuracy of WBE back-calculation.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
18
|
Coprostanol as a Population Biomarker for SARS-CoV-2 Wastewater Surveillance Studies. WATER 2022. [DOI: 10.3390/w14020225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.
Collapse
|
19
|
Korajkic A, McMinn BR, Herrmann MP, Pemberton AC, Kelleher J, Oshima K, Villegas EN. Performance evaluation of a dead-end hollowfiber ultrafiltration method for enumeration of somatic and F+ coliphage from recreational waters. J Virol Methods 2021; 296:114245. [PMID: 34310974 PMCID: PMC8982549 DOI: 10.1016/j.jviromet.2021.114245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022]
Abstract
Dead-end hollow fiber ultrafiltration combined with a single agar layer assay (D-HFUF-SAL) has potential use in the assessment of sanitary quality of recreational waters through enumeration of coliphage counts as measures of fecal contamination. However, information on applicability across a broad range of sites and water types is limited. Here, we tested the performance of D-HFUF-SAL on 49 marine and freshwater samples. Effect of method used to titer the spiking suspension (SAL versus double agar layer [DAL]) on percent recovery was also evaluated. Average somatic coliphage recovery (72 % ± 27) was significantly higher (p < 0.0001) compared to F+ (53 % ± 19). This was more pronounced for marine (p ≤ 0.0001) compared to freshwaters (p = 0.0134). Neither method affected somatic coliphage, but DAL (28 % ± 12) significantly (p < 0.0001) underestimated F + coliphage recoveries compared to SAL (53 % ± 19). Overall, results indicate that, while D-HFUF-SAL performed well over a wide variety of water types, F + coliphage recoveries were significantly reduced for marine waters suggesting that some components unique to this habitat may interfere with the assay performance. More importantly, our findings indicate that choice of spike titer method merits careful consideration since it may under-estimate method percent recovery.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, USA.
| | - Brian R McMinn
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Michael P Herrmann
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Adin C Pemberton
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Julie Kelleher
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Kevin Oshima
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Eric N Villegas
- United States Environmental Protection Agency, Office of Research and Development, USA
| |
Collapse
|
20
|
E. coli CB390 as an Indicator of Total Coliphages for Microbiological Assessment of Lime and Drying Bed Treated Sludge. WATER 2021. [DOI: 10.3390/w13131833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of a single host strain that allows for an evaluation of the levels of total coliphages in any type of environmental sample would facilitate the detection of and reduction in complexity and costs, favoring countries or areas with technical and economic limitations. The CB390 strain is a candidate for this type of simultaneous determinations, mainly in water samples. The objective of the study was to establish the recovery capacity of the CB390 strain in solid and semi-solid samples and to evaluate the microbiological quality of the sludge generated and stabilized by lime and drying beds in two WWTPs in Colombia. The results of both matrices indicated that CB390 recovered similar numbers of total coliphages (p > 0.05) against the two host strains when evaluated separately. Only the drying bed treatment was able to reduce between 2.0 and 2.9 Log10 units for some microorganisms, while the addition of lime achieved a maximum reduction of 1.3 Log10 units for E. coli. In conclusion, the CB390 strain can be used in solid and semi-solid samples, and the treatment in a drying bed provided a product of microbiological quality. However, the results are influenced by the infrastructure of the WWTP, the treatment conditions, and the monitoring of the stabilization processes.
Collapse
|
21
|
Ahmed W, Gyawali P, Hamilton KA, Joshi S, Aster D, Donner E, Simpson SL, Symonds EM. Antibiotic Resistance and Sewage-Associated Marker Genes in Untreated Sewage and a River Characterized During Baseflow and Stormflow. Front Microbiol 2021; 12:632850. [PMID: 34177821 PMCID: PMC8226142 DOI: 10.3389/fmicb.2021.632850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Since sewage is a hotspot for antibiotic resistance genes (ARGs), the identification of ARGs in environmental waters impacted by sewage, and their correlation to fecal indicators, is necessary to implement management strategies. In this study, sewage treatment plant (STP) influent samples were collected and analyzed using quantitative polymerase chain reaction (qPCR) to investigate the abundance and correlations between sewage-associated markers (i.e., Bacteroides HF183, Lachnospiraceae Lachno3, crAssphage) and ARGs indicating resistance to nine antibiotics (belonging to aminoglycosides, beta-lactams, sulfonamides, macrolides, and tetracyclines). All ARGs, except blaVIM, and sewage-associated marker genes were always detected in untreated sewage, and ermF and sul1 were detected in the greatest abundances. intl1 was also highly abundant in untreated sewage samples. Significant correlations were identified between sewage-associated marker genes, ARGs and the intl1 in untreated sewage (τ = 0.488, p = 0.0125). Of the three sewage-associated marker genes, the BIO-ENV procedure identified that HF183 alone best maximized correlations to ARGs and intl1 (τ = 0.590). Additionally, grab samples were collected from peri-urban and urban sites along the Brisbane River system during base and stormflow conditions, and analyzed for Escherichia coli, ARGs, the intl1, and sewage-associated marker genes using quantitative polymerase chain reaction (qPCR). Significant correlations were identified between E. coli, ARGs, and intl1 (τ = 0.0893, p = 0.0032), as well as with sewage-associated marker genes in water samples from the Brisbane River system (τ = 0.3229, p = 0.0001). Of the sewage-associated marker genes and E. coli, the BIO-ENV procedure identified that crAssphage alone maximized correlations with ARGs and intl1 in river samples (τ = 0.4148). Significant differences in E. coli, ARGs, intl1, and sewage-associated marker genes, and by flow condition (i.e., base vs. storm), and site types (peri-urban vs. urban) combined were identified (R = 0.3668, p = 0.0001), where percent dissimilarities between the multi-factorial groups ranged between 20.8 and 11.2%. Results from this study suggest increased levels of certain ARGs and sewage-associated marker genes in stormflow river water samples compared to base flow conditions. E. coli, HF183 and crAssphage may serve as potential indicators of sewage-derived ARGs under stormflow conditions, and this merits further investigation. Data presented in this study will be valuable to water quality managers to understand the links between sewage pollution and ARGs in urban environments.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Dutton Park, QLD, Australia
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua, New Zealand
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States.,Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sayalee Joshi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States.,Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - David Aster
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, QLD, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, University Boulevard, Mawson Lakes, SA, Australia
| | | | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| |
Collapse
|
22
|
Li X, Kelty CA, Sivaganesan M, Shanks OC. Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. WATER RESEARCH 2021; 192:116845. [PMID: 33508720 PMCID: PMC8186395 DOI: 10.1016/j.watres.2021.116845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Ahmed W, Bivins A, Bertsch PM, Bibby K, Gyawali P, Sherchan SP, Simpson SL, Thomas KV, Verhagen R, Kitajima M, Mueller JF, Korajkic A. Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2021; 193:110531. [PMID: 33249042 PMCID: PMC8267967 DOI: 10.1016/j.envres.2020.110531] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 05/06/2023]
Abstract
We monitored the concentration of indicator viruses crAssphage and pepper mild mottle virus (PMMoV) and human pathogen adenovirus (HAdV) in influent from a wastewater treatment plant in Brisbane, Australia in 1-h and 24-h composite samples. Over three days of sampling, the mean concentration of crAssphage gene copies (GC)/mL in 24-h composite samples did not differ significantly (p = 0.72-0.92), while for PMMoV GC/mL (p value range: 0.0002-0.0321) and HAdV GC/mL (p value range: 0.0028-0.0068) significant differences in concentrations were observed on one day of sampling compared to the other two. For all three viruses, the variation observed in 1-h composite samples was greater than the variation observed in 24-h composite samples. For crAssphage, in 54.1% of 1-h composite samples, the concentration was less than that observed in 24-h composite samples; whereas for PMMoV and HAdV the concentration was less in 79.2 and 70.9% of 1-h composite samples, respectively, compared to the relevant 24-h composite samples. Similarly, the concentration of crAssphage in 1-h compared to 24-h composite samples did not differ (p = 0.1082) while the concentrations of PMMoV (p < 0.0001) and HAdV (p < 0.0001) in 1-h composite samples were significantly different from 24-h composite samples. These results suggest that 24-h composite samples offer increased analytical sensitivity and decreased variability compared to 1-h composite samples when monitoring wastewater, especially for pathogenic viruses with low infection rates within a community. Thus, for wastewater-based epidemiology applications, 24-h composite samples are less likely to produce false negative results and erroneous public health information.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-0032, Japan
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH, 45268, USA
| |
Collapse
|
24
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
25
|
Schoen ME, Boehm AB, Soller J, Shanks OC. Contamination Scenario Matters when Using Viral and Bacterial Human-Associated Genetic Markers as Indicators of a Health Risk in Untreated Sewage-Impacted Recreational Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13101-13109. [PMID: 32969642 PMCID: PMC8215692 DOI: 10.1021/acs.est.0c02189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fecal pollution at beaches can pose a health risk to recreators. Quantitative microbial risk assessment (QMRA) is a tool to evaluate the use of candidate fecal indicators to signify a health risk from enteric pathogens in sewage-impacted waters. We extend the QMRA approach to model mixtures of sewage at different ages using genetic marker concentrations for human-associated crAssphage, Bacteroides spp., and polyomavirus in sewage samples from 49 wastewater facilities across the contiguous United States. Risk-based threshold (RBT) estimates varied across different mixture and sewage age scenarios. Fresh sewage RBT estimates were not always protective when aged sewage was present, and aged sewage RBT estimates often fell below the marker lower limit of quantification. Conservative RBT estimates of 9.3 × 102 and 9.1 × 103 (copies/100 mL) for HF183/BacR287 and CPQ_056, respectively, were predicted when fresh sewage was greater (by volume) than aged at the time of measurement. Conversely, genetic markers may not be effective indicators when aged sewage contributes the majority of pathogens, relative to fresh contamination, but minimal marker levels. Results highlight the utility of QMRA that incorporates pollutant age and mixture scenarios, the potential advantages of a crAssphage fecal indicator, and the potential influence of site-specific factors on estimating RBT values.
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey Soller
- Soller Environmental, LLC, 3022 King St., Berkeley, California 94703, United States
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|