1
|
Baleivanualala SC, Matanitobua S, Samisoni Y, Soqo V, Smita S, Mailulu J, Nabose I, Lata A, Shayam C, Sharma R, Wilson D, Crump JA, Ussher JE. Environmental contamination with carbapenem resistant Acinetobacter baumannii in healthcare settings in Fiji: a potential source of infection. Front Cell Infect Microbiol 2024; 14:1429443. [PMID: 39376664 PMCID: PMC11456574 DOI: 10.3389/fcimb.2024.1429443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction There are multiple ongoing outbreaks of carbapenem resistant Acinetobacter baumannii (CRAb) infection in Fiji's hospitals. CRAb is able to colonize and persist on various hospital surfaces for extended periods. We conducted a study to understand the extent of hospital environmental contamination and phylogenetic links with clinical isolates. Methods Swabs were collected from high-touch surfaces at Colonial War Memorial Hospital (CWMH) September 2021 and December 2022; Lautoka Hospital (LTKH) August 2022; and Labasa Hospital (LBSH) November 2022. All bacterial isolates were identified, and antimicrobial susceptibility testing (AST) performed; isolates resistant to carbapenems and producing a carbapenemase underwent whole genome sequencing. Comparison was made to clinical isolates obtained from CWMH in 2016-2017 and 2019-2021 and from LTKH and LBSH from 2020-2021. Results From the 180 environmental samples collected, ten (5.6%) CRAb were isolated; no other carbapenem-resistant gram-negative organisms were isolated. Seven (70%) of the CRAb were isolated from CWMH and three (30%) from LTKH; no CRAb were isolated from LBSH. Of the seven CWMH CRAb, two were sequence type 2 (ST2), three ST25, and two ST499. All LTKH isolates were ST499. The two environmental CRAb ST2 isolates were closely genetically linked to isolates obtained from patients in CWMH, LTKH, and LBSH 2020-2021. Similarly, the three environmental CRAb ST25 isolates were closely genetically linked to isolates obtained from patients admitted to CWMH in 2019-2021 and LBSH in 2020. The environmental CRAb ST499 isolates represented two distinct clones, with clone 1 comprising two genetically identical isolates from CWMH and clone 2 the three isolates from LTKH. Although no genetic linkages were observed when comparing environmental ST499 isolates to those from CWMH patients in 2020-2021, both clone 1 isolates were genetically identical to an isolate obtained from a patient admitted during the sampling period. Conclusion Our study highlights the contamination of high-touch surfaces within Fiji hospitals with CRAb, suggesting that these may serve as important sources for CRAb. Phylogenetic linkages to CRAb isolated from patients since 2019 underscores the persistence of this resistant pathogen in hospital settings and the ongoing risk for hospital-acquired infections.
Collapse
Affiliation(s)
- Sakiusa C. Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Silivia Matanitobua
- Fiji Centre for Disease Control, Ministry of Health and Medical Services, Suva, Fiji
| | - Yvette Samisoni
- Department of Infection Prevention and Control, Aspen Medical, Lautoka Hospital, Lautoka, Fiji
| | - Vika Soqo
- Microbiology Laboratory, Aspen Medical, Lautoka Hospital, Lautoka, Fiji
| | - Shayal Smita
- Microbiology Laboratory, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | | | - Ilisapeci Nabose
- Department of Infection Prevention and Control, Colonial War Memorial Hospital, Ministry of Health and Medical Services, Suva, Fiji
| | - Alvina Lata
- Department of Infection Prevention and Control, Colonial War Memorial Hospital, Ministry of Health and Medical Services, Suva, Fiji
| | - Christina Shayam
- Department of Infection Prevention and Control, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | - Radhika Sharma
- Department of Infection Prevention and Control, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | - Donald Wilson
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | - John A. Crump
- Centre for International Health, Division of Health Sciences, University of Otago, Dunedin, New Zealand
- Otago Global Health Institute, University of Otago, Dunedin, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Microbiology, Awanui Labs, Dunedin Hospital, Dunedin, New Zealand
| |
Collapse
|
2
|
Simpson AC, Tighe S, Wong S, Leo P, Parker C, Chander AM, Williams M, Wu HW, Venkateswaran K, Singh NK. Analysis of Microbiomes from Ultra-Low Biomass Surfaces Using Novel Surface Sampling and Nanopore Sequencing. J Biomol Tech 2023; 34:3fc1f5fe.bac4a5b3. [PMID: 37969875 PMCID: PMC10644977 DOI: 10.7171/3fc1f5fe.bac4a5b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The rapid assessment of microbiomes from ultra-low biomass environments such as cleanrooms or hospital operating rooms has a number of applications for human health and spacecraft manufacturing. Current techniques often employ lengthy protocols using short-read DNA sequencing technology to analyze amplified DNA and have the disadvantage of a longer analysis time and lack of portability. Here, we demonstrate a rapid (~24 hours) on-site nanopore-based sequencing approach to characterize the microbiome of a NASA Class 100K cleanroom where spacecraft components are assembled. This approach employs a modified protocol of Oxford Nanopore's Rapid PCR Barcoding Kit in combination with the recently developed Squeegee-Aspirator for Large Sampling Area (SALSA) surface sampling device. Results for these ultra-low biomass samples revealed DNA amplification ~1 to 2 orders of magnitude above process control samples and were dominated primarily by Paracoccus and Acinetobacter species. Negative control samples were collected to provide critical data on background contamination, including Cutibacerium acnes, which most likely originated from the sampling reagents-associated microbiome (kitome). Overall, these results provide data on a novel approach for rapid low-biomass DNA profiling using the SALSA sampler combined with modified nanopore sequencing. These data highlight the critical need for employing multiple negative controls, along with using DNA-free reagents and techniques, to enable a proper assessment of ultra-low biomass samples.
Collapse
Affiliation(s)
- Anna C. Simpson
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Scott Tighe
- Vermont Integrative GenomicsUniversity of VermontBurlingtonVermont
| | | | - Patrick Leo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Ceth Parker
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Atul M. Chander
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Michael Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Hao-Wei Wu
- AI Biosciences, Inc.College StationTexas
| | - Kasthuri Venkateswaran
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| | - Nitin K. Singh
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyBiotechnology and Planetary Protection GroupPasadenaCalifornia91109USA
| |
Collapse
|
3
|
Blachowicz A, Urbaniak C, Adolphson A, Isenhouer G, Page A, Venkateswaran K. Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator. Microorganisms 2023; 11:2310. [PMID: 37764154 PMCID: PMC10537578 DOI: 10.3390/microorganisms11092310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The pressing need to safeguard the health of astronauts aboard the International Space Station (ISS) necessitates constant and rigorous microbial monitoring. Recognizing the shortcomings of traditional culture-based methods, NASA is deliberating the incorporation of molecular-based techniques. The challenge, however, lies in developing and validating effective methods for concentrating samples to facilitate this transition. This study is dedicated to investigating the potential of an ISS Smart Sample Concentrator (iSSC) as an innovative concentration method. First, the iSSC system and its components were tested and optimized for microgravity, including various testing environments: a drop tower, parabolic flight, and the ISS itself. Upon confirming the system's compatibility with microgravity, we further evaluated its proficiency and reliability in concentrating large volumes (i.e., 1 L) of water samples inoculated with different microbes. The samples carried 102 to 105 colony-forming units (CFUs) of Sphingomonas paucimobilis, Ralstonia pickettii, or Cupriavidus basilensis per liter, aligning with NASA's acceptable limit of 5 × 104 CFU/L. The average retrieved volume post-concentration was ≈450 µL, yielding samples that were ≈2200 times more concentrated for subsequent quantitative PCR (qPCR) and CFU analysis. The average microbial percent recovery, as assessed with CFU counts, demonstrated consistency for C. basilensis and R. pickettii at around 50% and 45%, respectively. For S. paucimobilis, the efficiency oscillated between 40% and 80%. Interestingly, when we examined microbial recovery using qPCR, the results showed more variability across all tested species. The significance of these findings lies not merely in the successful validation of the iSSC but also in the system's proven consistency, as evidenced by its alignment with previous validation-phase results. In conclusion, conducted research underscored the potential of the iSSC in monitoring microbial contamination in potable water aboard the ISS, heralding a paradigm shift from culture-based to molecular-based monitoring methods.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Camilla Urbaniak
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
| | | | | | - Andy Page
- InnovaPrep LLC, Drexel, MO 64742, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
4
|
Green SJ, Torok T, Allen JE, Eloe-Fadrosh E, Jackson SA, Jiang SC, Levine SS, Levy S, Schriml LM, Thomas WK, Wood JM, Tighe SW. Metagenomic Methods for Addressing NASA's Planetary Protection Policy Requirements on Future Missions: A Workshop Report. ASTROBIOLOGY 2023; 23:897-907. [PMID: 37102710 PMCID: PMC10457625 DOI: 10.1089/ast.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/23/2023] [Indexed: 06/19/2023]
Abstract
Molecular biology methods and technologies have advanced substantially over the past decade. These new molecular methods should be incorporated among the standard tools of planetary protection (PP) and could be validated for incorporation by 2026. To address the feasibility of applying modern molecular techniques to such an application, NASA conducted a technology workshop with private industry partners, academics, and government agency stakeholders, along with NASA staff and contractors. The technical discussions and presentations of the Multi-Mission Metagenomics Technology Development Workshop focused on modernizing and supplementing the current PP assays. The goals of the workshop were to assess the state of metagenomics and other advanced molecular techniques in the context of providing a validated framework to supplement the bacterial endospore-based NASA Standard Assay and to identify knowledge and technology gaps. In particular, workshop participants were tasked with discussing metagenomics as a stand-alone technology to provide rapid and comprehensive analysis of total nucleic acids and viable microorganisms on spacecraft surfaces, thereby allowing for the development of tailored and cost-effective microbial reduction plans for each hardware item on a spacecraft. Workshop participants recommended metagenomics approaches as the only data source that can adequately feed into quantitative microbial risk assessment models for evaluating the risk of forward (exploring extraterrestrial planet) and back (Earth harmful biological) contamination. Participants were unanimous that a metagenomics workflow, in tandem with rapid targeted quantitative (digital) PCR, represents a revolutionary advance over existing methods for the assessment of microbial bioburden on spacecraft surfaces. The workshop highlighted low biomass sampling, reagent contamination, and inconsistent bioinformatics data analysis as key areas for technology development. Finally, it was concluded that implementing metagenomics as an additional workflow for addressing concerns of NASA's robotic mission will represent a dramatic improvement in technology advancement for PP and will benefit future missions where mission success is affected by backward and forward contamination.
Collapse
Affiliation(s)
- Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Scott A. Jackson
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Sunny C. Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, California, USA
| | - Stuart S. Levine
- MIT BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Lynn M. Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Jason M. Wood
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Scott W. Tighe
- Vermont Integrative Genomics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Qu X, Wang H, Lodhi AF, Deng YL, Zhang Y. Evaluation of Decontamination Potential of Wet Wipes Against Microbial Contamination of Chinese Spacecraft Materials. ASTROBIOLOGY 2023; 23:746-755. [PMID: 37279031 DOI: 10.1089/ast.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abstract There are many kinds of microorganisms that inhabit the environment of manned space stations. Wet wipes are a common tool used in space stations to clean and reduce microorganisms on surfaces. Here, we compared the performance of five types of wipes used by the Chinese Space Station (CSS) on orbit before 2021 in terms of microbial decontamination. In previous studies, we found that Bacillus sp. TJ-1-1 and Staphylococcus sp. HN-5 were the most abundant microorganisms in the assembly environment of the CSS. In this study, we used these two bacteria to build different microbial load models to represent the occurrence and non-occurrence of microbial outbreaks in the on-orbit CSS. The results show that the number of microorganisms that can be removed when wiping the surface with high microbial load by wet wipes was higher than that when wiping the surface with low microbial load. For on-orbit daily cleaning and keeping the microbial population within the regulation concentration range, it is suitable to use two pure water wipes per 100 cm2. When the number of microorganisms increases to a degree where astronauts can see the colonies with their naked eyes, the best way to eliminate the problem is to wipe them thoroughly and repeatedly with at least four quaternary ammonium-based wipes every 100 cm2.
Collapse
Affiliation(s)
- Xi Qu
- Beijing Institute of Spacecraft System Engineering, Beijing, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Chan K, Arumugam A, Markham C, Jenson R, Wu HW, Wong S. The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. MICROMACHINES 2023; 14:mi14050937. [PMID: 37241562 DOI: 10.3390/mi14050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a microgravity-compatible, automated versatile sample preparation platform (VSPP). The VSPP was built by modifying entry-level 3D printers that cost USD 200-USD 800. In addition, 3D printing was also used to prototype microgravity-compatible reagent wells and cartridges. The VSPP's primary function would enable NASA to rapidly identify microorganisms that could affect crew safety. It has the potential to process samples from various sample matrices (swab, potable water, blood, urine, etc.), thus yielding high-quality nucleic acids for downstream molecular detection and identification in a closed-cartridge system. When fully developed and validated in microgravity environments, this highly automated system will allow labor-intensive and time-consuming processes to be carried out via a turnkey, closed system using prefilled cartridges and magnetic particle-based chemistries. This manuscript demonstrates that the VSPP can extract high-quality nucleic acids from urine (Zika viral RNA) and whole blood (human RNase P gene) in a ground-level laboratory setting using nucleic acid-binding magnetic particles. The viral RNA detection data showed that the VSPP can process contrived urine samples at clinically relevant levels (as low as 50 PFU/extraction). The extraction of human DNA from eight replicate samples showed that the DNA extraction yield is highly consistent (there was a standard deviation of 0.4 threshold cycle when the extracted and purified DNA was tested via real-time polymerase chain reaction). Additionally, the VSPP underwent 2.1 s drop tower microgravity tests to determine if its components are compatible for use in microgravity. Our findings will aid future research in adapting extraction well geometry for 1 g and low g working environments operated by the VSPP. Future microgravity testing of the VSPP in the parabolic flights and in the ISS is planned.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Cole Markham
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Hao-Wei Wu
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| |
Collapse
|
7
|
Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media. Microorganisms 2022; 10:microorganisms10091714. [PMID: 36144316 PMCID: PMC9503880 DOI: 10.3390/microorganisms10091714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The use of film media involves considerably less preparation, waste, and incubator space than conventional agar-media-based assays and has proven in past studies to provide counts of cultivable microbes similar to those of traditional agar media. Film media also have the advantage of allowing sample volumes similar to those used in pour plates and, therefore, are well-suited for cultivable microbial counts in extremely low-biomass environments such as clean rooms or space habitats, particularly where the subsequent isolation of colonies is necessary. As the preparation of film media plates relies on water cohesion/adhesion rather than manual spreading, they may have future applications in low- or microgravity settings. In this study, cultivable microbial count performance was compared between agar media and film media in three kinds of samples: food items, surfaces in built environments on Earth (homes), and on the environmental surfaces of the International Space Station (ISS). Easy Plates (Kikkoman Corporation) and Petrifilm (3M) were compared with traditional agar plating for food and home surfaces, while only Easy Plates were compared with agar for ISS samples. For both food items and built environments on Earth, both types of film media performed comparably to agar media for bacterial counts, with R2 values of 0.94–0.96. Fungal counts for built-environment samples had a lower correlation between film and agar counts, with R2 values of 0.72–0.73. Samples from the ISS, which ranged from below detection to 103 CFU per 100 cm2, had R2 values of 0.80 for bacterial counts and 0.73 for fungal counts, partially due to multiple samples recording below the detection limit for agar or too numerous to count, and the growth of fungal species on R2A medium. The species compositions of isolates picked from agar vs. film media plates were similar; however, further phylogenetic analysis is needed to confirm the differential microbial diversity composition. Overall, film media such as Easy Plates and Petrifilm are viable alternatives to agar plates for low-biomass built environments as well as for food samples, and the two brands tested in this study performed equally well.
Collapse
|
8
|
Blachowicz A, Mhatre S, Singh NK, Wood JM, Parker CW, Ly C, Butler D, Mason CE, Venkateswaran K. The Isolation and Characterization of Rare Mycobiome Associated With Spacecraft Assembly Cleanrooms. Front Microbiol 2022; 13:777133. [PMID: 35558115 PMCID: PMC9087587 DOI: 10.3389/fmicb.2022.777133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Ensuring biological cleanliness while assembling and launching spacecraft is critical for robotic exploration of the solar system. To date, when preventing forward contamination of other celestial bodies, NASA Planetary Protection policies have focused on endospore-forming bacteria while fungi were neglected. In this study, for the first time the mycobiome of two spacecraft assembly facilities at Jet Propulsion Laboratory (JPL) and Kennedy Space Center (KSC) was assessed using both cultivation and sequencing techniques. To facilitate enumeration of viable fungal populations and downstream molecular analyses, collected samples were first treated with chloramphenicol for 24 h and then with propidium monoazide (PMA). Among cultivable fungi, 28 distinct species were observed, 16 at JPL and 16 at KSC facilities, while 13 isolates were potentially novel species. Only four isolated species Aureobasidium melanogenum, Penicillium fuscoglaucum, Penicillium decumbens, and Zalaria obscura were present in both cleanroom facilities, which suggests that mycobiomes differ significantly between distant locations. To better visualize the biogeography of all isolated strains the network analysis was undertaken and confirmed higher abundance of Malassezia globosa and Cyberlindnera jadinii. When amplicon sequencing was performed, JPL-SAF and KSC-PHSF showed differing mycobiomes. Metagenomic fungal reads were dominated by Ascomycota (91%) and Basidiomycota (7.15%). Similar to amplicon sequencing, the number of fungal reads changed following antibiotic treatment in both cleanrooms; however, the opposite trends were observed. Alas, treatment with the antibiotic did not allow for definitive ascribing changes observed in fungal populations between treated and untreated samples in both cleanrooms. Rather, these substantial differences in fungal abundance might be attributed to several factors, including the geographical location, climate and the in-house cleaning procedures used to maintain the cleanrooms. This study is a first step in characterizing cultivable and viable fungal populations in cleanrooms to assess fungal potential as biocontaminants during interplanetary explorations. The outcomes of this and future studies could be implemented in other cleanrooms that require to reduce microbial burden, like intensive care units, operating rooms, or cleanrooms in the semiconducting and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Cynthia Ly
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Parker CW, Teixeira MDM, Singh NK, Raja HA, Cank KB, Spigolon G, Oberlies NH, Barker BM, Stajich JE, Mason CE, Venkateswaran K. Genomic Characterization of Parengyodontium torokii sp. nov., a Biofilm-Forming Fungus Isolated from Mars 2020 Assembly Facility. J Fungi (Basel) 2022; 8:jof8010066. [PMID: 35050006 PMCID: PMC8778116 DOI: 10.3390/jof8010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
A fungal strain (FJII-L10-SW-P1) was isolated from the Mars 2020 spacecraft assembly facility and exhibited biofilm formation on spacecraft-qualified Teflon surfaces. The reconstruction of a six-loci gene tree (ITS, LSU, SSU, RPB1 and RPB2, and TEF1) using multi-locus sequence typing (MLST) analyses of the strain FJII-L10-SW-P1 supported a close relationship to other known Parengyodontium album subclade 3 isolates while being phylogenetically distinct from subclade 1 strains. The zig-zag rachides morphology of the conidiogenous cells and spindle-shaped conidia were the distinct morphological characteristics of the P. album subclade 3 strains. The MLST data and morphological analysis supported the conclusion that the P. album subclade 3 strains could be classified as a new species of the genus Parengyodontium and placed in the family Cordycipitaceae. The name Parengyodontium torokii sp. nov. is proposed to accommodate the strain, with FJII-L10-SW-P1 as the holotype. The genome of the FJII-L10-SW-P1 strain was sequenced, annotated, and the secondary metabolite clusters were identified. Genes predicted to be responsible for biofilm formation and adhesion to surfaces were identified. Homology-based assignment of gene ontologies to the predicted proteome of P. torokii revealed the presence of gene clusters responsible for synthesizing several metabolic compounds, including a cytochalasin that was also verified using traditional metabolomic analysis.
Collapse
Affiliation(s)
- Ceth W. Parker
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.W.P.); (N.K.S.)
| | - Marcus de Melo Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (M.d.M.T.); (B.M.B.)
- School of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Nitin K. Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.W.P.); (N.K.S.)
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (H.A.R.); (K.B.C.); (N.H.O.)
| | - Kristof B. Cank
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (H.A.R.); (K.B.C.); (N.H.O.)
| | - Giada Spigolon
- Biological Imaging Facility, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (H.A.R.); (K.B.C.); (N.H.O.)
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (M.d.M.T.); (B.M.B.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California—Riverside, Riverside, CA 92521, USA;
| | - Christopher E. Mason
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.W.P.); (N.K.S.)
- Correspondence: ; Tel.: +1-(818)-393-1481; Fax: +1-(818)-393-4176
| |
Collapse
|
10
|
Danko D, Malli Mohan GB, Sierra MA, Rucker M, Singh NK, Regberg AB, Bell MS, O’Hara NB, Ounit R, Mason CE, Venkateswaran K. Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions. Front Microbiol 2021; 12:608478. [PMID: 34394013 PMCID: PMC8358432 DOI: 10.3389/fmicb.2021.608478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied. RESULTS To evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 102 colony forming units per 25 cm2 of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter, and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 105 to 106 copies per 25 cm2 of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes, Methylobacterium oryzae, and M. phyllosphaerae reads were documented. CONCLUSION The results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies.
Collapse
Affiliation(s)
- David Danko
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Ganesh Babu Malli Mohan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Maria A. Sierra
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Michelle Rucker
- Exploration Mission Planning Office, Johnson Space Center, Houston, TX, United States
| | - Nitin K. Singh
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
| | - Aaron B. Regberg
- Astromaterials Research and Exploration Science Division, Johnson Space Center, Houston, TX, United States
| | - Mary S. Bell
- Jacobs@NASA/Johnson Space Center, Houston, TX, United States
| | - Niamh B. O’Hara
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Rachid Ounit
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, United States
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Mhatre S, Wood JM, Sielaff AC, Mora M, Duller S, Singh NK, Karouia F, Moissl-Eichinger C, Venkateswaran K. Assessing the Risk of Transfer of Microorganisms at the International Space Station Due to Cargo Delivery by Commercial Resupply Vehicles. Front Microbiol 2020; 11:566412. [PMID: 33240227 PMCID: PMC7677455 DOI: 10.3389/fmicb.2020.566412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND With increasing numbers of interplanetary missions, there is a need to establish robust protocols to ensure the protection of extraterrestrial planets being visited from contamination by terrestrial life forms. The current study is the first report comparing the commercial resupply vehicle (CRV) microbiome with the International Space Station (ISS) microbiome to understand the risks of contamination, thus serving as a model system for future planetary missions. RESULTS Samples obtained from the internal surfaces and ground support equipment of three CRV missions were subjected to various molecular techniques for microbial diversity analysis. In total, 25 samples were collected with eight defined locations from each CRV mission prior to launch. In general, the internal surfaces of vehicles were clean, with an order of magnitude fewer microbes compared to ground support equipment. The first CRV mission had a larger microbial population than subsequent CRV missions, which were clean as compared to the initial CRV locations sampled. Cultivation assays showed the presence of Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes and members of Ascomycota and Basidiomycota. As expected, shotgun metagenome analyses revealed the presence of more microbial taxa compared to cultivation-based assays. The internal locations of the CRV microbiome reportedly showed the presence of microorganisms capable of tolerating ultraviolet radiation (e.g., Bacillus firmus) and clustered separately from the ISS microbiome. CONCLUSIONS The metagenome sequence comparison of the CRV microbiome with the ISS microbiome revealed significant differences showing that CRV microbiomes were a negligible part of the ISS environmental microbiome. These findings suggest that the maintenance protocols in cleaning CRV surfaces are highly effective in controlling the contaminating microbial population during cargo transfer to the ISS via the CRV route.
Collapse
Affiliation(s)
- Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Aleksandra Checinska Sielaff
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Maximilian Mora
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
12
|
Urbaniak C, Mhatre S, Grams T, Parker C, Venkateswaran K. Validation of the International Space Station Smart Sample Concentrator for Microbial Monitoring of Low Biomass Water Samples. J Biomol Tech 2020:jbt.20-3104-005. [PMID: 33100920 PMCID: PMC7566613 DOI: 10.7171/jbt.20-3104-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microbial monitoring on the International Space Station (ISS) is essential to keep astronauts healthy. Current practice involves culture-based methods, but future directives by the National Aeronautics and Space Administration (NASA) will require the use of molecular-based approaches, such as quantitative PCR (qPCR). However, in order to successfully and reliably detect the allowable limit of 5 × 104 colony forming units (CFUs) of bacteria per liter in potable water on the ISS with qPCR, water concentration must first be performed. This report presents the data from a validation study of a NASA-sponsored small business research initiative to develop a microgravity-compatible, automated water concentrator to be used on the ISS, which has been named the ISS Smart Sample Concentrator (iSSC). Efficiency and reproducibility of the iSSC were compared with a ground-based automated water concentrator and the standard Millipore manual filtration. Using 104 CFU/L of Sphingomonas paucimobilis, Ralstonia pickettii, and Cupriavidus basilensis and a mixed microbial community, we have shown, through culture and qPCR, that the iSSC is comparable, if not better, at recovering and concentrating bacteria from large volumes of water, with good reproducibility.
Collapse
Affiliation(s)
- Camilla Urbaniak
- National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; and
- ZIN Technologies Inc., Middleburg Heights, Ohio, USA
| | - Snehit Mhatre
- National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; and
| | - Tristan Grams
- National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; and
| | - Ceth Parker
- National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; and
| | - Kasthuri Venkateswaran
- National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; and
| |
Collapse
|
13
|
Parker CW, Singh N, Tighe S, Blachowicz A, Wood JM, Seuylemezian A, Vaishampayan P, Urbaniak C, Hendrickson R, Laaguiby P, Clark K, Clement BG, O'Hara NB, Couto-Rodriguez M, Bezdan D, Mason CE, Venkateswaran K. End-to-End Protocol for the Detection of SARS-CoV-2 from Built Environments. mSystems 2020; 5:e00771-20. [PMID: 33024053 PMCID: PMC7542562 DOI: 10.1128/msystems.00771-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted person to person through inhalation of droplets or aerosols, laden with viral particles. However, as recent studies have shown, virions can remain infectious for up to 72 h on surfaces, which can lead to transmission through contact. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination for monitoring SARS-CoV-2 on surfaces includes using an Isohelix swab collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative PCR (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, noninfectious viral fragments of SARS-CoV-2 persisted on surfaces for as long as 8 days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to inhibit and negatively impact the recovery of RNA; Amerstat demonstrated the highest inhibition (>90%) when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. Despite our findings of viral fragment longevity on surfaces, when this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay.IMPORTANCE The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019 [COVID-19]) pandemic has led to a global slowdown with far-reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown that virions can remain infectious on surfaces for days and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination for monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.
Collapse
Affiliation(s)
- Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nitin Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Scott Tighe
- Vermont Integrative Genomics Resource, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Adriana Blachowicz
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M Wood
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Arman Seuylemezian
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Parag Vaishampayan
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- ZIN Technologies Inc., Middleburg Heights, Ohio, USA
| | - Ryan Hendrickson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Pheobe Laaguiby
- Vermont Integrative Genomics Resource, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Kevin Clark
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brian G Clement
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Niamh B O'Hara
- Biotia, New York, New York, USA
- SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | | | - Daniela Bezdan
- Weill Medical College of Cornell University, New York, New York, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | | | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Jansson L, Akel Y, Eriksson R, Lavander M, Hedman J. Impact of swab material on microbial surface sampling. J Microbiol Methods 2020; 176:106006. [DOI: 10.1016/j.mimet.2020.106006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
|
15
|
Mhatre S, Singh NK, Wood JM, Parker CW, Pukall R, Verbarg S, Tindall BJ, Neumann-Schaal M, Venkateswaran K. Description of Chloramphenicol Resistant Kineococcus rubinsiae sp. nov. Isolated From a Spacecraft Assembly Facility. Front Microbiol 2020; 11:1957. [PMID: 32973710 PMCID: PMC7472656 DOI: 10.3389/fmicb.2020.01957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
A Gram-positive, coccoid, motile, aerobic bacterium, designated strain B12T was isolated from a Jet Propulsion Laboratory spacecraft assembly cleanroom, Pasadena, CA, United States. Strain B12T was resistant to chloramphenicol (100 μg/mL), and is a relatively slow grower (3-5 days optimal). Strain B12T was found to grow optimally at 28 to 32°C, pH 7 to 8, and 0.5% NaCl. Fatty acid methyl ester analysis showed that the major fatty acid of the strain B12T was anteiso C15 : 0 (66.3%), which is also produced by other Kineococcus species. However, arachidonic acid (C20 : 4 ω6,9,12,16c) was present in strain B12T and Kineococcus glutinatus YIM 75677T but absent in all other Kineococcus species. 16S rRNA analysis revealed that strain B12T was 97.9% similar to Kineococcus radiotolerans and falls within the Kineococcus clade. Low 16S rRNA gene sequence similarities (<94%) with other genera in the family Kineosporiaceae, including Angustibacter (93%), Kineosporia (94% to 95%), Pseudokineococcus (93%), Quadrisphaera (93%), and Thalassiella (94%) demonstrated that the strain B12T does not belong to these genera. Phylogenetic analysis of the gyrB gene show that all known Kineococcus species exhibited <86% sequence similarity with B12T. Multi-locus sequence and whole genome sequence analyses confirmed that B12T clades with other Kineococcus species. Average nucleotide identity of strain B12T were 75-78% with other Kineococcus species, while values ranged from 72-75% with species from other genera within family Kineosporiaceae. Average amino-acid identities were 66-72% with other Kineococcus species, while they ranged from 50-58% with species from other genera. The dDDH comparison of strain B12T genome with members of genera Kineococcus showed 20-22% similarity, again demonstrating that B12T is distantly related to other members of the genus. Furthermore, analysis of whole proteome deduced from WGS places strain B12T in order Kineosporiales, confirming that strain B12T is a novel member of family Kineosporiaceae. Based on these analyses and other genome characteristics, strain B12T is assigned to a novel species within the genus Kineococcus, and the name Kineococcus rubinsiae sp. nov., is proposed. The type strain is B12T (=FJII-L1-CM-PAB2T; NRRL B-65556T, DSM 110506T).
Collapse
Affiliation(s)
- Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rüdiger Pukall
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
16
|
Xin CX, Lodhi AF, Qu X, Shakir Y, Deng YL, Zhang Y. Evaluating Quantitative Measures of Microbial Contamination from China's Spacecraft Materials. ASTROBIOLOGY 2020; 20:1014-1023. [PMID: 32783565 DOI: 10.1089/ast.2019.2070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Different methods are used for the quantification of microbial load on spacecrafts. Here, we investigated a number of methodologies currently in use with the intent to identify the most accurate methods for the quantification of microbes on low-biomass metal surfaces such as those used in China's Space Station. In a previous study, we observed a high abundance of Bacillus sp. TJ 1-1 on interior surfaces of China's Space Station, and we therefore undertook this study in which we used a range of 102 to 109 cells/100 cm2 of this strain for setting different contamination levels. Four of the most common analytical approaches (contact plate, spread plate, quantitative PCR, and BacLight™) were used to quantify the number of viable microbial cells associated with the materials of China's Space Station. Results show that, for 102 cells/100 cm2, the contact plate method is the most convenient and reliable. For microbial contamination levels ≥103 cells/100 cm2 and a sampling area of 121 cm2, the BacLight method proved to be most reliable for the detection of live cells. Moreover, a sampling area of 121 cm2 was found to be the most suitable for analysis of metal surfaces for space station interiors, which are usually low in biomass. These results establish suitable sampling and processing methodologies for microbial enumeration of metal surfaces on China's Space Station.
Collapse
Affiliation(s)
- Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Xi Qu
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, China
| | - Yasmeen Shakir
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
17
|
Avila-Herrera A, Thissen J, Urbaniak C, Be NA, Smith DJ, Karouia F, Mehta S, Venkateswaran K, Jaing C. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS One 2020; 15:e0231838. [PMID: 32348348 PMCID: PMC7190111 DOI: 10.1371/journal.pone.0231838] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember’s microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight. Additionally, environmental surface samples from eight different habitable locations in the ISS were collected from two flights. Environmental samples from one flight were collected by the crewmember and samples from the next flight were collected after the crewmember departed. The microbial composition in both environment and crewmember samples was measured using shotgun metagenomic sequencing and processed using the Livermore Metagenomics Analysis Toolkit. Ordination of sample to sample distances showed that of the eight crew body sites analyzed, skin, nostril, and ear samples are more similar in microbial composition to the ISS surfaces than mouth and saliva samples; and that the microbial composition of the crewmember’s skin samples are more closely related to the ISS surface samples collected by the crewmember on the same flight than ISS surface samples collected by other crewmembers on different flights. In these collections, species alpha diversity in saliva samples appears to decrease during flight and rebound after returning to Earth. This is the first study to compare the ISS microbiome to a crewmember’s microbiome via shotgun metagenomic sequencing. We observed that the microbiome of the surfaces inside the ISS resemble those of the crew’s skin. These data support future crew and ISS microbial surveillance efforts and the design of preventive measures to maintain crew habitat onboard spacecraft destined for long term space travel.
Collapse
Affiliation(s)
- Aram Avila-Herrera
- Computating Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - James Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Camilla Urbaniak
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - David J. Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Fathi Karouia
- KBRwyle, NASA Ames Research Center, Moffett Field, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Satish Mehta
- Microbiology Lab, Wyle Laboratories, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Microscopic Characterization of Biological and Inert Particles Associated with Spacecraft Assembly Cleanroom. Sci Rep 2019; 9:14251. [PMID: 31582832 PMCID: PMC6776515 DOI: 10.1038/s41598-019-50782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
NASA cleanrooms are certified by particle counts and are humidity-controlled, temperature-regulated, and oligotrophic in nature for assembling spacecraft subsystems. Microorganisms, which are not part of the cleanroom certification metrics, should not be overlooked when assessing the cleanliness of the facility since they can enter through soil or air, shed from humans, adapt to the oligotrophic conditions, and subsequently could contaminate spacecraft. These biogenic particles need to be identified to extend our knowledge of biological contamination for future NASA mission use. This study collected particles from the cleanroom and estimated the distribution of fallout microbial cell and inert dust particles using microscopy and molecular techniques. Aluminum coupon-based polycarbonate filter assemblies were deployed in the spacecraft assembly cleanroom facility to collect fallout particles. Epifluorescence and electron microscopy showed that particles varied in size and structure, and displayed live/dead biological and inert particle signatures from sources that include spores and fungal hyphae. Additionally, correlative epifluorescence and field emission scanning electron microscopy, combined with energy-dispersive X-ray analysis (for elemental compositions) methods, differentiated whether microbes adhering to particles were live/dead cells or inert particles. This visualization approach allowed for the classification of microorganisms as being standalone (free-living) or associated with a particle, as well as its characteristic size. Furthermore, time-course microscopy was used to determine the microbial cell growth and confirm the biological/molecular identification. Routine investigation of cleanroom biological and inert fallout particles will help to determine the biological load of spacecraft components and will also have direct relevance to the pharmaceutical and medical industries. One of the main objectives for NASA’s current and future missions is to prevent forward and back contamination of exploring planets. The goal of this study is to determine the association of microorganisms with the inert, natural cleanroom fallout particles and to ascertain whether microorganisms prefer to adhere to a particle size. A novel microscopy technique was developed, and by utilizing various molecular techniques, particles and associated microbial phylogeny were characterized. An accurate assessment of the microbes associated with cleanroom particles is necessary to protect the health of the people who occupy the room for long duration for aeronautical, medical, and pharmaceutical industries.
Collapse
|
19
|
Zhang Y, Zhang LT, Li ZD, Xin CX, Li XQ, Wang X, Deng YL. Microbiomes of China's Space Station During Assembly, Integration, and Test Operations. MICROBIAL ECOLOGY 2019; 78:631-650. [PMID: 30809693 DOI: 10.1007/s00248-019-01344-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Sufficient evidence indicates that orbiting space stations contain diverse microbial populations, which may threaten astronaut health and equipment reliability. Understanding the composition of microbial communities in space stations will facilitate further development of targeted biological safety prevention and maintenance practices. Therefore, this study systematically investigated the microbial community of China's Space Station (CSS). Air and surface samples from 46 sites on the CSS and Assembly Integration and Test (AIT) center were collected, from which 40 bacteria strains were isolated and identified. Most isolates were cold- and desiccation-resistant and adapted to oligotrophic conditions. Bacillus was the dominant bacterial genus detected by both cultivation-based and Illumina MiSeq amplicon sequencing methods. Microbial contamination on the CSS was correlated with encapsulation staff activities. Analysis by spread plate and qPCR revealed that the CSS surface contained 2.24 × 103-5.47 × 103 CFU/100 cm2 culturable bacteria and 9.32 × 105-5.64 × 106 16S rRNA gene copies/100cm2; BacLight™ analysis revealed that the viable/total bacterial cell ratio was 1.98-13.28%. This is the first study to provide important systematic insights into the microbiome of the CSS during assembly that describes the pre-launch microbial diversity of the space station. Our findings revealed the following. (1) Bacillus strains and staff activities should be considered major concerns for future biological safety. (2) Autotrophic and multi-resistant microbial communities were widespread in the AIT environment. Although harsh cleaning methods reduced the number of microorganisms, stress-resistant strains were not completely removed. (3) Sampling, storage and analytical methods for the space station were thoroughly optimized, and are expected to be applicable to low-biomass environments in general. Microbiology-related future works will follow up to comprehensively understand the changing characteristics of microbial communities in CSS.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Lan-Tao Zhang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, 100094, China
| | - Zhi-Dong Li
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Cong-Xin Xin
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Qiong Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiang Wang
- Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing, 100094, China.
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
20
|
Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. MICROBIOME 2019; 7:50. [PMID: 30955503 PMCID: PMC6452512 DOI: 10.1186/s40168-019-0666-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces. Samples were taken at eight pre-defined locations during three flight missions spanning 14 months and analyzed upon return to Earth. RESULTS The cultivable bacterial and fungal population ranged from 104 to 109 CFU/m2 depending on location and consisted of various bacterial (Actinobacteria, Firmicutes, and Proteobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Amplicon sequencing detected more bacterial phyla when compared to the culture-based analyses, but both methods identified similar numbers of fungal phyla. Changes in bacterial and fungal load (by culture and qPCR) were observed over time but not across locations. Bacterial community composition changed over time, but not across locations, while fungal community remained the same between samplings and locations. There were no significant differences in community composition and richness after propidium monoazide sample treatment, suggesting that the analyzed DNA was extracted from intact/viable organisms. Moreover, approximately 46% of intact/viable bacteria and 40% of intact/viable fungi could be cultured. CONCLUSIONS The results reveal a diverse population of bacteria and fungi on ISS environmental surfaces that changed over time but remained similar between locations. The dominant organisms are associated with the human microbiome and may include opportunistic pathogens. This study provides the first comprehensive catalog of both total and intact/viable bacteria and fungi found on surfaces in closed space systems and can be used to help develop safety measures that meet NASA requirements for deep space human habitation. The results of this study can have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Aleksandra Checinska Sielaff
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
- Washington State University Extension - Youth and Families Program Unit, Washington State University, Pullman, WA, USA
| | - Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Ganesh Babu Malli Mohan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Jeremiah Minich
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Teresa Mayer
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- NASA Ames Research Center, Space Bioscience Division, Moffett Field, Mountain View, CA, USA
- Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA.
| |
Collapse
|
21
|
Mogul R, Vaishampayan P, Bashir M, McKay CP, Schubert K, Bornaccorsi R, Gomez E, Tharayil S, Payton G, Capra J, Andaya J, Bacon L, Bargoma E, Black D, Boos K, Brant M, Chabot M, Chau D, Cisneros J, Chu G, Curnutt J, DiMizio J, Engelbrecht C, Gott C, Harnoto R, Hovanesian R, Johnson S, Lavergne B, Martinez G, Mans P, Morales E, Oei A, Peplow G, Piaget R, Ponce N, Renteria E, Rodriguez V, Rodriguez J, Santander M, Sarmiento K, Scheppelmann A, Schroter G, Sexton D, Stephenson J, Symer K, Russo-Tait T, Weigel B, Wilhelm MB. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert. Front Microbiol 2017; 8:1974. [PMID: 29109701 PMCID: PMC5660283 DOI: 10.3389/fmicb.2017.01974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439) and genus (p < 0.006) levels, including multiple biochemical and geochemical trends (p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.
Collapse
Affiliation(s)
- Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Parag Vaishampayan
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Mina Bashir
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Chris P McKay
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States
| | - Keith Schubert
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Department of Computer Science, Baylor University, Waco, TX, United States
| | - Rosalba Bornaccorsi
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,SETI Institute, Mountain View, CA, United States
| | - Ernesto Gomez
- Science Team, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Department of Computer Science, California State University, San Bernardino, San Bernardino, CA, United States
| | - Sneha Tharayil
- College of Education, University of Texas at Austin, Austin, TX, United States.,Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Geoffrey Payton
- Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Orchard Academies 2B: Arts and Media, Bell, CA, United States
| | - Juliana Capra
- Teacher Core, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Foothills Middle School, Arcadia, CA, United States
| | - Jessica Andaya
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Leonard Bacon
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Maple Hill High School, Castleton-on-Hudson, NY, United States
| | - Emily Bargoma
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - David Black
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,American Academy of Innovation, Jordan, UT, United States
| | - Katie Boos
- College of Education, University of Texas at Austin, Austin, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Michaela Brant
- College of Education, University of Texas at Austin, Austin, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Michael Chabot
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Danny Chau
- Orchard Academies 2B: Arts and Media, Bell, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jessica Cisneros
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Geoff Chu
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jane Curnutt
- Department of Computer Science, Baylor University, Waco, TX, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jessica DiMizio
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Christian Engelbrecht
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Caroline Gott
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Raechel Harnoto
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Ruben Hovanesian
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Shane Johnson
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Britne Lavergne
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Gabriel Martinez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Paul Mans
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Ernesto Morales
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Alex Oei
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Gary Peplow
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Smiley Elementary School, Redlands, CA, United States
| | - Ryan Piaget
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Nicole Ponce
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Eduardo Renteria
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Veronica Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Joseph Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Monica Santander
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Khamille Sarmiento
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Allison Scheppelmann
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Gavin Schroter
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Devan Sexton
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Jenin Stephenson
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Kristin Symer
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Excellence in STEM Education, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Tatiane Russo-Tait
- Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States.,Center for Math and Science Education, San Francisco State University, San Francisco, CA, United States
| | - Bill Weigel
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| | - Mary B Wilhelm
- Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, United States.,Research Cohorts, NASA/CSU Spaceward Bound, Pomona, CA, United States
| |
Collapse
|
22
|
Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. Whole metagenome profiles of particulates collected from the International Space Station. MICROBIOME 2017; 5:81. [PMID: 28716113 PMCID: PMC5514531 DOI: 10.1186/s40168-017-0292-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. METHODS This study examined the whole metagenome of ISS microbes at both species- and gene-level resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. RESULTS Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. CONCLUSION Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. The overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.
Collapse
Affiliation(s)
- Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Aram Avila-Herrera
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jonathan E Allen
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Aleksandra Checinska Sielaff
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
- Present Address: Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
23
|
Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. MICROBIOME 2017; 5:62. [PMID: 28693587 PMCID: PMC5504618 DOI: 10.1186/s40168-017-0280-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. RESULTS Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after). Viable fungal families like Davidiellaceae, Teratosphaeriaceae, Pleosporales, and Pleosporaceae were shown to increase during the occupation time. CONCLUSIONS The results of this study revealed that the overall fungal diversity in the closed habitat changed during human presence; therefore, it is crucial to properly maintain a closed habitat to preserve it from deteriorating and keep it safe for its inhabitants. Differences in community profiles were observed when statistically treated, especially of the mycobiome of samples collected at day 20. On a genus level Epiccocum, Alternaria, Pleosporales, Davidiella, and Cryptococcus showed increased abundance over the occupation time.
Collapse
Affiliation(s)
- A Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
| | - M Bashir
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - T R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - P De León
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - K Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA.
| |
Collapse
|
24
|
Stepanov VG, Tirumalai MR, Montazari S, Checinska A, Venkateswaran K, Fox GE. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation. PLoS One 2016; 11:e0157331. [PMID: 27351589 PMCID: PMC4924849 DOI: 10.1371/journal.pone.0157331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022] Open
Abstract
Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains.
Collapse
Affiliation(s)
- Victor G. Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Saied Montazari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Aleksandra Checinska
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
A multi-parametric assessment of decontamination protocols for the subglacial Lake Ellsworth probe. J Microbiol Methods 2016; 123:87-93. [DOI: 10.1016/j.mimet.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/18/2022]
|
26
|
Pearce DA, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J, Siegert MJ. Microbiology: lessons from a first attempt at Lake Ellsworth. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2014.0291. [PMID: 26667906 DOI: 10.1098/rsta.2014.0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
During the attempt to directly access, measure and sample Subglacial Lake Ellsworth in 2012-2013, we conducted microbiological analyses of the drilling equipment, scientific instrumentation, field camp and natural surroundings. From these studies, a number of lessons can be learned about the cleanliness of deep Antarctic subglacial lake access leading to, in particular, knowledge of the limitations of some of the most basic relevant microbiological principles. Here, we focus on five of the core challenges faced and describe how cleanliness and sterilization were implemented in the field. In the light of our field experiences, we consider how effective these actions were, and what can be learnt for future subglacial exploration missions. The five areas covered are: (i) field camp environment and activities, (ii) the engineering processes surrounding the hot water drilling, (iii) sample handling, including recovery, stability and preservation, (iv) clean access methodologies and removal of sample material, and (v) the biodiversity and distribution of bacteria around the Antarctic. Comparisons are made between the microbiology of the Lake Ellsworth field site and other Antarctic systems, including the lakes on Signy Island, and on the Antarctic Peninsula at Lake Hodgson. Ongoing research to better define and characterize the behaviour of natural and introduced microbial populations in response to deep-ice drilling is also discussed. We recommend that future access programmes: (i) assess each specific local environment in enhanced detail due to the potential for local contamination, (ii) consider the sterility of the access in more detail, specifically focusing on single cell colonization and the introduction of new species through contamination of pre-existing microbial communities, (iii) consider experimental bias in methodological approaches, (iv) undertake in situ biodiversity detection to mitigate risk of non-sample return and post-sample contamination, and (v) address the critical question of how important these microbes are in the functioning of Antarctic ecosystems.
Collapse
Affiliation(s)
- D A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK Department of Arctic Biology, University Centre in Svalbard, Longyearbyen 9171, Norway
| | - I Magiopoulos
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Mowlem
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Tranter
- Centre for Glaciology, University of Bristol, 12 Berkeley Square, University Road, Clifton, Bristol BS8 1SS, UK
| | - G Holt
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - J Woodward
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - M J Siegert
- Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
27
|
Weinmaier T, Probst AJ, La Duc MT, Ciobanu D, Cheng JF, Ivanova N, Rattei T, Vaishampayan P. A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses. MICROBIOME 2015; 3:62. [PMID: 26642878 PMCID: PMC4672508 DOI: 10.1186/s40168-015-0129-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Recent studies posit a reciprocal dependency between the microbiomes associated with humans and indoor environments. However, none of these metagenome surveys has considered the viability of constituent microorganisms when inferring impact on human health. RESULTS Reported here are the results of a viability-linked metagenomics assay, which (1) unveil a remarkably complex community profile for bacteria, fungi, and viruses and (2) bolster the detection of underrepresented taxa by eliminating biases resulting from extraneous DNA. This approach enabled, for the first time ever, the elucidation of viral genomes from a cleanroom environment. Upon comparing the viable biomes and distribution of phylotypes within a cleanroom and adjoining (uncontrolled) gowning enclosure, the rigorous cleaning and stringent control countermeasures of the former were observed to select for a greater presence of anaerobes and spore-forming microflora. Sequence abundance and correlation analyses suggest that the viable indoor microbiome is influenced by both the human microbiome and the surrounding ecosystem(s). CONCLUSIONS The findings of this investigation constitute the literature's first ever account of the indoor metagenome derived from DNA originating solely from the potential viable microbial population. Results presented in this study should prove valuable to the conceptualization and experimental design of future studies on indoor microbiomes aimed at inferring impact on human health.
Collapse
Affiliation(s)
- Thomas Weinmaier
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
| | - Myron T La Duc
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.
- Precis Scientific, Scottsdale, AZ, USA.
| | | | | | | | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
28
|
Salas EC, Bhartia R, Anderson L, Hug WF, Reid RD, Iturrino G, Edwards KJ. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust. Front Microbiol 2015; 6:1260. [PMID: 26617595 PMCID: PMC4641887 DOI: 10.3389/fmicb.2015.01260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.
Collapse
Affiliation(s)
- Everett C Salas
- Jet Propulsion Laboratory, Planetary Chemistry and Astrobiology, California Insitute of Technology Pasadena, CA, USA ; Photon Systems, Inc. Covina, CA, USA
| | - Rohit Bhartia
- Jet Propulsion Laboratory, Planetary Chemistry and Astrobiology, California Insitute of Technology Pasadena, CA, USA
| | - Louise Anderson
- Department of Geology, University of Leicester Leicester, UK
| | | | | | - Gerardo Iturrino
- Lamont-Doherty Earth Observatory, Marine Geology and Geophysics Palisades, NY, USA
| | - Katrina J Edwards
- Department of Biological Sciences and Earth Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
29
|
Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. MICROBIOME 2015; 3:50. [PMID: 26502721 PMCID: PMC4624184 DOI: 10.1186/s40168-015-0116-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the viable microbiome of the ISS-built environment. A second objective was to determine if the built environments of Earth-based cleanrooms associated with space exploration are an appropriate model of the ISS environment. RESULTS Samples collected from the ISS and two cleanrooms at the Jet Propulsion Laboratory (JPL, Pasadena, CA) were analyzed by traditional cultivation, adenosine triphosphate (ATP), and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assays to estimate viable microbial populations. The 16S rRNA gene Illumina iTag sequencing was used to elucidate microbial diversity and explore differences between ISS and cleanroom microbiomes. Statistical analyses showed that members of the phyla Actinobacteria, Firmicutes, and Proteobacteria were dominant in the samples examined but varied in abundance. Actinobacteria were predominant in the ISS samples whereas Proteobacteria, least abundant in the ISS, dominated in the cleanroom samples. The viable bacterial populations seen by PMA treatment were greatly decreased. However, the treatment did not appear to have an effect on the bacterial composition (diversity) associated with each sampling site. CONCLUSIONS The results of this study provide strong evidence that specific human skin-associated microorganisms make a substantial contribution to the ISS microbiome, which is not the case in Earth-based cleanrooms. For example, Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus (Firmicutes) species are dominant on the ISS in terms of viable and total bacterial community composition. The results obtained will facilitate future studies to determine how stable the ISS environment is over time. The present results also demonstrate the value of measuring viable cell diversity and population size at any sampling site. This information can be used to identify sites that can be targeted for more stringent cleaning. Finally, the results will allow comparisons with other built sites and facilitate future improvements on the ISS that will ensure astronaut health.
Collapse
Affiliation(s)
- Aleksandra Checinska
- Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 89-2 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Parag Vaishampayan
- Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 89-2 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | | | - Deepika Kumar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Henrik R Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Jay Perry
- Marshall Space Flight Center, Huntsville, AL, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 89-2 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
30
|
Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown GZ, Green JL, Bohannan BJM. Humans differ in their personal microbial cloud. PeerJ 2015; 3:e1258. [PMID: 26417541 PMCID: PMC4582947 DOI: 10.7717/peerj.1258] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.
Collapse
Affiliation(s)
- James F Meadow
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Biology, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| | - Adam E Altrichter
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Biology, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| | - Ashley C Bateman
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Biology, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| | - Jason Stenson
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Architecture, Energy Studies in Buildings Laboratory, University of Oregon , Eugene, OR , USA
| | - G Z Brown
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Architecture, Energy Studies in Buildings Laboratory, University of Oregon , Eugene, OR , USA
| | - Jessica L Green
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Biology, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA ; Santa Fe Institute , Santa Fe, NM , USA
| | - Brendan J M Bohannan
- Biology and the Built Environment Center, University of Oregon , Eugene, OR , USA ; Department of Biology, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA
| |
Collapse
|
31
|
Mahnert A, Vaishampayan P, Probst AJ, Auerbach A, Moissl-Eichinger C, Venkateswaran K, Berg G. Cleanroom Maintenance Significantly Reduces Abundance but Not Diversity of Indoor Microbiomes. PLoS One 2015; 10:e0134848. [PMID: 26273838 PMCID: PMC4537314 DOI: 10.1371/journal.pone.0134848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Cleanrooms have been considered microbially-reduced environments and are used to protect human health and industrial product assembly. However, recent analyses have deciphered a rather broad diversity of microbes in cleanrooms, whose origin as well as physiological status has not been fully understood. Here, we examined the input of intact microbial cells from a surrounding built environment into a spacecraft assembly cleanroom by applying a molecular viability assay based on propidium monoazide (PMA). The controlled cleanroom (CCR) was characterized by ~6.2*103 16S rRNA gene copies of intact bacterial cells per m2 floor surface, which only represented 1% of the total community that could be captured via molecular assays without viability marker. This was in contrast to the uncontrolled adjoining facility (UAF) that had 12 times more living bacteria. Regarding diversity measures retrieved from 16S rRNA Illumina-tag analyzes, we observed, however, only a minor drop in the cleanroom facility allowing the conclusion that the number but not the diversity of microbes is strongly affected by cleaning procedures. Network analyses allowed tracking a substantial input of living microbes to the cleanroom and a potential enrichment of survival specialists like bacterial spore formers and archaeal halophiles and mesophiles. Moreover, the cleanroom harbored a unique community including 11 exclusive genera, e.g., Haloferax and Sporosarcina, which are herein suggested as indicators of cleanroom environments. In sum, our findings provide evidence that archaea are alive in cleanrooms and that cleaning efforts and cleanroom maintenance substantially decrease the number but not the diversity of indoor microbiomes.
Collapse
Affiliation(s)
- Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Alexander J. Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| | - Anna Auerbach
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Christine Moissl-Eichinger
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
- Medical University Graz, Department of Internal Medicine, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, California, United States of America
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- * E-mail:
| |
Collapse
|
32
|
Moissl-Eichinger C, Auerbach AK, Probst AJ, Mahnert A, Tom L, Piceno Y, Andersen GL, Venkateswaran K, Rettberg P, Barczyk S, Pukall R, Berg G. Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments. Sci Rep 2015; 5:9156. [PMID: 25778463 PMCID: PMC4361859 DOI: 10.1038/srep09156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/11/2015] [Indexed: 01/06/2023] Open
Abstract
Space agencies maintain highly controlled cleanrooms to ensure the demands of planetary protection. To study potential effects of microbiome control, we analyzed microbial communities in two particulate-controlled cleanrooms (ISO 5 and ISO 8) and two vicinal uncontrolled areas (office, changing room) by cultivation and 16S rRNA gene amplicon analysis (cloning, pyrotagsequencing, and PhyloChip G3 analysis). Maintenance procedures affected the microbiome on total abundance and microbial community structure concerning richness, diversity and relative abundance of certain taxa. Cleanroom areas were found to be mainly predominated by potentially human-associated bacteria; archaeal signatures were detected in every area. Results indicate that microorganisms were mainly spread from the changing room (68%) into the cleanrooms, potentially carried along with human activity. The numbers of colony forming units were reduced by up to ~400 fold from the uncontrolled areas towards the ISO 5 cleanroom, accompanied with a reduction of the living portion of microorganisms from 45% (changing area) to 1% of total 16S rRNA gene signatures as revealed via propidium monoazide treatment of the samples. Our results demonstrate the strong effects of cleanroom maintenance on microbial communities in indoor environments and can be used to improve the design and operation of biologically controlled cleanrooms.
Collapse
Affiliation(s)
- Christine Moissl-Eichinger
- 1] Institute for Microbiology and Archaea Center, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany [2] Medical University Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria [3] BioTechMed Graz, Krenngasse 37, 8010 Graz, Austria
| | - Anna K Auerbach
- Institute for Microbiology and Archaea Center, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Alexander J Probst
- Institute for Microbiology and Archaea Center, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Lauren Tom
- Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Yvette Piceno
- Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Gary L Andersen
- Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | | | - Petra Rettberg
- German Aerospace Center, Institute of Aerospace Medicine and Radiation Biology, Linder Höhe, 51147 Köln, Germany
| | - Simon Barczyk
- German Aerospace Center, Institute of Aerospace Medicine and Radiation Biology, Linder Höhe, 51147 Köln, Germany
| | - Rüdiger Pukall
- Leibniz Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraβe 7 B, 38124 Braunschweig, Germany
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
33
|
Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods. PLoS One 2014; 9:e94265. [PMID: 24736730 PMCID: PMC3988189 DOI: 10.1371/journal.pone.0094265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1–2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.
Collapse
|
34
|
International Space Station environmental microbiome - microbial inventories of ISS filter debris. Appl Microbiol Biotechnol 2014; 98:6453-66. [PMID: 24695826 DOI: 10.1007/s00253-014-5650-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.
Collapse
|
35
|
Krebs JE, Vaishampayan P, Probst AJ, Tom LM, Marteinsson VT, Andersen GL, Venkateswaran K. Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. ASTROBIOLOGY 2014; 14:229-240. [PMID: 24588539 DOI: 10.1089/ast.2013.1008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (∼100°C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (∼ 60°C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57°C to 64°C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H2S, and SO2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH.
Collapse
Affiliation(s)
- Jordan E Krebs
- 1 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory , California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
La Duc MT, Venkateswaran K, Conley CA. A genetic inventory of spacecraft and associated surfaces. ASTROBIOLOGY 2014; 14:15-23. [PMID: 24432775 DOI: 10.1089/ast.2013.0966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Terrestrial organisms or other contaminants that are transported to Mars could interfere with efforts to study the potential for indigenous martian life. Similarly, contaminants that make the round-trip to Mars and back to Earth could compromise the ability to discriminate an authentic martian biosignature from a terrestrial organism. For this reason, it is important to develop a comprehensive inventory of microbes that are present on spacecraft to avoid interpreting their traces as authentic extraterrestrial biosignatures. Culture-based methods are currently used by NASA to assess spacecraft cleanliness but deliberately detect only a very small subset of total organisms present. The National Research Council has recommended that molecular (DNA)-based identification techniques should be developed as one aspect of managing the risk that terrestrial contamination could interfere with detection of life on (or returned from) Mars. The current understanding of the microbial diversity associated with spacecraft and clean room surfaces is expanding, but the capability to generate a comprehensive inventory of the microbial populations present on spacecraft outbound from Earth would address multiple considerations in planetary protection, relevant to both robotic and human missions. To this end, a 6-year genetic inventory study was undertaken by a NASA/JPL team. It was completed in 2012 and included delivery of a publicly available comprehensive final report. The genetic inventory study team evaluated the utility of three analytical technologies (conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-pyrosequencing) and combined them with a systematic methodology to collect, process, and archive nucleic acids as the first steps in assessing the phylogenetic breadth of microorganisms on spacecraft and associated surfaces.
Collapse
Affiliation(s)
- Myron T La Duc
- 1 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | | | | |
Collapse
|
37
|
Benardini JN, La Duc MT, Ballou D, Koukol R. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory. ASTROBIOLOGY 2014; 14:33-41. [PMID: 24432777 DOI: 10.1089/ast.2013.1011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.
Collapse
Affiliation(s)
- James N Benardini
- 1 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory , California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
38
|
Benardini JN, La Duc MT, Beaudet RA, Koukol R. Implementing planetary protection measures on the Mars Science Laboratory. ASTROBIOLOGY 2014; 14:27-32. [PMID: 24432776 DOI: 10.1089/ast.2013.0989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.
Collapse
Affiliation(s)
- James N Benardini
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | | | | | | |
Collapse
|
39
|
Moissl-Eichinger C, Pukall R, Probst AJ, Stieglmeier M, Schwendner P, Mora M, Barczyk S, Bohmeier M, Rettberg P. Lessons learned from the microbial analysis of the Herschel spacecraft during assembly, integration, and test operations. ASTROBIOLOGY 2013; 13:1125-39. [PMID: 24313230 DOI: 10.1089/ast.2013.1024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Understanding microbial diversity in spacecraft assembly clean rooms is of major interest with respect to planetary protection considerations. A coordinated screening of different clean rooms in Europe and South America by three German institutes [Deutsches Zentrum für Luft- und Raumfahrt (DLR), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), and the Institute of Microbiology and Archaea Center, University of Regensburg] took place during the assembly, test, and launch operations of the Herschel spacecraft in 2006-2009. Through this campaign, we retrieved critical information regarding the microbiome within these clean rooms and on the Herschel spacecraft, which served as a model for upcoming ESA mission preparations. This "lessons learned" document summarizes and discusses the data we obtained during this sampling campaign. Additionally, we have taken the opportunity to create a database that includes all 16S rRNA gene sequences ever retrieved from molecular and cultivable diversity studies of spacecraft assembly clean rooms to compare the microbiomes of US, European, and South American facilities.
Collapse
|
40
|
Schwendner P, Moissl-Eichinger C, Barczyk S, Bohmeier M, Pukall R, Rettberg P. Insights into the microbial diversity and bioburden in a South American spacecraft assembly clean room. ASTROBIOLOGY 2013; 13:1140-54. [PMID: 24341458 DOI: 10.1089/ast.2013.1023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, samples from the spacecraft assembly clean room BAF (final assembly building), located at Centre Spatial Guyanais in Kourou, French Guiana, were characterized by qualitative and quantitative methods to determine the bioburden and biodiversity. The cultivation assays mainly focused on extremotolerant microorganisms that have special metabolic skills, such as the ability to grow without oxygen, fix nitrogen, grow autotrophically, or reduce sulfate. A broad range of media and growth conditions were used to simulate possible extraterrestrial environments and clean room buildings. In addition to these alternative cultivation assays, the ESA standard protocol for bioburden estimation was also applied. The phylogenetic analysis of the isolates (mainly facultative anaerobes) showed an extraordinarily broad cultivable biodiversity. Overall, 49 species were isolated and identified as members of the bacterial phyla Actinobacteria, Firmicutes, α-, β-, γ-Proteobacteria, and Bacteroidetes/Chlorobi. In addition to cultivation-based analyses, molecular techniques were also applied, including construction of a 16S rRNA gene clone library. The results indicate a wide-ranging microbial diversity (12 bacterial phyla, 34 families) that not only confirms the results of the cultivation efforts but also deepens our understanding of the noncultivable variety. Our investigations hint at a very broad, mainly uncultivated microbial diversity.
Collapse
Affiliation(s)
- Petra Schwendner
- 1 Institute of Microbiology and Archaea Center, University of Regensburg , Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.
Collapse
Affiliation(s)
- Alexander J. Probst
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Anna K. Auerbach
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
42
|
Bargoma E, La Duc MT, Kwan K, Vaishampayan P, Venkateswaran K. Differential recovery of phylogenetically disparate microbes from spacecraft-qualified metal surfaces. ASTROBIOLOGY 2013; 13:189-202. [PMID: 23421553 DOI: 10.1089/ast.2012.0917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Universal and species-specific quantitative polymerase chain reaction-based methods were employed to compare the effectiveness of four distinct materials used to collect biological samples from metal surfaces. Known cell densities of a model microbial community (MMC) were deposited onto metal surfaces and subsequently collected with cotton and nylon-flocked swabs for small surface areas and biological sampling kits (BiSKits) and polyester wipes for large surface areas. Ribosomal RNA gene-based quantitative PCR (qPCR) analyses revealed that cotton swabs were superior to nylon-flocked swabs for recovering nucleic acids (i.e., DNA) from small surface areas. Similarly, BiSKits outperformed polyester wipes for sampling large surface areas. Species-specific qPCR results show a differential recovery of rRNA genes of the various MMC constituents, seemingly dependent on the type of sampling device employed. Both cotton swabs and BiSKits recovered the rDNA of all nine of the MMC constituent microbes assayed, whereas nylon-flocked swabs and polyester wipes recovered the rDNA of only six and four of these MMC strains, respectively. The findings of this study demonstrate the importance and proficiency of molecular techniques in gauging the effectiveness and efficiency of various modes of biological sample collection from metal surfaces.
Collapse
Affiliation(s)
- E Bargoma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | | | | | | | | |
Collapse
|
43
|
Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, Venkateswaran K. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME JOURNAL 2012; 7:312-24. [PMID: 23051695 DOI: 10.1038/ismej.2012.114] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The advent of phylogenetic DNA microarrays and high-throughput pyrosequencing technologies has dramatically increased the resolution and accuracy of detection of distinct microbial lineages in mixed microbial assemblages. Despite an expanding array of approaches for detecting microbes in a given sample, rapid and robust means of assessing the differential viability of these cells, as a function of phylogenetic lineage, remain elusive. In this study, pre-PCR propidium monoazide (PMA) treatment was coupled with downstream pyrosequencing and PhyloChip DNA microarray analyses to better understand the frequency, diversity and distribution of viable bacteria in spacecraft assembly cleanrooms. Sample fractions not treated with PMA, which were indicative of the presence of both live and dead cells, yielded a great abundance of highly diverse bacterial pyrosequences. In contrast, only 1% to 10% of all of the pyrosequencing reads, arising from a few robust bacterial lineages, originated from sample fractions that had been pre-treated with PMA. The results of PhyloChip analyses of PMA-treated and -untreated sample fractions were in agreement with those of pyrosequencing. The viable bacterial population detected in cleanrooms devoid of spacecraft hardware was far more diverse than that observed in cleanrooms that housed mission-critical spacecraft hardware. The latter was dominated by hardy, robust organisms previously reported to survive in oligotrophic cleanroom environments. Presented here are the findings of the first ever comprehensive effort to assess the viability of cells in low-biomass environmental samples, and correlate differential viability with phylogenetic affiliation.
Collapse
Affiliation(s)
- Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol 2012; 78:5912-22. [PMID: 22729532 DOI: 10.1128/aem.01435-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.
Collapse
|