1
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
2
|
Peoples LM, Seixas MH, Evans KA, Bilbrey EM, Ranieri JR, Tappenbeck TH, Dore JE, Baumann A, Church MJ. Out of sight, but not out of season: Nitrifier distributions and population dynamics in a large oligotrophic lake. Environ Microbiol 2024; 26:e16616. [PMID: 38517638 DOI: 10.1111/1462-2920.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.
Collapse
Affiliation(s)
- Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Miranda H Seixas
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Kate A Evans
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Evan M Bilbrey
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - John R Ranieri
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Tyler H Tappenbeck
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - John E Dore
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Adam Baumann
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
3
|
Wiegand S, Sobol M, Schnepp-Pesch LK, Yan G, Iqbal S, Vollmers J, Müller JA, Kaster AK. Taxonomic Re-Classification and Expansion of the Phylum Chloroflexota Based on over 5000 Genomes and Metagenome-Assembled Genomes. Microorganisms 2023; 11:2612. [PMID: 37894270 PMCID: PMC10608941 DOI: 10.3390/microorganisms11102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The phylum Chloroflexota (formerly Chloroflexi) encompasses metabolically diverse bacteria that often have high prevalence in terrestrial and aquatic habitats, some even with biotechnological application. However, there is substantial disagreement in public databases which lineage should be considered a member of the phylum and at what taxonomic level. Here, we addressed these issues through extensive phylogenomic analyses. The analyses were based on a collection of >5000 Chloroflexota genomes and metagenome-assembled genomes (MAGs) from public databases, novel environmental sites, as well as newly generated MAGs from publicly available sequence reads via an improved binning approach incorporating covariance information. Based on calculated relative evolutionary divergence, we propose that Candidatus Dormibacterota should be listed as a class (i.e., Ca. Dormibacteria) within Chloroflexota together with the classes Anaerolineae, Chloroflexia, Dehalococcoidia, Ktedonobacteria, Ca. Limnocylindria, Thermomicrobia, and two other classes containing only uncultured members. All other Chloroflexota lineages previously listed at the class rank appear to be rather orders or families in the Anaerolineae and Dehalococcoidia, which contain the vast majority of genomes and exhibited the strongest phylogenetic radiation within the phylum. Furthermore, the study suggests that a common ecophysiological capability of members of the phylum is to successfully cope with low energy fluxes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; (S.W.); (M.S.); (L.K.S.-P.); (G.Y.); (S.I.); (J.V.); (J.A.M.)
| |
Collapse
|
4
|
Palmer M, Covington JK, Zhou EM, Thomas SC, Habib N, Seymour CO, Lai D, Johnston J, Hashimi A, Jiao JY, Muok AR, Liu L, Xian WD, Zhi XY, Li MM, Silva LP, Bowen BP, Louie K, Briegel A, Pett-Ridge J, Weber PK, Tocheva EI, Woyke T, Northen TR, Mayali X, Li WJ, Hedlund BP. Thermophilic Dehalococcoidia with unusual traits shed light on an unexpected past. THE ISME JOURNAL 2023; 17:952-966. [PMID: 37041326 PMCID: PMC10284905 DOI: 10.1038/s41396-023-01405-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Although the phylum Chloroflexota is ubiquitous, its biology and evolution are poorly understood due to limited cultivability. Here, we isolated two motile, thermophilic bacteria from hot spring sediments belonging to the genus Tepidiforma and class Dehalococcoidia within the phylum Chloroflexota. A combination of cryo-electron tomography, exometabolomics, and cultivation experiments using stable isotopes of carbon revealed three unusual traits: flagellar motility, a peptidoglycan-containing cell envelope, and heterotrophic activity on aromatics and plant-associated compounds. Outside of this genus, flagellar motility has not been observed in Chloroflexota, and peptidoglycan-containing cell envelopes have not been described in Dehalococcoidia. Although these traits are unusual among cultivated Chloroflexota and Dehalococcoidia, ancestral character state reconstructions showed flagellar motility and peptidoglycan-containing cell envelopes were ancestral within the Dehalococcoidia, and subsequently lost prior to a major adaptive radiation of Dehalococcoidia into marine environments. However, despite the predominantly vertical evolutionary histories of flagellar motility and peptidoglycan biosynthesis, the evolution of enzymes for degradation of aromatics and plant-associated compounds was predominantly horizontal and complex. Together, the presence of these unusual traits in Dehalococcoidia and their evolutionary histories raise new questions about the timing and selective forces driving their successful niche expansion into global oceans.
Collapse
Affiliation(s)
- Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Jonathan K Covington
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, 650091, Kunming, People's Republic of China
| | - Scott C Thomas
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Neeli Habib
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, 650091, Kunming, People's Republic of China
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, Khyber Pakhtunkhwa (KPK), Pakistan
| | - Cale O Seymour
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Juliet Johnston
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Alise R Muok
- Institute of Biology, Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, 650091, Kunming, People's Republic of China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Leslie P Silva
- The Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Benjamin P Bowen
- The Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- The Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ariane Briegel
- Institute of Biology, Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Tanja Woyke
- The Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Trent R Northen
- The Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
5
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
6
|
Aqueous Geochemical Controls on the Sestonic Microbial Community in Lakes Michigan and Superior. Microorganisms 2023; 11:microorganisms11020504. [PMID: 36838469 PMCID: PMC9963676 DOI: 10.3390/microorganisms11020504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Despite being the largest freshwater lake system in the world, relatively little is known about the sestonic microbial community structure in the Laurentian Great Lakes. The goal of this research was to better understand this ecosystem using high-throughput sequencing of microbial communities as a function of water depth at six locations in the westernmost Great Lakes of Superior and Michigan. The water column was characterized by gradients in temperature, dissolved oxygen (DO), pH, and other physicochemical parameters with depth. Mean nitrate concentrations were 32 μmol/L, with only slight variation within and between the lakes, and with depth. Mean available phosphorus was 0.07 μmol/L, resulting in relatively large N:P ratios (97:1) indicative of P limitation. Abundances of the phyla Actinobacteria, Bacteroidetes, Cyanobacteria, Thaumarchaeota, and Verrucomicrobia differed significantly among the Lakes. Candidatus Nitrosopumilus was present in greater abundance in Lake Superior compared to Lake Michigan, suggesting the importance of ammonia-oxidating archaea in water column N cycling in Lake Superior. The Shannon diversity index was negatively correlated with pH, temperature, and salinity, and positively correlated with DO, latitude, and N2 saturation. Results of this study suggest that DO, pH, temperature, and salinity were major drivers shaping the community composition in the Great Lakes.
Collapse
|
7
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Shim J, Choun K, Kang K, Kim J, Cho S, Jung K. The binding of secondary chromophore for thermally stable rhodopsin makes more stable with temperature. Protein Sci 2022. [DOI: 10.1002/pro.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin‐gon Shim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kimleng Choun
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kun‐Wook Kang
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Ji‐Hyun Kim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Shin‐Gyu Cho
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| |
Collapse
|
9
|
Schwartz SL, Momper L, Rangel LT, Magnabosco C, Amend JP, Fournier GP. Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in the phylum Chloroflexi. Microbiologyopen 2022; 11:e1258. [PMID: 35212484 PMCID: PMC8756737 DOI: 10.1002/mbo3.1258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/1999] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported NOR subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported.
Collapse
Affiliation(s)
- Sarah L. Schwartz
- Microbiology Graduate ProgramMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lily Momper
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Exponent Inc.PasadenaCaliforniaUSA
| | - Luiz Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Jan P. Amend
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
10
|
Shen S, Shimizu Y. Seasonal Variation in Viral Infection Rates and Cell Sizes of Infected Prokaryotes in a Large and Deep Freshwater Lake (Lake Biwa, Japan). Front Microbiol 2021; 12:624980. [PMID: 34046018 PMCID: PMC8144228 DOI: 10.3389/fmicb.2021.624980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
As viruses regulate prokaryotic abundance and the carbon cycle by infecting and lysing their prokaryotic hosts, the volume of infected prokaryotes is an important parameter for understanding the impact of viruses on aquatic environments. However, literature regarding the seasonal and spatial variations in the cell volume of infected prokaryotes is limited, despite the volume of the prokaryotic community varying dynamically with season and water column depth. Here, we conducted a field survey for two annual cycles in a large and deep freshwater lake (Lake Biwa, Japan), where large prokaryotes inhabit the deeper layer during the stratified period. We used transmission electron microscopy to reveal the seasonal and spatial variation in the frequency of viral infection and cell volume of infected prokaryotes. We found that the viral infection rate in the surface layer increased when estimated contact rates increased during the middle of the stratified period, whereas the infection rate in the deeper layer increased despite low estimated contact rates during the end of the stratified period. In addition, in the deeper layer, the fraction of large prokaryotes in the total and infected prokaryotic communities increased progressively while the number of intracellular viral particles increased. We suggest different ways in which the viral abundance is maintained in the two water layers. In the surface layer, it is speculated that viral abundance is supported by the high viral infection rate because of the high activity of prokaryotes, whereas in the deeper layer, it might be supported by the larger number of intracellular viral particles released from large prokaryotes. Moreover, large prokaryotes could contribute as important sources of organic substrates via viral lysis in the deeper layer, where labile dissolved organic matter is depleted.
Collapse
Affiliation(s)
- Shang Shen
- Research Center for Environmental Quality Management, Kyoto University, Kyoto, Japan
| | - Yoshihisa Shimizu
- Research Center for Environmental Quality Management, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Nakajima Y, Kojima K, Kashiyama Y, Doi S, Nakai R, Sudo Y, Kogure K, Yoshizawa S. Bacterium Lacking a Known Gene for Retinal Biosynthesis Constructs Functional Rhodopsins. Microbes Environ 2021; 35. [PMID: 33281127 PMCID: PMC7734400 DOI: 10.1264/jsme2.me20085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial rhodopsins, comprising a protein moiety (rhodopsin apoprotein) bound to the light-absorbing chromophore retinal, function as ion pumps, ion channels, or light sensors. However, recent genomic and metagenomic surveys showed that some rhodopsin-possessing prokaryotes lack the known genes for retinal biosynthesis. Since rhodopsin apoproteins cannot absorb light energy, rhodopsins produced by prokaryotic strains lacking genes for retinal biosynthesis are hypothesized to be non-functional in cells. In the present study, we investigated whether Aurantimicrobium minutum KNCT, which is widely distributed in terrestrial environments and lacks any previously identified retinal biosynthesis genes, possesses functional rhodopsin. We initially measured ion transport activity in cultured cells. A light-induced pH change in a cell suspension of rhodopsin-possessing bacteria was detected in the absence of exogenous retinal. Furthermore, spectroscopic analyses of the cell lysate and HPLC-MS/MS analyses revealed that this strain contained an endogenous retinal. These results confirmed that A. minutum KNCT possesses functional rhodopsin and, hence, produces retinal via an unknown biosynthetic pathway. These results suggest that rhodopsin-possessing prokaryotes lacking known retinal biosynthesis genes also have functional rhodopsins.
Collapse
Affiliation(s)
- Yu Nakajima
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | | | - Satoko Doi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| |
Collapse
|
12
|
Thomas SC, Payne D, Tamadonfar KO, Seymour CO, Jiao JY, Murugapiran SK, Lai D, Lau R, Bowen BP, Silva LP, Louie KB, Huntemann M, Clum A, Spunde A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Chen IM, Stamatis D, Reddy TBK, O'Malley R, Daum C, Shapiro N, Ivanova N, Kyrpides NC, Woyke T, Eloe-Fadrosh E, Hamilton TL, Dijkstra P, Dodsworth JA, Northen TR, Li WJ, Hedlund BP. Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Front Microbiol 2021; 12:632731. [PMID: 34017316 PMCID: PMC8129789 DOI: 10.3389/fmicb.2021.632731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Abstract
Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing “Candidatus Thermoflexus japonica,” “Candidatus Thermoflexus tengchongensis,” and “Candidatus Thermoflexus sinensis.” Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2T using 13C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Devon Payne
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jian-Yu Jiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Department of Plant and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rebecca Lau
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Benjamin P Bowen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Leslie P Silva
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Katherine B Louie
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcel Huntemann
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alicia Clum
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alex Spunde
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Manoj Pillay
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Krishnaveni Palaniappan
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Neha Varghese
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Mikhailova
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - I-Min Chen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Dimitrios Stamatis
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - T B K Reddy
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ronan O'Malley
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Chris Daum
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicole Shapiro
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Ivanova
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nikos C Kyrpides
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tanja Woyke
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Emiley Eloe-Fadrosh
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | - Trent R Northen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
13
|
Salam N, Xian WD, Asem MD, Xiao M, Li WJ. From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:132-147. [PMID: 37073336 PMCID: PMC10077289 DOI: 10.1007/s42995-020-00064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Earth is dominated by a myriad of microbial communities, but the majority fails to grow under in situ laboratory conditions. The basic cause of unculturability is that bacteria dominantly occur as biofilms in natural environments. Earlier improvements in the culture techniques are mostly done by optimizing media components. However, with technological advancement particularly in the field of genome sequencing and cell imagining techniques, new tools have become available to understand the ecophysiology of microbial communities. Hence, it becomes easier to mimic environmental conditions in the culture plate. Other methods include co-culturing, emendation of growth factors, and cultivation after physical cell sorting. Most recently, techniques have been proposed for bacterial cultivation by employing genomic data to understand either microbial interactions (network-directed targeted bacterial isolation) or ecosystem engineering (reverse genomics). Hopefully, these techniques may be applied to almost all environmental samples, and help fill the gaps between the cultured and uncultured microbial communities.
Collapse
Affiliation(s)
- Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
14
|
Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, Oyagi H, Tamaki H, Nakano SI. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. MICROBIOME 2021; 9:24. [PMID: 33482922 PMCID: PMC7825169 DOI: 10.1186/s40168-020-00974-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. RESULTS Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7-101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. CONCLUSIONS Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future. Video abstract.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Zurich, Switzerland
| | - Cristiana Callieri
- CNR, IRSA Institute of Water Research, Largo Tonolli 50, 28922, Verbania, Italy
| | - Atsushi Tanaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hideo Oyagi
- Faculty of Policy Studies, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya, Aichi, 466-8673, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
15
|
Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). WATER 2020. [DOI: 10.3390/w12113098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples. Glacial meltwaters and runoff waters from melting ice probably influenced the composition of the bacterial community at upper and middle river sites. Interestingly, marine-derived bacteria consistently accounted for a small proportion of the total sequences and were also more prominent in the inner part of the river. Results evidenced that particular conditions occurring at sampling sites (such as algal blooms, heavy metal contamination and anaerobiosis) may select species at local scale from a shared bacterial pool, thus favoring certain bacterial taxa. Conversely, the few phylotypes specifically detected in some sites are probably due to localized external inputs introducing allochthonous microbial groups.
Collapse
|
16
|
Cavaco MA, St Louis VL, Engel K, St Pierre KA, Schiff SL, Stibal M, Neufeld JD. Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol Ecol 2020; 95:5585388. [PMID: 31599931 DOI: 10.1093/femsec/fiz161] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Current models predict increases in High Arctic temperatures and precipitation that will have profound impacts on the Arctic hydrological cycle, including enhanced glacial melt and thawing of active layer soils. However, it remains uncertain how these changes will impact the structure of downstream resident freshwater microbial communities and ensuing microbially driven freshwater ecosystem services. Using the Lake Hazen watershed (Nunavut, Canada; 82°N, 71°W) as a sentinel system, we related microbial community composition (16S rRNA gene sequencing) to physicochemical parameters (e.g. dissolved oxygen and nutrients) over an annual hydrological cycle in three freshwater compartments within the watershed: (i) glacial rivers; (ii) active layer thaw-fed streams and waterbodies and (iii) Lake Hazen, into which (i) and (ii) drain. Microbial communities throughout these freshwater compartments were strongly interconnected, hydrologically, and often correlated with the presence of melt-sourced chemicals (e.g. dissolved inorganic carbon) as the melt season progressed. Within Lake Hazen itself, water column microbial communities were generally stable over spring and summer, despite fluctuating lake physicochemistry, indicating that these communities and the potential ecosystem services they provide therein may be resilient to environmental change. This work helps to establish a baseline understanding of how microbial communities and the ecosystem services they provide in Arctic watersheds might respond to future climate change.
Collapse
Affiliation(s)
- Maria Antonia Cavaco
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | - Katja Engel
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Sherry Lin Schiff
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague 128 44, Czechia
| | - Josh David Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater Genus Limnohabitans. Appl Environ Microbiol 2020; 86:AEM.00140-20. [PMID: 32169939 DOI: 10.1128/aem.00140-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Most freshwater bacterial communities are characterized by a few dominant taxa that are often ubiquitous across freshwater biomes worldwide. Our understanding of the genomic diversity within these taxonomic groups is limited to a subset of taxa. Here, we investigated the genomic diversity that enables Limnohabitans, a freshwater genus key in funneling carbon from primary producers to higher trophic levels, to achieve abundance and ubiquity. We reconstructed eight putative Limnohabitans metagenome-assembled genomes (MAGs) from stations located along broad environmental gradients existing in Lake Michigan, part of Earth's largest surface freshwater system. De novo strain inference analysis resolved a total of 23 strains from these MAGs, which strongly partitioned into two habitat-specific clusters with cooccurring strains from different lineages. The largest number of strains belonged to the abundant LimB lineage, for which robust in situ strain delineation had not previously been achieved. Our data show that temperature and nutrient levels may be important environmental parameters associated with microdiversification within the Limnohabitans genus. In addition, strains predominant in low- and high-phosphorus conditions had larger genomic divergence than strains abundant under different temperatures. Comparative genomics and gene expression analysis yielded evidence for the ability of LimB populations to exhibit cellular motility and chemotaxis, a phenotype not yet associated with available Limnohabitans isolates. Our findings broaden historical marker gene-based surveys of Limnohabitans microdiversification and provide in situ evidence of genome diversity and its functional implications across freshwater gradients.IMPORTANCE Limnohabitans is an important bacterial taxonomic group for cycling carbon in freshwater ecosystems worldwide. Here, we examined the genomic diversity of different Limnohabitans lineages. We focused on the LimB lineage of this genus, which is globally distributed and often abundant, and its abundance has shown to be largely invariant to environmental change. Our data show that the LimB lineage is actually comprised of multiple cooccurring populations for which the composition and genomic characteristics are associated with variations in temperature and nutrient levels. The gene expression profiles of this lineage suggest the importance of chemotaxis and motility, traits that had not yet been associated with the Limnohabitans genus, in adapting to environmental conditions.
Collapse
|
18
|
Paver SF, Newton RJ, Coleman ML. Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry. Environ Microbiol 2019; 22:433-446. [PMID: 31736217 PMCID: PMC6973239 DOI: 10.1111/1462-2920.14862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022]
Abstract
The Laurentian Great Lakes are a vast, interconnected freshwater system spanning strong physicochemical gradients, thus constituting a powerful natural laboratory for addressing fundamental questions about microbial ecology and evolution. We present a comparative analysis of pelagic microbial communities across all five Laurentian Great Lakes, focusing on Bacterial and Archaeal picoplankton characterized via 16S rRNA amplicon sequencing. We collected samples throughout the water column from the major basins of each lake in spring and summer over 2 years. Two oligotypes, classified as LD12 (Alphaproteobacteria) and acI‐B1 (Actinobacteria), were among the most abundant in every sample. At the same time, microbial communities showed distinct patterns with depth during summer stratification. Deep hypolimnion samples were frequently dominated by a Chloroflexi oligotype that reached up to 19% relative abundance. Stratified surface communities differed between the colder, less productive upper lakes (Superior, Michigan, Huron) and warmer, more productive lower lakes (Erie, Ontario), in part due to an Actinobacteria oligotype (acI‐C2) that averaged 7.7% of sequences in the lower lakes but <0.2% in the upper lakes. Together, our findings suggest that both hydrologic connectivity and local selective pressures shape microbial communities in the Great Lakes and establish a framework for future investigations.
Collapse
Affiliation(s)
- Sara F Paver
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, Sikorski J, Egert M, Dannenmann M, Pester M. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol 2019; 22:212-228. [PMID: 31657089 DOI: 10.1111/1462-2920.14840] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 μM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.
Collapse
Affiliation(s)
- Janina Herber
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Benjamin Frommeyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Dietmar Straile
- Limnological Institute, University of Konstanz, Mainaustraße 252, Constance, 78464, Germany
| | - Allison Kolar
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Johannes Sikorski
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Michael Dannenmann
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, Braunschweig, 38106, Germany
| |
Collapse
|
20
|
Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. THE ISME JOURNAL 2019; 13:2764-2777. [PMID: 31292537 PMCID: PMC6794327 DOI: 10.1038/s41396-019-0471-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The most abundant aquatic microbes are small in cell and genome size. Genome-streamlining theory predicts gene loss caused by evolutionary selection driven by environmental factors, favouring superior competitors for limiting resources. However, evolutionary histories of such abundant, genome-streamlined microbes remain largely unknown. Here we reconstruct the series of steps in the evolution of some of the most abundant genome-streamlined microbes in freshwaters ("Ca. Methylopumilus") and oceans (marine lineage OM43). A broad genomic spectrum is visible in the family Methylophilaceae (Betaproteobacteria), from sediment microbes with medium-sized genomes (2-3 Mbp genome size), an occasionally blooming pelagic intermediate (1.7 Mbp), and the most reduced pelagic forms (1.3 Mbp). We show that a habitat transition from freshwater sediment to the relatively oligotrophic pelagial was accompanied by progressive gene loss and adaptive gains. Gene loss has mainly affected functions not necessarily required or advantageous in the pelagial or is encoded by redundant pathways. Likewise, we identified genes providing adaptations to oligotrophic conditions that have been transmitted horizontally from pelagic freshwater microbes. Remarkably, the secondary transition from the pelagial of lakes to the oceans required only slight modifications, i.e., adaptations to higher salinity, gained via horizontal gene transfer from indigenous microbes. Our study provides first genomic evidence of genome reduction taking place during habitat transitions. In this regard, the family Methylophilaceae is an exceptional model for tracing the evolutionary history of genome streamlining as such a collection of evolutionarily related microbes from different habitats is rare in the microbial world.
Collapse
Affiliation(s)
- Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic.
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland.
| | - Daniel Schaefle
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Melissa Kaspar
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Stefan M Neuenschwander
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Chen LX, Zhao Y, McMahon KD, Mori JF, Jessen GL, Nelson TC, Warren LA, Banfield JF. Wide Distribution of Phage That Infect Freshwater SAR11 Bacteria. mSystems 2019. [PMID: 31641047 DOI: 10.1101/672428v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria.IMPORTANCE Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jiro F Mori
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Gerdhard L Jessen
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | | | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
- School of Geography and Earth Science, McMaster University, Hamilton, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Innovative Genomics Institute at UC Berkeley, Berkeley, California, USA
- The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Abstract
Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage. Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter. A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter. Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria. IMPORTANCEFonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage.
Collapse
|
23
|
Salmaso N. Effects of Habitat Partitioning on the Distribution of Bacterioplankton in Deep Lakes. Front Microbiol 2019; 10:2257. [PMID: 31636614 PMCID: PMC6788347 DOI: 10.3389/fmicb.2019.02257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/17/2019] [Indexed: 12/04/2022] Open
Abstract
In deep lakes, many investigations highlighted the existence of exclusive groups of bacteria adapted to deep oxygenated and hypoxic and anoxic hypolimnia. Nevertheless, the extent of bacterial strain diversity has been much less scrutinized. This aspect is essential for an unbiased estimation of genetic variation, biodiversity, and population structure, which are essential for studying important research questions such as biogeographical patterns, temporal and spatial variability and the environmental factors affecting this variability. This study investigated the bacterioplankton community in the epilimnetic layers and in the oxygenated and hypoxic/anoxic hypolimnia of five large and deep lakes located at the southern border of the Alps using high throughput sequencing (HTS) analyses (16S rDNA) and identification of amplicon sequence variants (ASVs) resolving reads differing by as little as one nucleotide. The study sites, which included two oligomictic (Garda and Como) and three meromictic lakes (Iseo, Lugano, and Idro) with maximum depths spanning from 124 to 410 m, were chosen among large lakes to represent an oxic-hypoxic gradient. The analyses showed the existence of several unique ASVs in the three layers of the five lakes. In the case of cyanobacteria, this confirmed previous analyses made at the level of strains or based on oligotyping methods. As expected, the communities in the hypoxic/anoxic monimolimnia showed a strong differentiation from the oxygenated layer, with the exclusive presence in single lakes of several unique ASVs. In the meromictic lakes, results supported the hypothesis that the formation of isolated monimolimnia sustained the development of highly diversified bacterial communities through ecological selection, leading to the establishment of distinctive biodiversity zones. The genera identified in these layers are well-known to activate a wide range of redox reactions at low O2 conditions. As inferred from 16S rDNA data, the highly diversified and coupled processes sustained by the monimolimnetic microbiota are essential ecosystem services that enhance mineralization of organic matter and formation of reduced compounds, and also abatement of undesirable greenhouse gasses.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
24
|
Abstract
By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations. We examined the genomic adaptations of prevalent bacterial taxa in a highly nutrient- and ion-depleted freshwater environment located in the secondary cooling water system of a nuclear research reactor. Using genome-centric metagenomics, we found that none of the prevalent bacterial taxa were related to typical freshwater bacterial lineages. We also did not identify strong signatures of genome streamlining, which has been shown to be one of the ecoevolutionary forces shaping the genome characteristics of bacterial taxa in nutrient-depleted environments. Instead, focusing on the dominant taxon, a novel Ramlibacter sp. which we propose to name Ramlibacter aquaticus, we detected extensive positive selection on genes involved in phosphorus and carbon scavenging pathways. These genes were involved in the high-affinity phosphate uptake and storage into polyphosphate granules, metabolism of nitrogen-rich organic matter, and carbon/energy storage into polyhydroxyalkanoate. In parallel, comparative genomics revealed a high number of paralogs and an accessory genome significantly enriched in environmental sensing pathways (i.e., chemotaxis and motility), suggesting extensive gene expansions in R. aquaticus. The type strain of R. aquaticus (LMG 30558T) displayed optimal growth kinetics and productivity at low nutrient concentrations, as well as substantial cell size plasticity. Our findings with R. aquaticus LMG 30558T demonstrate that positive selection and gene expansions may represent successful adaptive strategies to oligotrophic environments that preserve high growth rates and cellular productivity. IMPORTANCE By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations.
Collapse
|
25
|
Okazaki Y, Salcher MM, Callieri C, Nakano SI. The Broad Habitat Spectrum of the CL500-11 Lineage (Phylum Chloroflexi), a Dominant Bacterioplankton in Oxygenated Hypolimnia of Deep Freshwater Lakes. Front Microbiol 2018; 9:2891. [PMID: 30542336 PMCID: PMC6277806 DOI: 10.3389/fmicb.2018.02891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 12/04/2022] Open
Abstract
CL500-11 (phylum Chloroflexi) is one of the most ubiquitous and abundant bacterioplankton lineages in deep freshwater lakes inhabiting the oxygenated hypolimnion. While metagenomics predicted possible eco-physiological characteristics of this uncultured lineage, no consensus on their ecology has so far been reached, partly because their niche is not clearly understood due to a limited number of quantitative field observations. This study investigated the abundance and distribution of CL500-11 in seven deep perialpine lakes using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken vertically (5–12 depths in each lake) and temporally (in two lakes) at the deepest point of the lakes located in Switzerland, Italy, and Austria with varying depth, trophic state, mixing regime, and water retention time. The results showed a dominance of CL500-11 in all the lakes; their proportion to total prokaryotes ranged from 4.3% (Mondsee) to 24.3% (Lake Garda) and their abundance ranged from 0.65 × 105 (Mondsee) to 1.77 × 105 (Lake Garda) cells mL-1. By summarizing available information on CL500-11 occurrence to date, we demonstrated their broad habitat spectrum, ranging from ultra-oligotrophic to meso-eutrophic lakes, while low abundances or complete absence was observed in lakes with shallow depth, low pH, and/or short water retention time (<1 year). Together with available metagenomic and geochemical evidences from literatures, here we reviewed potential substrates supporting growth of CL500-11. Overall, the present study further endorsed ubiquity and quantitative significance of CL500-11 in deep freshwater systems and narrowed the focus on their physiological characteristics and ecological importance.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Michaela M Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Cristiana Callieri
- CNR-IRSA Institute of Water Research, Microbial Ecology Group, Verbania, Italy
| | | |
Collapse
|
26
|
Mehrshad M, Salcher MM, Okazaki Y, Nakano SI, Šimek K, Andrei AS, Ghai R. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. MICROBIOME 2018; 6:176. [PMID: 30285851 PMCID: PMC6169038 DOI: 10.1186/s40168-018-0563-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/21/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Representatives of the phylum Chloroflexi, though reportedly highly abundant in the extensive deep water habitats of both marine (SAR202 up to 30% of total prokaryotes) and freshwater (CL500-11 up to 26% of total prokaryotes), remain uncultivated and uncharacterized. There are few metagenomic studies on marine Chloroflexi representatives, while the pelagic freshwater Chloroflexi community is largely unknown except for a single metagenome-assembled genome of CL500-11. RESULTS Here, we provide the first extensive examination of the community composition of this cosmopolitan phylum in a range of pelagic habitats (176 datasets) and highlight the impact of salinity and depth on their phylogenomic composition. Reconstructed genomes (53 in total) provide a perspective on the phylogeny, metabolism, and distribution of three novel classes and two family-level taxa within the phylum Chloroflexi. We unraveled a remarkable genomic diversity of pelagic freshwater Chloroflexi representatives that thrive not only in the hypolimnion as previously suspected, but also in the epilimnion. Our results suggest that the lake hypolimnion provides a globally stable habitat reflected in lower species diversity among hypolimnion-specific CL500-11 and TK10 clusters in distantly related lakes compared to a higher species diversity of the epilimnion-specific SL56 cluster. Cell volume analyses show that the CL500-11 are among the largest prokaryotic cells in the water column of deep lakes and with a biomass to abundance ratio of two they significantly contribute to the deep lake carbon flow. Metabolic insights indicate participation of JG30-KF-CM66 representatives in the global cobalamin production via cobinamide to cobalamin salvage pathway. CONCLUSIONS Extending phylogenomic comparisons to brackish and marine habitats suggests salinity as the major influencer of the community composition of the deep-dwelling Chloroflexi in marine (SAR202) and freshwater (CL500-11) habitats as both counterparts thrive in intermediate brackish salinity; however, freshwater habitats harbor the most phylogenetically diverse community of pelagic Chloroflexi representatives that reside both in epi- and hypolimnion.
Collapse
Affiliation(s)
- Maliheh Mehrshad
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Michaela M Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, CH-8802, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Karel Šimek
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
27
|
Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102168. [PMID: 30279389 PMCID: PMC6211031 DOI: 10.3390/ijerph15102168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Increased exploitation and use of petroleum resources is leading to increased risk of petroleum contamination of soil and groundwater. Although phytoremediation is a widely-used and cost-effective method for rehabilitating soils polluted by petroleum, bacterial community structure and diversity in soils undergoing phytoremediation is poorly understood. We investigate bacterial community response to phytoremediation in two distinct petroleum-contaminated soils (add prepared petroleum-contaminated soils) from northwest China, Weihe Terrace soil and silty loam from loess tableland. High-throughput sequencing technology was used to compare the bacterial communities in 24 different samples, yielding 18,670 operational taxonomic units (OTUs). The dominant bacterial groups, Proteobacteria (31.92%), Actinobacteria (16.67%), Acidobacteria (13.29%) and Bacteroidetes (6.58%), increased with increasing petroleum concentration from 3000 mg/kg–10,000 mg/kg, while Crenarchaeota (13.58%) and Chloroflexi (4.7%) decreased. At the order level, RB41, Actinomycetales, Cytophagales, envOPS12, Rhodospirillales, MND1 and Xanthomonadales, except Nitrososphaerales, were dominant in Weihe Terrace soil. Bacterial community structure and diversity in the two soils were significantly different at similar petroleum concentrations. In addition, the dominant genera were affected by available nitrogen, which is strongly associated with the plants used for remediation. Overall, the bacterial community structure and diversity were markedly different in the two soils, depending on the species of plants used and the petroleum concentration.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
- School of Biological and Environmental, Xi'an University, Xi'an 710065, Shaanxi, China.
- Engineering Research Center for Groundwater and Eco-Environment of Shaanxi Province, Xi'an 710054, Shaanxi, China.
| | - Yu Ji
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Chunrong Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Yuan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Daniel Nover
- School of Engineering, University of California-Merced, Merced, CA 95343, USA.
| |
Collapse
|
28
|
Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME JOURNAL 2018; 12:1846-1860. [PMID: 29599519 PMCID: PMC6018831 DOI: 10.1038/s41396-018-0092-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 11/08/2022]
Abstract
Evolutionary transitions between fresh and salt water happen infrequently among bacterioplankton. Within the ubiquitous and highly abundant heterotrophic Alphaproteobacteria order Pelagibacterales (SAR11), most members live in marine habitats, but the LD12 subclade has evolved as a unique freshwater lineage. LD12 cells occur as some of the most dominant freshwater bacterioplankton, yet this group has remained elusive to cultivation, hampering a more thorough understanding of its biology. Here, we report the first successful isolation of an LD12 representative, strain LSUCC0530, using high-throughput dilution-to-extinction cultivation methods, and its complete genome sequence. Growth experiments corroborate ecological data suggesting active populations of LD12 in brackish water up to salinities of ~5. LSUCC0530 has the smallest closed genome thus far reported for a SAR11 strain (1.16 Mbp). The genome affirms many previous metabolic predictions from cultivation-independent analyses, like a complete Embden–Meyerhof–Parnas glycolysis pathway, but also provides novel insights, such as the first isocitrate dehydrogenase in LD12, a likely homologous recombination of malate synthase from outside of the SAR11 clade, and analogous substitutions of ion transporters with others that occur throughout the rest of the SAR11 clade. Growth data support metagenomic recruitment results suggesting temperature-based ecotype diversification within LD12. Key gene losses for osmolyte uptake provide a succinct hypothesis for the evolutionary transition of LD12 from salt to freshwater. For strain LSUCC0530, we propose the provisional nomenclature Candidatus fonsibacter ubiquis.
Collapse
|
29
|
ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:921. [PMID: 29363425 PMCID: PMC5780852 DOI: 10.1186/s12864-017-4327-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Inferring phylogenetic trees for newly recovered genomes from metagenomic samples is very useful in determining the identities of uncultivated microorganisms. Even though 16S ribosomal RNA small subunit genes have been established as "gold standard" markers for inferring phylogenetic trees, they usually cannot be assembled very well in metagenomes due to shared regions among 16S genes. Using single-copy marker genes to build genome trees has become increasingly popular for uncultivated species. Predefined marker gene sets were discovered and have been applied in various genomic studies; however these gene sets might not be adequate for novel, uncultivated, draft, or incomplete genomes. The automatic identification of marker gene sets among a set of genomes with different assembly qualities has thus become a very important task for inferring reliable phylogenetic relationships for microbial populations. RESULTS A computational pipeline, ezTree, was developed to automatically identify single-copy marker genes for a group of genomes and build phylogenetic trees from the marker genes. Testing ezTree on a group of proteobacteria species revealed that ezTree was highly effective in pinpointing marker genes and constructing reliable trees for different groups of bacterial genomes. Applying ezTree to genomes that were recently recovered from metagenomes also showed that ezTree can help elucidate taxonomic relationships among newly recovered genomes and existing ones. CONCLUSIONS The development of ezTree can help scientists build reliable phylogenetic trees for uncultivated species retrieved from environmental samples. The uncovered single-copy marker genes may also provide crucial hints for understanding shared features of a group of microbes. The ezTree pipeline is freely available at https://github.com/yuwwu/ezTree under a GNU GPLv3 license.
Collapse
|
30
|
Okazaki Y, Fujinaga S, Tanaka A, Kohzu A, Oyagi H, Nakano SI. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. THE ISME JOURNAL 2017; 11:2279-2293. [PMID: 28585941 PMCID: PMC5607371 DOI: 10.1038/ismej.2017.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 02/01/2023]
Abstract
The oxygenated hypolimnion accounts for a volumetrically significant part of the global freshwater systems. Previous studies have proposed the presence of hypolimnion-specific bacterioplankton lineages that are distinct from those inhabiting the epilimnion. To date, however, no consensus exists regarding their ubiquity and abundance, which is necessary to evaluate their ecological importance. The present study investigated the bacterioplankton community in the oxygenated hypolimnia of 10 deep freshwater lakes. Despite the broad geochemical characteristics of the lakes, 16S rRNA gene sequencing demonstrated that the communities in the oxygenated hypolimnia were distinct from those in the epilimnia and identified several predominant lineages inhabiting multiple lakes. Catalyzed reporter deposition fluorescence in situ hybridization revealed that abundant hypolimnion-specific lineages, CL500-11 (Chloroflexi), CL500-3, CL500-37, CL500-15 (Planctomycetes) and Marine Group I (Thaumarchaeota), together accounted for 1.5-32.9% of all bacterioplankton in the hypolimnion of the lakes. Furthermore, an analysis of single-nucleotide variation in the partial 16S rRNA gene sequence (oligotyping) suggested the presence of different sub-populations between lakes and water layers among the lineages occurring in the entire water layer (for example, acI-B1 and acI-A7). Collectively, these results provide the first comprehensive overview of the bacterioplankton community in the oxygenated hypolimnion of deep freshwater lakes.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Atsushi Tanaka
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Hideo Oyagi
- College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | |
Collapse
|
31
|
Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder. mSphere 2017; 2:mSphere00189-17. [PMID: 28593195 PMCID: PMC5451517 DOI: 10.1128/msphere.00189-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of these disturbances. Yet, relatively few studies have focused on how species invasion, which is one of the most important aspects of anthropogenic global change, affects freshwater bacterial assemblages. This study focuses on the impact of invasive dreissenid mussels (IDMs), a globally distributed group of invasive species with large impacts on freshwater phyto- and zooplankton assemblages. We show that IDMs have direct effects on lake bacterioplankton abundance, taxonomic composition, and inferred bacterial functional group representation. One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of these disturbances. Yet, relatively few studies have focused on how species invasion, which is one of the most important aspects of anthropogenic global change, affects freshwater bacterial assemblages. This study focuses on the impact of invasive dreissenid mussels (IDMs), a globally distributed group of invasive species with large impacts on freshwater phyto- and zooplankton assemblages. We show that IDMs have direct effects on lake bacterioplankton abundance, taxonomic composition, and inferred bacterial functional group representation.
Collapse
|
32
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Freshwater bacteria release methane as a byproduct of phosphorus acquisition. Appl Environ Microbiol 2016; 82:6994-7003. [PMID: 27694233 DOI: 10.1128/aem.02399-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. IMPORTANCE Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models.
Collapse
|
34
|
Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria. Front Microbiol 2016; 7:606. [PMID: 27199936 PMCID: PMC4850342 DOI: 10.3389/fmicb.2016.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.
Collapse
Affiliation(s)
- Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Masanori Fujimoto
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Michelle A Berry
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|