1
|
Mannina G, Alliet M, Brepols C, Comas J, Heran M, Robles A, Rodriguez-Roda I, Ruano MV, Garcia VS, Smets I, Harmand J. Optimization of MBRs through integrated modelling: A state of the art. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122720. [PMID: 39369530 DOI: 10.1016/j.jenvman.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The optimization of integrated membrane bioreactors (MBRs) models is of paramount importance in view of reducing the costs, greenhouse gas emissions or enhancing the water quality. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the control and optimization of integrated MBR models. Whether aerobic or anaerobic, such modelling allows the consideration of specific functioning conditions and optimization problems together with the estimation and monitoring of Performance Index (PIs). This paper reviews the diversity of those problems criteria used in performance assessment. Dividing issues that can be addressed either off-line or online, it is shown that integrated models have attained an important degree of maturity. Several recommendations for mainstreaming the optimization of MBRs using such integrated models. The key findings of this work show that there is room for improving and optimizing the functioning of MBRs using integrated modelling and that this integrated modelling approach is necessary to link functioning conditions together with PI estimation and monitoring.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128, Palermo, Italy
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Marc Heran
- IEM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Angel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Valeria Sandoval Garcia
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de Valencia, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, 3001, Heverlee, Belgium
| | | |
Collapse
|
2
|
Song W, Kim C, Lee J, Han J, Jiang Z, Kim J, An S, Park Y, Kweon J. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation. CHEMOSPHERE 2024; 358:142110. [PMID: 38657688 DOI: 10.1016/j.chemosphere.2024.142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chehyeun Kim
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jihoon Lee
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiwon Han
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Zikang Jiang
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehyeok Kim
- Environmetal & Bio Department, FITI Testing & Research Institute Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Sunkyung An
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Yongmin Park
- Operation Business Division, EPS Solution Co.,Ltd, Anyang-si, Gyeonggi-do, 14059, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Wu Z, Cao X, Li M, Liu J, Li B. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges. CHEMOSPHERE 2024; 349:140843. [PMID: 38043611 DOI: 10.1016/j.chemosphere.2023.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.
Collapse
Affiliation(s)
- Ziqing Wu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Jun Liu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Ahmad SS, Siddiqui MF, Maqbool F, Ullah I, Adnan F, Albutti A, Alsowayeh N, Rahman Z. Combating Cariogenic Streptococcus mutans Biofilm Formation and Disruption with Coumaric Acid on Dentin Surface. Molecules 2024; 29:397. [PMID: 38257309 PMCID: PMC10818395 DOI: 10.3390/molecules29020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface coverage and biomass μm2) and three-dimensional (3D) surface plots. It was observed that CA at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05) reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced to 24.80 μg/mL and protein (EPS) to 41.47 μg/mL. ImageJ software (version 1.54 g) was used to process florescence images, and it was observed that the biofilm mass was reduced to 213 (μm2); the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control efficacy against S. mutans associated with dental plaque under tested conditions.
Collapse
Affiliation(s)
- Syed Sohail Ahmad
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan; (S.S.A.); (F.M.)
| | | | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan; (S.S.A.); (F.M.)
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fazal Adnan
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Noorah Alsowayeh
- Department of Biology, College of Science in Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Ziaur Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan;
| |
Collapse
|
5
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
6
|
Ordek A, Gordesli-Duatepe FP. Impact of sodium nitroprusside concentration added to batch cultures of Escherichia coli biofilms on the c-di-GMP levels, morphologies and adhesion of biofilm-dispersed cells. BIOFOULING 2022; 38:796-813. [PMID: 36229918 DOI: 10.1080/08927014.2022.2131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Biofilm dispersion can be triggered by the application of dispersing agents such as nitric oxide (NO)-donors, resulting in the release of biofilm-dispersed cells into the environment. In this work, biofilm-dispersed cells were obtained by adding different concentrations of NO-donor sodium nitroprusside (0.5, 5, 50 µM, and 2.5 mM of SNP) to batch cultures of pre-formed Escherichia coli biofilms. Except for those dispersed by 5 µM of SNP, biofilm-dispersed cells were found to be wider and longer than the planktonic cells and to have higher c-di-GMP levels and greater adhesion forces to silicon nitride surfaces in water as measured by atomic force microscope. Consequently, the optimum concentration of SNP to disperse E. coli biofilms was found to be 5 µM of SNP, whose addition to batch cultures resulted in a significant biofilm dispersion and the dispersed cells having c-di-GMP levels, morphologies and adhesion strengths similar to their planktonic counterparts.
Collapse
Affiliation(s)
- Ayse Ordek
- Bioengineering Graduate Program, Graduate School, Izmir University of Economics, Izmir, Turkey
| | - F Pinar Gordesli-Duatepe
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
7
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
8
|
Maitreya A, Pal S, Qureshi A, Reyed RM, Purohit HJ. Nitric oxide-secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4911-4929. [PMID: 34797547 DOI: 10.1007/s11356-021-17289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Membrane biofouling in water purification plants is a serious issue of worldwide concern. Various chemical, physical, and biochemical processes are practised for membrane clean-up. A high-dosage treatment adversely affects the life expectancy of the membrane, and minimum dosage seems unable to deteriorate the biofilms on the membrane. It is reported that quorum quenchers like nitric oxide (NO) disrupt biofilm signals through metabolic rewiring, and also NO is known to be secreted by probiotics (good bacteria). In the present review, it is hypothesized that if probiotic biofilms secreting NO are used, other microbes that aggregate on the filtration membrane could be mitigated. The concept of probiotic administration on filtration membrane seeks to be encouraged because probiotic bacteria will not be hazardous, even if released during filtration. The fundamental motive to present probiotics as a resource for sequestering NO may serve as multifunctional bioweapons for membrane remediation, which will virtually guarantee their long-term sustainability and green approach.
Collapse
Affiliation(s)
- Anuja Maitreya
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smita Pal
- Division of Endocrinology, CSIR -Central Drug Research Institute, Lucknow, 226031, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Reyed M Reyed
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg Al Arab, Alexandria, Egypt
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| |
Collapse
|
9
|
Chen L, Li J, Tang Y, Wang S, Lu X, Cheng Z, Zhang X, Wu P, Chang X, Xia Y. Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. WATER RESEARCH 2021; 204:117580. [PMID: 34469810 DOI: 10.1016/j.watres.2021.117580] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 05/20/2023]
Abstract
The increasing microplastic pollution together with the plastisphere-associated ecological threats in coastal areas have aroused global concern. Tropical cyclones have been increased in both frequency and intensity under global warming, causing intense impact on the microplastics distribution and the structure of coastal ecosystems. However, until most currently, the extent to which typhoon impacts the microplastics and plastisphere community remains poorly known. This study analyzed the effects of Typhoon Wipha (Code: 1907) on microplastics abundance and composition in surface water and sediment crossed coastal areas of Shenzhen. Here we found a significant typhoon-induced increase in microplastics abundance in surface water, whereas an opposite trend was observed in sediment. Despite the evident transportation of microplastics from sediment to surface water by agitation, a possible microplastics influx was introduced by typhoon as evidenced by the large attribution of unknown force in source tracking analysis. Furthermore, typhoon had adeptly uniformed the plastisphere community in the sediment along the 190 km costal line overnight. A significant increase of nitrogen fixer, Bradyrhizobiaceae, was observed ubiquitously after typhoon, which might alter the nitrogen cycling and increase eutrophic condition of the coastal ecological system. Together, this study expanded the knowledge about the impact of typhoon-induced influx of the microplastics on coastal biogeochemical cycling. Moreover, the microplastics and the plastisphere compositional pattern revealed here will underpin future studies on adsorption behavior, interfacial processes and ecotoxicity of the coastal microplastic pollution.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangpeng Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siqing Wang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Lu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuyang Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyi Chang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021; 105:3931-3954. [PMID: 33937932 PMCID: PMC8140970 DOI: 10.1007/s00253-021-11274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS : • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ying-Dan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Cai YM, Webb JS. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 2020; 104:8859-8869. [PMID: 32865612 PMCID: PMC7502453 DOI: 10.1007/s00253-020-10859-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa biofilms contribute heavily to chronic lung infection in cystic fibrosis patients, leading to morbidity and mortality. Nitric oxide (NO) has been shown to disperse P. aeruginosa biofilms in vitro, ex vivo and in clinical trials as a promising anti-biofilm agent. Traditional NO donors such as sodium nitroprusside (SNP) have been extensively employed in different studies. However, the dosage of SNP in different studies was not consistent, ranging from 500 nM to 500 μM. SNP is light sensitive and produces cyanide, which may lead to data misinterpretation and inaccurate predictions of dispersal responses in clinical settings. New NO donors and NO delivery methods have therefore been explored. Here we assessed 7 NO donors using P. aeruginosa PAO1 and determined that SNP and Spermine NONOate (S150) successfully reduced > 60% biomass within 24 and 2 h, respectively. While neither dosage posed toxicity towards bacterial cells, chemiluminescence assays showed that SNP only released NO upon light exposure in M9 media and S150 delivered much higher performance spontaneously. S150 was then tested on 13 different cystic fibrosis P. aeruginosa (CF-PA) isolates; most CF-PA biofilms were significantly dispersed by 250 μM S150. Our work therefore discovered a commercially available NO donor S150, which disperses CF-PA biofilms efficiently within a short period of time and without releasing cyanide, as an alternative of SNP in clinical trials in the future. KEY POINTS: • S150 performs the best in dispersing P. aeruginosa biofilms among 7 NO donors. • SNP only releases NO in the presence of light, while S150 releases NO spontaneously. • S150 successfully disperses biofilms formed by P. aeruginosa cystic fibrosis clinical isolates.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jeremy S Webb
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Curtin AM, Thibodeau MC, Buckley HL. The Best-Practice Organism for Single-Species Studies of Antimicrobial Efficacy against Biofilms Is Pseudomonas aeruginosa. MEMBRANES 2020; 10:E211. [PMID: 32872560 PMCID: PMC7559251 DOI: 10.3390/membranes10090211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
As potable water scarcity increases across the globe; it is imperative to identify energy and cost-effective processes for producing drinking-water from non-traditional sources. One established method is desalination of brackish and seawater via reverse osmosis (RO). However, the buildup of microorganisms at the water-membrane interface, known as biofouling, clogs RO membranes over time, increasing energy requirements and cost. To investigate biofouling mitigation methods, studies tend to focus on single-species biofilms; choice of organism is crucial to producing useful results. To determine a best-practice organism for studying antimicrobial treatment of biofilms, with specific interest in biofouling of RO membranes, we answered the following two questions, each via its own semi-systematic review: 1. Which organisms are commonly used to test antimicrobial efficacy against biofilms on RO membranes? 2. Which organisms are commonly identified via genetic analysis in biofilms on RO membranes? We then critically review the results of two semi-systematic reviews to identify pioneer organisms from the listed species. We focus on pioneer organisms because they initiate biofilm formation, therefore, inhibiting these organisms specifically may limit biofilm formation in the first place. Based on the analysis of the results, we recommend utilizing Pseudomonas aeruginosa for future single-species studies focused on biofilm treatment including, but not limited to, biofouling of RO membranes.
Collapse
Affiliation(s)
| | | | - Heather L. Buckley
- Green Safe Water Lab, Civil Engineering Department, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.M.C.); (M.C.T.)
| |
Collapse
|
13
|
Islam M, Durie I, Ramadan R, Purchase D, Marvasi M. Exploitation of nitric oxide donors to control bacterial adhesion on ready-to-eat vegetables and dispersal of pathogenic biofilm from polypropylene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3078-3086. [PMID: 32077490 DOI: 10.1002/jsfa.10340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nitric oxide (NO) donors have been used to control biofilm formation. Nitric oxide can be delivered in situ using organic carriers and acts as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants. In this study, we investigate the capability of the NO donors molsidomine, MAHAMA NONOate, NO-aspirin and diethylamine NONOate to act as anti-adhesion agents on ready-to-eat vegetables, as well as dispersants for a number of pathogenic biofilms on plastic. RESULTS Our results showed that 10 pM molsidomine reduced the attachment of Salmonella enterica sv Typhimurium 14 028 to pea shoots and coriander leaves of about 0.5 Log(CFU/leaf) when compared with untreated control. The association of 10 pmol L-1 molsidomine with 0.006% H2 O2 showed a synergistic effect, leading to a significant reduction in cell collection on the surface of the vegetable of about 1 Log(CFU/leaf). Similar results were obtained for MAHMA NONOate. We also showed that the association of diethylamine NONOate at 10 mmol L-1 and 10 pmol L-1 with the quaternary ammonium compound diquat bromide improved the effectiveness of biofilm dispersal by 50% when compared with the donor alone. CONCLUSIONS Our findings reveal a dual role of NO compounds in biofilm control. Molsidomine, MAHMA NONOate, and diethylamine NONOate are good candidates for either preventing biofilm formation or dispersing biofilm, especially when used in conjunction with disinfectants. Nitric oxide compounds have the potential to be developed into a toolkit for pro-active practices for good agricultural practices (GAPs), hazard analysis and critical control points (HACCP), and cleaning-in-place (CIP) protocols in industrial settings where washing is routinely applied. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammad Islam
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Ian Durie
- Soil and Water Department, University of Florida, Gainesville, FL, USA
| | - Reham Ramadan
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London, UK
| | | |
Collapse
|
14
|
Luo H, Cui Y, Zhang H, Li C, Wang Z, Song P. Analyzing and verifying the association of spiral-wound reverse osmosis membrane fouling with different secondary effluents: full-scale experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135150. [PMID: 31818593 DOI: 10.1016/j.scitotenv.2019.135150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
In order to analyze and verify the association of the reverse osmosis (RO) membrane fouling with water quality in full-scale plants, two RO systems (40, 000 m3/d and 20, 000 m3/d) treating different secondary effluents were operated in parallel. The quality of secondary effluents and the performance of RO systems were monitored over 12 months. Difference in foulants distribution and fouling layer composition between the two systems were evaluated by membrane autopsy and foulants characterization. Results verified that: 1) the secondary effluent from municipal sewage caused more serious membrane fouling; 2) more foulants deposited on the surface of leading membrane both in two systems (3.11 ± 0.15 g/m2 and 2.93 ± 0.13 g/m2); 3) the microbial community on the RO membrane surface contained more colonizing bacteria in the system treating municipal sewage secondary effluent ; 4) organics in the secondary effluent facilitated biofouling while higher ion concentration restrained biofouling.
Collapse
Affiliation(s)
- Huijia Luo
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China; Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Yong Cui
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Hongyu Zhang
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Caifeng Li
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Zhan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Peng Song
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| |
Collapse
|
15
|
de Vries HJ, Stams AJM, Plugge CM. Biodiversity and ecology of microorganisms in high pressure membrane filtration systems. WATER RESEARCH 2020; 172:115511. [PMID: 31986400 DOI: 10.1016/j.watres.2020.115511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
High-pressure membrane filtration (reverse osmosis and nanofiltration) is used to purify different water sources, including wastewater, surface water, groundwater and seawater. A major concern in membrane filtration is the accumulation and growth of micro-organisms and their secreted polymeric substances, leading to reduced membrane performance and membrane biofouling. The fundamental understanding of membrane biofouling is limited despite years of research, as the means of microbial interactions and response to the conditions on the membrane surface are complicated. Here, we discuss studies that investigated the microbial diversity of fouled high-pressure membranes. High-throughput amplicon sequencing of the 16S rRNA gene have shown that Burkholderiales, Pseudomonadales, Rhizobiales, Sphingomonadales and Xanthomonadales frequently obtain a high relative abundance on fouled membranes. The bacterial communities present in the diverse feed water types and in pre-treatment compartments are different from the communities on the membrane, because high-pressure membrane filtration provides a selective environment for certain bacterial groups. The biofilms that form within the pre-treatment compartments do not commonly serve as an inoculum for the subsequent high-pressure membranes. Besides bacteria also fungi are detected in the water treatment compartments. In contrast to bacteria, the fungal community does not change much throughout membrane cleaning. The stable fungal diversity indicates that they are more significant in membrane biofouling than previously thought. By reviewing the biodiversity and ecology of microbes in the whole high pressure membrane filtration water chain, we have been able to identify potentials to improve biofouling control. These include modulation of hydrodynamic conditions, nutrient limitation and the combination of cleaning agents to target the entire membrane microbiome.
Collapse
Affiliation(s)
- Hendrik J de Vries
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| |
Collapse
|
16
|
Kucera J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. MEMBRANES 2019; 9:E111. [PMID: 31480327 PMCID: PMC6780091 DOI: 10.3390/membranes9090111] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Reverse osmosis and nanofiltration systems are continuously challenged with biofouling of polyamide membranes that are used almost exclusively for these desalination techniques. Traditionally, pretreatment and reactive membrane cleanings are employed as biofouling control methods. This in-depth review paper discusses the mechanisms of membrane biofouling and effects on performance. Current industrial disinfection techniques are reviewed, including chlorine and other chemical and non-chemical alternatives to chlorine. Operational techniques such as reactive membrane cleaning are also covered. Based on this review, there are three suggested areas of additional research offering promising, polyamide membrane-targeted biofouling minimization that are discussed. One area is membrane modification. Modification using surface coatings with inclusion of various nanoparticles, and graphene oxide within the polymer or membrane matrix, are covered. This work is in the infancy stage and shows promise for minimizing the contributions of current membranes themselves in promoting biofouling, as well as creating oxidant-resistant membranes. Another area of suggested research is chemical disinfectants for possible application directly on the membrane. Likely disinfectants discussed herein include nitric oxide donor compounds, dichloroisocyanurate, and chlorine dioxide. Finally, proactive cleaning, which aims to control the extent of biofouling by cleaning before it negatively affects membrane performance, shows potential for low- to middle-risk systems.
Collapse
Affiliation(s)
- Jane Kucera
- Nalco Water, An Ecolab Company, 1601 West Diehl Road, Naperville, IL 60563, USA.
| |
Collapse
|
17
|
A comparative study on nitric oxide and hypochlorite as a membrane cleaning agent to minimise biofilm growth in a membrane bioreactor (MBR) process. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc Natl Acad Sci U S A 2019; 116:14216-14221. [PMID: 31239347 PMCID: PMC6628660 DOI: 10.1073/pnas.1819016116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Vibrio cholerae, when not inside of a host, grows in cell clusters (biofilms) on pieces of detritus in aquatic environments. Here we discovered that some isolates of V. cholerae can change their shape from small comma-shaped cells to long filaments in seawater. This altered cell shape allows cells to make new types of biofilms, and provides an advantage in quickly colonizing particles in seawater, at the expense of longer-term competitive ability. The filamentous cell-shape strategy is particularly effective at competing in environments with quick turnover of chitin particles. This result showcases how bacterial cell shape can be coupled to environmental success during surface occupation, competition within biofilms, and dispersal to new resource patches. Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell–resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.
Collapse
|
19
|
Jiang Q, Ghim D, Cao S, Tadepalli S, Liu KK, Kwon H, Luan J, Min Y, Jun YS, Singamaneni S. Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:412-421. [PMID: 30215517 DOI: 10.1021/acs.est.8b02772] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biofouling poses one of the most serious challenges to membrane technologies by severely decreasing water flux and driving up operational costs. Here, we introduce a novel anti-biofouling ultrafiltration membrane based on reduced graphene oxide (RGO) and bacterial nanocellulose (BNC), which incoporates GO flakes into BNC in situ during its growth. In contrast to previously reported GO-based membranes for water treatment, the RGO/BNC membrane exhibited excellent aqueous stability under environmentally relevant pH conditions, vigorous mechanical agitation/sonication, and even high pressure. Importantly, due to its excellent photothermal property, under light illumination, the membrane exhibited effective bactericidal activity, obviating the need for any treatment of the feedwater or external energy. The novel design and in situ incorporation of the membranes developed in this study present a proof-of-concept for realizing new, highly efficient, and environmental-friendly anti-biofouling membranes for water purification.
Collapse
Affiliation(s)
- Qisheng Jiang
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Deoukchen Ghim
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Sisi Cao
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Sirimuvva Tadepalli
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Keng-Ku Liu
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Hyuna Kwon
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
- Department of Energy and Resources Engineering , Seoul National University , Seoul 08826 , South Korea
| | - Jingyi Luan
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Yujia Min
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Srikanth Singamaneni
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| |
Collapse
|
20
|
Microbiomes and chemical components of feed water and membrane-attached biofilm in reverse osmosis system to treat membrane bioreactor effluents. Sci Rep 2018; 8:16805. [PMID: 30429505 PMCID: PMC6235981 DOI: 10.1038/s41598-018-35156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022] Open
Abstract
Reverse osmosis (RO) system at a stage after membrane bioreactor (MBR) is used for the wastewater treatment and reclamation. One of the most serious problems in this system is membrane fouling caused by biofilm formation. Here, microbiomes and chemical components of the feed water and membrane-attached biofilm of RO system to treat MBR effluents were investigated by non-destructive confocal reflection microscopy, excitation-emission fluorescence spectroscopy and high-throughput sequencing of 16S rRNA genes. The microscopic visualization indicated that the biofilm contained large amounts of microbial cells (0.5 ± 0.3~3.9 ± 2.3 µm3/µm2) and the extracellular polysaccharides (3.3 ± 1.7~9.4 ± 5.1 µm3/µm2) and proteins (1.0 ± 0.2~1.3 ± 0.1 µm3/µm2). The spectroscopic analysis identified the humic and/or fulvic acid-like substances and protein-like substances as the main membrane foulants. High-throughput sequencing showed that Pseudomonas spp. and other heterotrophic bacteria dominated the feed water microbiomes. Meanwhile, the biofilm microbiomes were composed of diverse bacteria, among which operational taxonomic units related to the autotrophic Hydrogenophaga pseudoflava and Blastochloris viridis were abundant, accounting for up to 22.9 ± 4.1% and 3.1 ± 0.4% of the total, respectively. These results demonstrated that the minor autotrophic bacteria in the feed water played pivotal roles in the formation of polysaccharide- and protein-rich biofilm on RO membrane, thereby causing membrane fouling of RO system.
Collapse
|
21
|
Park JW, Lee YJ, Meyer AS, Douterelo I, Maeng SK. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. WATER RESEARCH 2018; 144:36-45. [PMID: 30014977 DOI: 10.1016/j.watres.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Biofilm formation on membrane surfaces causes many operational problems such as a decrease in permeate flux and an increase in hydraulic resistance. In this study, the ability of bacteria to pass through microfiltration (MF) membranes and the growth potential of microfilterable bacteria were investigated in order to understand biofouling in MF-reverse osmosis (RO) integrated membrane systems. Growth of microfilterable bacteria in MF permeate was observed, indicating that not all MF membranes can guarantee the total rejection of bacteria. Changes in natural organic matter (NOM) characteristics and growth potential of bacteria during the treatment process are important factors in the occurrence of biofilm development in water treatment systems. Analysis of protein-like and humic-like substances in NOM of two successive RO stages revealed an increase in the concentrations of both biopolymers and humic substances of RO concentrates. Unexpectedly, the use of antiscalants was seen to enhance the growth of bacteria in the RO feed water in this study. Bacterial 16s rRNA pyrosequencing revealed that passing source water through the MF membranes dramatically changed bacterial community structure. The bacterial communities that passed through the MF steps primarily belonged to the family Comamonadaceae. However, several bacteria groups including Flavobacteriaceae, Sphingobacteriaceae and Sphingomonadaceae selectively composed the biofilm community formed on the RO membranes. Thus, understanding the selectivity and filterability of MF towards microorganisms involved in biofouling on RO membrane surfaces is crucial for the improvement of membrane-related operational processes.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Young Joo Lee
- K-water Convergence Institute, 125 Yuseong-daero 1689 beon-gil, Yuseong-gu, Deajeon, 34045, Republic of Korea
| | - Anne S Meyer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
22
|
Nagaraj V, Skillman L, Li D, Ho G. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:586-599. [PMID: 29975885 DOI: 10.1016/j.jenvman.2018.05.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 05/26/2023]
Abstract
Biofouling in seawater reverse osmosis (SWRO) membranes is a critical issue faced by the desalination industry worldwide. The major cause of biofouling is the irreversible attachment of recalcitrant biofilms formed by bacteria and their extracellular polymeric substances (EPS) on membrane surfaces. Transparent exopolymer particles (TEP) and protobiofilms are recently identified as important precursors of membrane fouling. Despite considerable amount of research on SWRO biofouling, the control of biofouling still remains a challenge. While adoption of better pretreatment methods may help in preventing membrane biofouling in new desalination setups, it is also crucial to effectively disperse old, recalcitrant biofilms and prolong membrane life in operational plants. Most current practices employ the use of broad spectrum biocides and chemicals that target bacterial cells to disperse mature biofilms, which are evidently inefficient. EPS, being known as the strongest structural framework of biofilms, it is essential to breakdown and disintegrate the EPS components for effective biofilm removal. To achieve this, it is necessary to understand the chemical composition and key elements that constitute the EPS of major biofouling bacterial groups in multi-species, mature biofilms. However, significant gaps in understanding the complexity of EPS are evident by the failure to achieve effective prevention and mitigation of fouling in most cases. Some of the reasons may be difficulty in sampling membranes from fully operational full-scale plants, poor understanding of microbial communities and their ecological shifts under dynamic operational conditions within the desalination process, selection of inappropriate model species for laboratory-scale biofouling studies, and the laborious process of extraction and purification of EPS. This article reviews the novel findings on key aspects of SWRO membrane fouling and control measures with particular emphasis on the key sugars in EPS. As a novel strategy to alleviate biofouling, future control methods may be aimed towards specifically disintegrating and breaking down these key sugars rather than using broad spectrum chemicals such as biocides that are currently used in the industry.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
23
|
Bagheri M, Mirbagheri SA. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. BIORESOURCE TECHNOLOGY 2018; 258:318-334. [PMID: 29548641 DOI: 10.1016/j.biortech.2018.03.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/24/2023]
Abstract
The current research was an effort to critically review all approaches used for membrane fouling control in the membrane bioreactors treating water and wastewater. The first generation of antifouling methods tried to optimize operational conditions, or used chemical agents to control membrane fouling. Despite their positive impacts on the fouling mitigation, these methods did not provide a sustainable solution for the problem. Moreover, chemical agents may affect microorganisms in bioreactors and has some environmental drawbacks. The improved knowledge of membrane fouling mechanism and effective factors has directed the attention of researchers to novel methods that focus on disrupting fouling mechanism through affecting fouling causing bacteria. Employing nanomaterials, cell entrapment, biologically- and electrically-based methods are the latest efforts. The results of this review indicate that sustainable control of membrane fouling requires employing more than one single approach. Large scale application of fouling mitigation strategies should be the focus of future studies.
Collapse
Affiliation(s)
- Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States.
| | | |
Collapse
|
24
|
Oh HS, Constancias F, Ramasamy C, Tang PYP, Yee MO, Fane AG, McDougald D, Rice SA. Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Nitric Oxide-Mediated Induction of Dispersal in Pseudomonas aeruginosa Biofilms Is Inhibited by Flavohemoglobin Production and Is Enhanced by Imidazole. Antimicrob Agents Chemother 2018; 62:AAC.01832-17. [PMID: 29263060 DOI: 10.1128/aac.01832-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The biological signal molecule nitric oxide (NO) was found to induce biofilm dispersal across a range of bacterial species, which led to its consideration for therapeutic strategies to treat biofilms and biofilm-related infections. However, biofilms are often not completely dispersed after exposure to NO. To better understand this phenomenon, we investigated the response of Pseudomonas aeruginosa biofilm cells to successive NO treatments. When biofilms were first pretreated with a low, noneffective dose of NO, a second dose of the signal molecule at a concentration usually capable of inducing dispersal did not have any effect. Amperometric analysis revealed that pretreated P. aeruginosa cells had enhanced NO-scavenging activity, and this effect was associated with the production of the flavohemoglobin Fhp. Further, quantitative real-time reverse transcription-PCR (qRT-PCR) analysis showed that fhp expression increased by over 100-fold in NO-pretreated biofilms compared to untreated biofilms. Biofilms of mutant strains harboring mutations in fhp or fhpR, encoding a NO-responsive regulator of fhp, were not affected in their dispersal response after the initial pretreatment with NO. Overall, these results suggest that FhpR can sense NO to trigger production of the flavohemoglobin Fhp and inhibit subsequent dispersal responses to NO. Finally, the addition of imidazole, which can inhibit the NO dioxygenase activity of flavohemoglobin, attenuated the prevention of dispersal after NO pretreatment and improved the dispersal response in older, starved biofilms. This study clarifies the underlying mechanisms of impaired dispersal induced by repeated NO treatments and offers a new perspective for improving the use of NO in biofilm control strategies.
Collapse
|
26
|
|
27
|
Oh HS, Tan CH, Low JH, Rzechowicz M, Siddiqui MF, Winters H, Kjelleberg S, Fane AG, Rice SA. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. WATER RESEARCH 2017; 112:29-37. [PMID: 28129553 DOI: 10.1016/j.watres.2017.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Over the last few decades, significant efforts have concentrated on mitigating biofouling in reverse osmosis (RO) systems, with a focus on non-toxic and sustainable strategies. Here, we explored the potential of applying quorum quenching (QQ) bacteria to control biofouling in a laboratory-scale RO system. For these experiments, Pantoea stewartii was used as a model biofilm forming organism because it was previously shown to be a relevant wastewater isolate that also forms biofilms in a quorum sensing (QS) dependent fashion. A recombinant Escherichia coli strain, which can produce a QQ enzyme, was first tested in batch biofilm assays and significantly reduced biofilm formation by P. stewartii. Subsequently, RO membranes were fouled with P. stewartii and the QQ bacterium was introduced into the RO system using two different strategies, direct injection and immobilization within a cartridge microfilter. When the QQ bacterial cells were directly injected into the system, N-acylhomoserine lactone signals were degraded, resulting in the reduction of biofouling. Similarly, the QQ bacteria controlled biofouling when immobilized within a microfilter placed downstream of the RO module to remove QS signals circulating in the system. These results demonstrate the proof-of-principle that QQ can be applied to control biofouling of RO membranes and may be applicable for use in full-scale plants.
Collapse
Affiliation(s)
- Hyun-Suk Oh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Chuan Hao Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Materials Science & Engineering, Nanyang Technological University, Singapore
| | - Jiun Hui Low
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Miles Rzechowicz
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Muhammad Faisal Siddiqui
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Harvey Winters
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ, USA
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; The School of Biological Sciences, Nanyang Technological University, Singapore; Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; The School of Biological Sciences, Nanyang Technological University, Singapore; Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia.
| |
Collapse
|
28
|
Marvasi M, Durie IA, Henríquez T, Satkute A, Matuszewska M, Prado RC. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C. AMB Express 2016; 6:49. [PMID: 27457245 PMCID: PMC4960098 DOI: 10.1186/s13568-016-0220-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022] Open
Abstract
Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments.
Collapse
|
29
|
Wonoputri V, Gunawan C, Liu S, Barraud N, Yee LH, Lim M, Amal R. Iron Complex Facilitated Copper Redox Cycling for Nitric Oxide Generation as Nontoxic Nitrifying Biofilm Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30502-30510. [PMID: 27759365 DOI: 10.1021/acsami.6b10357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we developed poly(vinyl chloride) (PVC)-solvent casted mixed metal copper and iron complexes capable of catalytic generation of the antibiofilm nitric oxide (NO) from endogenous nitrite. In the absence of additional reducing agent, we demonstrated that the presence of iron complex facilitates a redox cycling, converting the copper(II) complex to active copper(I) species, which catalyzes the generation of NO from nitrite. Assessed by protein assay and surface coverage analyses, the presence of the mixed metal complexes in systems containing water industry-relevant nitrite-producing nitrifying biofilms was shown to result in a "nontoxic mode" of biofilm suppression, while confining the bacterial growth to the free-floating planktonic phase. Addition of an NO scavenger into the mixed metal system eliminated the antibiofilm effects, therefore validating first, the capability of the mixed metal complexes to catalytically generate NO from the endogenously produced nitrite and second, the antibiofilm effects of the generated NO. The work highlights the development of self-sustained antibiofilm materials that features potential for industrial applications. The novel NO-generating antibiofilm technology diverts from the unfavorable requirement of adding a reducing agent and importantly, the less tendency for development of bacterial resistance.
Collapse
Affiliation(s)
- Vita Wonoputri
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Cindy Gunawan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
- ithree Institute, University of Technology Sydney , Sydney, New South Wales 2007, Australia
| | - Sanly Liu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Nicolas Barraud
- Genetics of Biofilms Unit, Department of Microbiology, Institut Pasteur , 75015 Paris, France
| | - Lachlan H Yee
- Marine Ecology Research Centre in the School of Environment, Science and Engineering, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - May Lim
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
30
|
Yang Y, Kitajima M, Pham T, Yu L, Ling R, Gin K, Reinhard M. UsingPseudomonas aeruginosaPAO1 to evaluate hydrogen peroxide as a biofouling control agent in membrane treatment systems. Lett Appl Microbiol 2016; 63:488-494. [DOI: 10.1111/lam.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Yang
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - M. Kitajima
- Division of Environmental Engineering; Hokkaido University; Sapporo Japan
| | - T.P.T. Pham
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - L. Yu
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - R. Ling
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore Singapore
| | - K.Y.H. Gin
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore Singapore
| | - M. Reinhard
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- Department of Civil and Environmental Engineering; Stanford University; Stanford CA USA
| |
Collapse
|
31
|
Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8954-8976. [PMID: 27479445 DOI: 10.1021/acs.est.6b00835] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | - Nicolas Barraud
- Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur , Paris 75015, France
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University , 639798, Singapore
| | - Elizabeth J Harry
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | | |
Collapse
|
32
|
Rice SA, Wuertz S, Kjelleberg S. Next-generation studies of microbial biofilm communities. Microb Biotechnol 2016; 9:677-80. [PMID: 27471123 PMCID: PMC4993187 DOI: 10.1111/1751-7915.12390] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 11/30/2022] Open
Abstract
As we look into the future of microbial biofilm research, there is clearly an emerging focus on communities rather than populations. This represents an essential change in direction to more accurately understand how and why microorganisms assemble into communities, as well as the functional implications for such a life style. For example, current research studies shows that communities display emergent properties or functions that are not predicted from the individual single species populations, including elevated stress tolerance and resistance to antibiotics. Models for mixed species biofilms can be very simple, comprised only a handful of species or can be extremely species rich, with hundreds or thousands of species present. The future holds much promise for this area of research, where investigators will increasingly be able to resolve, at the molecular and biochemical levels, interspecies relationships and mechanisms of interaction. The outcome of these studies will greatly enhance our understanding of the ecological and evolutionary factors that drive community function in natural and engineered systems.
Collapse
Affiliation(s)
- Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
33
|
Damodaran VB, Murthy NS. Bio-inspired strategies for designing antifouling biomaterials. Biomater Res 2016; 20:18. [PMID: 27326371 PMCID: PMC4913429 DOI: 10.1186/s40824-016-0064-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 02/03/2023] Open
Abstract
Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these approaches draw their inspiration from nature, such as emulating the nitric oxide production in endothelium, use of peptoids that mimic protein repellant peptides, zwitterionic functionalities found in membrane structures, and catechol functionalities used by mussel to immobilize poly(ethylene glycol) (PEG). More intriguing are the physical modifications, creation of micropatterns on the surface to control the hydration layer, making them either superhydrophobic or superhydrophilic. This has led to technologies that emulate the texture of shark skin, and the superhyprophobicity of self-cleaning textures found in lotus leaves. The mechanism of antifouling in each of these methods is described, and implementation of these ideas is illustrated with examples in a way that could be adapted to prevent infection in medical devices.
Collapse
Affiliation(s)
- Vinod B. Damodaran
- New Jersey Center for Biomaterials, Rutgers – The State University of New Jersey, Piscataway, NJ 08854 USA
| | - N. Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers – The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
34
|
Wood TL, Guha R, Tang L, Geitner M, Kumar M, Wood TK. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proc Natl Acad Sci U S A 2016; 113:E2802-11. [PMID: 27140616 PMCID: PMC4878488 DOI: 10.1073/pnas.1521731113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants.
Collapse
Affiliation(s)
- Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Rajarshi Guha
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Li Tang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Michael Geitner
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802;
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|