1
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Bezuidt OKI, Makhalanyane TP. Phylogenomic analysis expands the known repertoire of single-stranded DNA viruses in benthic zones of the South Indian Ocean. ISME COMMUNICATIONS 2024; 4:ycae065. [PMID: 38800127 PMCID: PMC11128263 DOI: 10.1093/ismeco/ycae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- DSI/NRF South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, microbiome@UP, University of Pretoria, Pretoria, 0028, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, The School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
4
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
5
|
Nwachukwu BC, Ayangbenro AS, Babalola OO. Structural diversity of bacterial communities in two divergent sunflower rhizosphere soils. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-023-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Abstract
Purpose
Farming practices on farmlands aim to improve nutrients in the fields or crops, soil quality and functions, as well as boost and sustain crop yield; however, the effect of loss of ecological diversity and degradation have impacted ecosystem functions. The beneficial rhizosphere-microorganism network and crop rotation may enhance a stable ecosystem. The use of next-generation sequencing technique will help characterize the entire bacterial species in the sunflower rhizosphere compared with the nearby bulk soils. We investigated the potential of the bacterial community structure of sunflower rhizosphere and bulk soils cultivated under different agricultural practices at two geographical locations in the North West Province of South Africa.
Methods
DNA was extracted from rhizosphere and bulk soils associated with sunflower plants from the crop rotation (rhizosphere soils from Lichtenburg (LTR) and bulk soils from Lichtenburg (LTB) and mono-cropping (rhizosphere soils from Krayburg (KRPR) and bulk soils from Krayburg (KRPB) sites, and sequenced employing 16S amplicon sequencing. Bioinformatics tools were used to analyse the sequenced dataset.
Results
Proteobacteria and Planctomycetes dominated the rhizosphere, while Firmicutes and Actinobacteria were predominant in bulk soils. Significant differences in bacterial structure at phyla and family levels and predicted functional categories between soils (P < 0.05) across the sites were revealed. The effect of physicochemical parameters was observed to influence bacterial dispersal across the sites.
Conclusion
This study provides information on the predominant bacterial community structure in sunflower soils and their predictive functional attributes at the growing stage, which suggests their future study for imminent crop production and management for enhanced agricultural yields.
Collapse
|
6
|
Florent P, Cauchie HM, Herold M, Jacquet S, Ogorzaly L. Soil pH, Calcium Content and Bacteria as Major Factors Responsible for the Distribution of the Known Fraction of the DNA Bacteriophage Populations in Soils of Luxembourg. Microorganisms 2022; 10:1458. [PMID: 35889177 PMCID: PMC9321959 DOI: 10.3390/microorganisms10071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions. This study aimed to determine whether the abiotic factors well-known to influence bacteriophage persistence also control the natural distribution of the known DNA bacteriophage populations. To this end, soil from eight study sites including forests and grasslands located in the Attert River basin (Grand Duchy of Luxembourg) were sampled, covering different soil and land cover characteristics. Shotgun metagenomics, reference-based bioinformatics and statistical analyses allowed characterising the diversity of known DNA bacteriophage and bacterial communities. After combining soil properties with the identified DNA bacteriophage populations, our in-situ study highlighted the influence of pH and calcium cations on the diversity of the known fraction of the soil DNA bacteriophages. More interestingly, significant relationships were established between bacteriophage and bacterial populations. This study provides new insights into the importance of abiotic and biotic factors in the distribution of DNA bacteriophages and the natural ecology of terrestrial bacteriophages.
Collapse
Affiliation(s)
- Perrine Florent
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Malte Herold
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Stéphan Jacquet
- INRAE, UMR CARRTEL, Université Savoie Mont Blanc, 74200 Thonon-les-Bains, France;
| | - Leslie Ogorzaly
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| |
Collapse
|
7
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Han LL, Yu DT, Bi L, Du S, Silveira C, Cobián Güemes AG, Zhang LM, He JZ, Rohwer F. Distribution of soil viruses across China and their potential role in phosphorous metabolism. ENVIRONMENTAL MICROBIOME 2022; 17:6. [PMID: 35130971 PMCID: PMC8822697 DOI: 10.1186/s40793-022-00401-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Viruses are the most abundant biological entities on the planet and drive biogeochemical cycling on a global scale. Our understanding of biogeography of soil viruses and their ecological functions lags significantly behind that of Bacteria and Fungi. Here, a viromic approach was used to investigate the distribution and ecological functions of viruses from 19 soils across China. RESULTS Soil viral community were clustered more significantly by geographical location than type of soil (agricultural and natural). Three clusters of viral communities were identified from North, Southeast and Southwest regions; these clusters differentiated using taxonomic composition and were mainly driven by geographic location and climate factors. A total of 972 viral populations (vOTUs) were detected spanning 23 viral families from the 19 viromes. Phylogenetic analyses of the phoH gene showed a remarkable diversity and the distribution of viral phoH genes was more dependent on the environment. Notably, five proteins involved in phosphorus (P) metabolism-related nucleotide synthesis functions, including dUTPase, MazG, PhoH, Thymidylate synthase complementing protein (Thy1), and Ribonucleoside reductase (RNR), were mainly identified in agricultural soils. CONCLUSIONS The present work revealed that soil viral communities were distributed across China according to geographical location and climate factors. In addition, P metabolism genes encoded by these viruses probably drive the synthesis of nucleotides for their own genomes inside bacterial hosts, thereby affecting P cycling in the soil ecosystems.
Collapse
Affiliation(s)
- Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Dan-Ting Yu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cynthia Silveira
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ana Georgina Cobián Güemes
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Zheng He
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
9
|
Legionella pneumophila CRISPR-Cas Suggests Recurrent Encounters with One or More Phages in the Family Microviridae. Appl Environ Microbiol 2021; 87:e0046721. [PMID: 34132590 DOI: 10.1128/aem.00467-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires' disease. L. pneumophila growth within protists provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no Legionella phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems is an episomal element that we previously named Legionella mobile element 1 (LME-1). The continued expansion of publicly available genomic data promises to further our understanding of the role of these systems. We now describe over 150 CRISPR-Cas systems across 600 isolates to establish the clearest picture yet of L. pneumophila's adaptive defenses. By searching for targets of 1,500 unique CRISPR-Cas spacers, LME-1 remains the only identified CRISPR-Cas targeted integrative element. We identified 3 additional LME-1 variants-all targeted by previously and newly identified CRISPR-Cas spacers-but no other similar elements. Notably, we also identified several spacers with significant sequence similarity to microviruses, specifically those within the subfamily Gokushovirinae. These spacers are found across several different CRISPR-Cas arrays isolated from geographically diverse isolates, indicating recurrent encounters with these phages. Our analysis of the extended Legionella CRISPR-Cas spacer catalog leads to two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1, and the heretofore unknown L. pneumophila phages are most likely lytic gokushoviruses. IMPORTANCE Legionnaires' disease is an often-fatal pneumonia caused by Legionella pneumophila, which normally grows inside amoebae and other freshwater protists. L. pneumophila trades diminished access to nutrients for the protection and isolation provided by the host. One outstanding question is whether L. pneumophila is susceptible to phages, given the protection provided by its intracellular lifestyle. In this work, we use Legionella CRISPR spacer sequences as a record of phage infection to predict that the "missing" L. pneumophila phages belong to the microvirus subfamily Gokushovirinae. Gokushoviruses are known to infect another intracellular pathogen, Chlamydia. How do gokushoviruses access L. pneumophila (and Chlamydia) inside their "cozy niches"? Does exposure to phages happen during a transient extracellular period (during cell-to-cell spread) or is it indicative of a more complicated environmental lifestyle? One thing is clear, 100 years after their discovery, phages continue to hold important secrets about the bacteria upon which they prey.
Collapse
|
10
|
Hao F, Wu M, Li G. Characterization of a novel genomovirus in the phytopathogenic fungus Botrytis cinerea. Virology 2020; 553:111-116. [PMID: 33264653 DOI: 10.1016/j.virol.2020.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
This study characterized a single-stranded circular DNA virus in Botrytis cinerea-namely, Botrytis cinerea genomovirus 1 (BcGV1). The genome of BcGV1 was 1710 nucleotides (nts) long, possessing two ORFs, encoding a putative replication initiation protein (Rep) and a hypothetical protein. The Rep contained seven conserved motifs. The two ORFs were separated by two intergenic regions; the large intergenic region (LIR) contained 259 nts while the small intergenic region (SIR) contained 95 nts. A nonanucleotide, TAACAGTAC, in the LIR was predicted to be associated with the initiation of viral replication. Based on the phylogenetic tree constructed by Reps, BcGV1 belongs to the family Genomoviridae, forming an independent branch, indicating that BcGV1 may belong to a new genus. BcGV1 could be detected in 6.7% of tested B. cinerea strains, suggesting that BcGV1 may be widely distributed in the Chinese B. cinerea population.
Collapse
Affiliation(s)
- Fangmin Hao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Institute of Vegetables and the Key Lab of Cucurbitaceous Vegetables Breeding in Ningbo City, Ningbo Academy of Agricultural Sciences, Ningbo, 315040, PR China
| | - Mingde Wu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Guoqing Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
11
|
Vink SN, Bienkowski D, Roberts DM, Daniell TJ, Neilson R. Impact of land use and management practices on soil nematode communities of Machair, a low-input calcareous ecosystem of conservation importance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140164. [PMID: 32806343 DOI: 10.1016/j.scitotenv.2020.140164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Machair is a vulnerable low-lying coastal ecosystem with internationally recognised conservation importance. It is characterised by wind-blown calcareous shell-sand soils that support a patchwork of low-input land-use types including species rich grasslands and small-scale arable production. In contrast to numerous above-ground studies, few below-ground studies have been made on the Machair. Thus, a knowledge gap exists, and no baseline data is available to determine the impact, if any, of fundamental changes in Machair land management practices such as a move from traditional rotational to permanent grazing, and increased use of inorganic fertiliser. To address this knowledge deficit, we assessed the impact of different agronomic management practices (cropped, fallow and grasslands) on the structure of soil nematode communities over a two-year period along a geographically limited north-south gradient of coastal Machair of the Outer Hebrides archipelago. Land use followed by season were the main drivers of nematode communities from Machair soils. Functionally, nematode communities from grassland were typically distinct from cropped or fallow communities driven primarily by differential contributions to the overall nematode community by the dominant bacterial-feeding nematodes. Temporally, nematode communities sampled in spring and autumn were distinct.
Collapse
Affiliation(s)
- Stefanie N Vink
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Damian Bienkowski
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - David M Roberts
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Tim J Daniell
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK.
| |
Collapse
|
12
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
13
|
Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R, Xiao YQ, Chen X, Yang J, Fu WG, Zhang W, Qi GL. Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol J 2020; 17:61. [PMID: 32334626 PMCID: PMC7183601 DOI: 10.1186/s12985-020-01332-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background Musk deer can produce musk which has high medicinal value and is closely related to human health. Viruses in forest musk deer both threaten the health of forest musk deer and human beings. Methods Using viral metagenomics we investigated the virome in 85 faeces samples collected from forest musk deer. Results In this article, eight novel CRESS-DNA viruses were characterized, whole genomes were 2148 nt–3852 nt in length. Phylogenetic analysis indicated that some viral genomes were part of four different groups of CRESS-DNA virus belonging in the unclassified CRESS-DNA virus, Smacoviridae, pCPa-like virus and pPAPh2-like virus. UJSL001 (MN621482), UJSL003 (MN621469) and UJSL017 (MN621476) fall into the branch of unclassified CRESS-DNA virus (CRESSV1–2), UJSL002 (MN621468), UJSL004 (MN621481) and UJSL007 (MN621470) belong to the cluster of Smacoviridae, UJSL005 (MN604398) showing close relationship with pCPa-like (pCRESS4–8) clusters and UJSL006 (MN621480) clustered into the branch of pPAPh2-like (pCRESS9) virus, respectively. Conclusion The virome in faeces samples of forest musk deer from Chengdu, Sichuan province, China was revealed, which further characterized the diversity of viruses in forest musk deer intestinal tract.
Collapse
Affiliation(s)
- Qi Liu
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.,Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu Ling
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shi-Xing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiao-Chun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rui Zhou
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu-Qing Xiao
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wei-Guo Fu
- Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Gui-Lan Qi
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China.
| |
Collapse
|
14
|
Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. Employing viromics to characterize soil systems presents new challenges, however. Ones that only recently are being addressed. Here we provide a guide to implementing these three approaches to studying environmental viruses, highlighting benefits, difficulties, and potential contamination, all toward fostering greater focus on viruses in the study of soil ecology.
Collapse
|
15
|
Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, Setubal JC, Philippot L. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. MICROBIOME 2020; 8:52. [PMID: 32252805 PMCID: PMC7137350 DOI: 10.1186/s40168-020-00822-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bacteriophages, the viruses infecting bacteria, are biological entities that can control their host populations. The ecological relevance of phages for microbial systems has been widely explored in aquatic environments, but the current understanding of the role of phages in terrestrial ecosystems remains limited. Here, our objective was to quantify the extent to which phages drive the assembly and functioning of soil bacterial communities. We performed a reciprocal transplant experiment using natural and sterilized soil incubated with different combinations of two soil microbial communities, challenged against native and non-native phage suspensions as well as against a cocktail of phage isolates. We tested three different community assembly scenarios by adding phages: (a) during soil colonization, (b) after colonization, and (c) in natural soil communities. One month after inoculation with phage suspensions, bacterial communities were assessed by 16S rRNA amplicon gene sequencing. RESULTS By comparing the treatments inoculated with active versus autoclaved phages, our results show that changes in phage pressure have the potential to impact soil bacterial community composition and diversity. We also found a positive effect of active phages on the soil ammonium concentration in a few treatments, which indicates that increased phage pressure may also be important for soil functions. CONCLUSIONS Overall, the present work contributes to expand the current knowledge about soil phages and provide some empirical evidence supporting their relevance for soil bacterial community assembly and functioning. Video Abstract.
Collapse
Affiliation(s)
- Lucas P P Braga
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Agroécologie, 21000, Dijon, France.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Aymé Spor
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Agroécologie, 21000, Dijon, France
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marie-Christine Breuil
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Agroécologie, 21000, Dijon, France
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Agroécologie, 21000, Dijon, France.
| |
Collapse
|
16
|
Göller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gómez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. MICROBIOME 2020; 8:17. [PMID: 32046783 PMCID: PMC7014677 DOI: 10.1186/s40168-020-0795-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/20/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bacteriophages (phages) are the most numerous biological entities on Earth and play a crucial role in shaping microbial communities. Investigating the bacteriophage community from soil will shed light not only on the yet largely unknown phage diversity, but may also result in novel insights towards their functioning in the global biogeochemical nutrient cycle and their significance in earthbound ecosystems. Unfortunately, information about soil viromes is rather scarce compared to aquatic environments, due to the heterogeneous soil matrix, which rises major technical difficulties in the extraction process. Resolving these technical challenges and establishing a standardized extraction protocol is, therefore, a fundamental prerequisite for replicable results and comparative virome studies. RESULTS We here report the optimization of protocols for the extraction of phage DNA from agricultural soil preceding metagenomic analysis such that the protocol can equally be harnessed for phage isolation. As an optimization strategy, soil samples were spiked with Listeria phage A511 (Myovirus), Staphylococcus phage 2638AΔLCR (Siphovirus) and Escherichia phage T7 (Podovirus) (each 106 PFU/g soil). The efficacy of phage (i) elution, (ii) filtration, (iii) concentration and (iv) DNA extraction methods was tested. Successful extraction routes were selected based on spiked phage recovery and low bacterial 16S rRNA gene contaminants. Natural agricultural soil viromes were then extracted with the optimized methods and shotgun sequenced. Our approach yielded sufficient amounts of inhibitor-free viral DNA for shotgun sequencing devoid of amplification prior library preparation, and low 16S rRNA gene contamination levels (≤ 0.2‰). Compared to previously published protocols, the number of bacterial read contamination was decreased by 65%. In addition, 379 novel putative complete soil phage genomes (≤ 235 kb) were obtained from over 13,000 manually identified viral contigs, promising the discovery of a large, previously inaccessible viral diversity. CONCLUSION We have shown a considerably enhanced extraction of the soil phage community by protocol optimization that has proven robust in both culture-dependent as well as through viromic analyses. Our huge data set of manually curated soil viral contigs substantially increases the amount of currently available soil virome data, and provides insights into the yet largely undescribed soil viral sequence space.
Collapse
Affiliation(s)
- Pauline C Göller
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Jose M Haro-Moreno
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland.
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
17
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
18
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
19
|
Trubl G, Roux S, Solonenko N, Li YF, Bolduc B, Rodríguez-Ramos J, Eloe-Fadrosh EA, Rich VI, Sullivan MB. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 2019; 7:e7265. [PMID: 31309007 PMCID: PMC6612421 DOI: 10.7717/peerj.7265] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Simon Roux
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Josué Rodríguez-Ramos
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Emiley A Eloe-Fadrosh
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
20
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
21
|
Rosario K, Mettel KA, Benner BE, Johnson R, Scott C, Yusseff-Vanegas SZ, Baker CCM, Cassill DL, Storer C, Varsani A, Breitbart M. Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ 2018; 6:e5761. [PMID: 30324030 PMCID: PMC6186406 DOI: 10.7717/peerj.5761] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022] Open
Abstract
Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling toward vertebrates and land plants has limited our understanding of their diversity and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated viral genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kaitlin A Mettel
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Bayleigh E Benner
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Ryan Johnson
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Catherine Scott
- Department of Biological Sciences, University of Toronto, Scarborough, Scarborough, ON, Canada
| | | | - Christopher C M Baker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Deby L Cassill
- Department of Biological Sciences, University of South Florida Saint Petersburg, Saint Petersburg, FL, USA
| | - Caroline Storer
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
22
|
Creasy A, Rosario K, Leigh BA, Dishaw LJ, Breitbart M. Unprecedented Diversity of ssDNA Phages from the Family Microviridae Detected within the Gut of a Protochordate Model Organism ( Ciona robusta). Viruses 2018; 10:v10080404. [PMID: 30065169 PMCID: PMC6116155 DOI: 10.3390/v10080404] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health.
Collapse
Affiliation(s)
- Alexandria Creasy
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Karyna Rosario
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Brittany A Leigh
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Larry J Dishaw
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
| |
Collapse
|
23
|
Kraberger S, Waits K, Ivan J, Newkirk E, VandeWoude S, Varsani A. Identification of circular single-stranded DNA viruses in faecal samples of Canada lynx (Lynx canadensis), moose (Alces alces) and snowshoe hare (Lepus americanus) inhabiting the Colorado San Juan Mountains. INFECTION GENETICS AND EVOLUTION 2018; 64:1-8. [PMID: 29879480 DOI: 10.1016/j.meegid.2018.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
The San Juan Mountains of southern Colorado provide subalpine habitat for a suite of mammalian species including Canada lynx (Lynx canadensis), moose (Alces alces) and snowshoe hare (Lepus americanus). In the winter field season of 2016 five faecal samples from lynx, and one each from moose and snowshoe hare were collected to identify small single-stranded DNA viruses associated with these three prominent species. Thirty-two novel viruses were identified and classified as members of two well established ssDNA families Genomoviridae (n = 22) and Microviridae (n = 10) and one recently proposed new family, Smacoviridae (n = 1). In addition one highly novel circular ssDNA virus was identified which at present does not group with any known family. A high level of genomovirus diversity was identified from faeces collected between and across the three mammal species, with full genome-wide pairwise comparisons showing 57%-97% identity. Twenty genomoviruses can be assigned to the genus Gemycircularvirus and represent 11 species, and two into a distinct species in the genus Gemykolovirus. The single smacovirus identified from moose also represents a distinct smacovirus species. Ten microviruses, seven from moose, one from snowshoe hare and two from lynx, all are part of the Gokushovirinae subfamily. The two from lynx are highly similar to a microvirus previously detected in domestic cat (sharing 88%-90% genome-wide identity), indicating this may be a common felid gut microbiome associated virus. Our findings highlight the broad range of diverse ssDNA viruses present in three mammals inhabiting the San Juan Mountains.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Jake Ivan
- Colorado Parks and Wildlife, 317 W. Prospect Rd., Fort Collins, CO 80526, USA
| | - Eric Newkirk
- Colorado Parks and Wildlife, 317 W. Prospect Rd., Fort Collins, CO 80526, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
24
|
Yu DT, Han LL, Zhang LM, He JZ. Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China. MICROBIAL ECOLOGY 2018; 75:375-386. [PMID: 28825127 DOI: 10.1007/s00248-017-1049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.
Collapse
Affiliation(s)
- Dan-Ting Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
25
|
Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D. Exploring Viral Diversity in a Unique South African Soil Habitat. Sci Rep 2018; 8:111. [PMID: 29311639 PMCID: PMC5758573 DOI: 10.1038/s41598-017-18461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
The Kogelberg Biosphere Reserve in the Cape Floral Kingdom in South Africa is known for its unique plant biodiversity. The potential presence of unique microbial and viral biodiversity associated with this unique plant biodiversity led us to explore the fynbos soil using metaviromic techniques. In this study, metaviromes of a soil community from the Kogelberg Biosphere Reserve has been characterised in detail for the first time. Metaviromic DNA was recovered from soil and sequenced by Next Generation Sequencing. The MetaVir, MG-RAST and VIROME bioinformatics pipelines were used to analyse taxonomic composition, phylogenetic and functional assessments of the sequences. Taxonomic composition revealed members of the order Caudovirales, in particular the family Siphoviridae, as prevalent in the soil samples and other compared viromes. Functional analysis and other metaviromes showed a relatively high frequency of phage-related and structural proteins. Phylogenetic analysis of PolB, PolB2, terL and T7gp17 genes indicated that many viral sequences are closely related to the order Caudovirales, while the remainder were distinct from known isolates. The use of single virome which only includes double stranded DNA viruses limits this study. Novel phage sequences were detected, presenting an opportunity for future studies aimed at targeting novel genetic resources for applied biotechnology.
Collapse
Affiliation(s)
- Jane Segobola
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Evelien Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Tsepo Tsekoa
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Konanani Rashamuse
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
26
|
Pratama AA, van Elsas JD. The 'Neglected' Soil Virome - Potential Role and Impact. Trends Microbiol 2018; 26:649-662. [PMID: 29306554 DOI: 10.1016/j.tim.2017.12.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages are among the most abundant and diverse biological units in the biosphere. They have contributed to our understanding of the central dogma of biology and have been instrumental in the evolutionary success of bacterial pathogens. In contrast to our current understanding of marine viral communities, the soil virome and its function in terrestrial ecosystems has remained relatively understudied. Here, we examine, in a comparative fashion, the knowledge gathered from studies performed in soil versus marine settings. We address the information with respect to the abundance, diversity, ecological significance, and effects of, in particular, bacteriophages on their host's evolutionary trajectories. We also identify the main challenges that soil virology faces and the studies that are required to accompany the current developments in marine settings.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
27
|
Moon K, Kang I, Kim S, Kim SJ, Cho JC. Genome characteristics and environmental distribution of the first phage that infects the LD28 clade, a freshwater methylotrophic bacterial group. Environ Microbiol 2017; 19:4714-4727. [PMID: 28925542 DOI: 10.1111/1462-2920.13936] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
Bacteriophages infecting major groups of freshwater heterotrophic bacteria have been rarely isolated, hampering analyses of freshwater viromes. Here, we report the isolation and genomic characterization of P19250A, the first phage that infects the LD28 clade, an abundant freshwater methylotrophic bacterial group. P19250A was isolated from Lake Soyang, an oligotrophic reservoir, using an LD28 strain as a host. Morphological and genomic analyses revealed that P19250A is a lytic siphovirus with a ∼38.6-kb genome. To analyze the distribution of P19250A genome within its habitat, six seasonal viral metagenome (virome) samples were prepared from Lake Soyang. Through binning analysis of freshwater viromes, P19250A was shown to be the most highly assigned freshwater phage that infects heterotrophic bacteria (up to 8.21%) in five viromes. Furthermore, when freshwater virome data collected worldwide were analyzed, P19250A genome also showed high abundance, especially in Lough Neagh, UK, where P19250A genome was recorded as the most abundant bacteriophage. From metagenome analysis, the proportion of P19250A-assigned reads showed seasonal fluctuation following the abundance of the LD28 clade in Lake Soyang. These results showed that P19250A would be an essential resource for analyses of freshwater viromes, and also suggest that phages of other abundant freshwater bacteria need to be isolated for better understanding of freshwater viruses.
Collapse
Affiliation(s)
- Kira Moon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang-Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
28
|
Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. Annu Rev Virol 2017; 4:201-219. [PMID: 28961409 DOI: 10.1146/annurev-virology-101416-041639] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral abundance in soils can range from below detection limits in hot deserts to over 1 billion per gram in wetlands. Abundance appears to be strongly influenced by water availability and temperature, but a lack of informational standards creates difficulties for cross-study analysis. Soil viral diversity is severely underestimated and undersampled, although current measures of viral richness are higher for soils than for aquatic ecosystems. Both morphometric and metagenomic analyses have raised questions about the prevalence of nontailed, ssDNA viruses in soils. Soil is complex and critically important to terrestrial biodiversity and human civilization, but impacts of viral activities on soil ecosystem services are poorly understood. While information from aquatic systems and medical microbiology suggests the potential for viral influences on nutrient cycles, food web interactions, gene transfer, and other key processes in soils, very few empirical data are available. To understand the soil virome, much work remains.
Collapse
Affiliation(s)
- Kurt E Williamson
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185;
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716.,Department Biological Sciences, University of Delaware, Newark, Delaware 19716.,College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716
| | - Mark Radosevich
- Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
29
|
Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD). Front Microbiol 2017; 8:1975. [PMID: 29067022 PMCID: PMC5641378 DOI: 10.3389/fmicb.2017.01975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors.
Collapse
Affiliation(s)
- Anja Narr
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Ali Nawaz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle/Saale, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. Sci Rep 2017; 7:45142. [PMID: 28327667 PMCID: PMC5361096 DOI: 10.1038/srep45142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
Viral community structures in complex agricultural soils are largely unknown. Electron microscopy and viromic analyses were conducted on six typical Chinese agricultural soil samples. Tailed bacteriophages, spherical and filamentous viral particles were identified by the morphological analysis. Based on the metagenomic analysis, single-stranded DNA viruses represented the largest viral component in most of the soil habitats, while the double-stranded DNA viruses belonging to the Caudovirales order were predominanted in Jiangxi-maize soils. The majority of functional genes belonged to the subsystem “phages, prophages, transposable elements, and plasmids”. Non-metric multidimensional analysis of viral community showed that the environment medium type was the most important driving factor for the viral community structure. For the major viral groups detected in all samples (Microviridae and Caudovirales), the two groups gathered viruses from different sites and similar genetic composition, indicating that viral diversity was high on a local point but relatively limited on a global scale. This is a novel report of viral diversity in Chinese agricultural soils, and the abundance, taxonomic, and functional diversity of viruses that were observed in different types of soils will aid future soil virome studies and enhance our understanding of the ecological functions of soil viruses.
Collapse
|
31
|
Novel Single-Stranded DNA Virus Genomes Recovered from Chimpanzee Feces Sampled from the Mambilla Plateau in Nigeria. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01715-16. [PMID: 28254982 PMCID: PMC5334589 DOI: 10.1128/genomea.01715-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.
Collapse
|
32
|
Lapygina EV, Lysak LV, Moskvina MI, Zvyagintsev DG. Virus abundance in alluvial-sod soil determined by direct epifluorescence microscopy. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayaram A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. INFECTION GENETICS AND EVOLUTION 2016; 43:151-64. [PMID: 27211884 DOI: 10.1016/j.meegid.2016.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.
Collapse
Affiliation(s)
- Olivia Steel
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Alyssa Sikorski
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laura M Young
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ryan J Catchpole
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Aaron J Stevens
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jenny J Ladley
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dorien S Coray
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine van Bysterveldt
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
34
|
Male MF, Kraberger S, Stainton D, Kami V, Varsani A. Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces. INFECTION GENETICS AND EVOLUTION 2016; 39:279-292. [PMID: 26873064 DOI: 10.1016/j.meegid.2016.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Viral metagenomic studies have demonstrated that animal faeces can be a good sampling source for exploring viral diversity associated with the host and its environment. As part of an continuing effort to identify novel circular replication-associated protein encoding single-stranded (CRESS) DNA viruses circulating in the Tongan archipelago, coupled with the fact that bats are a reservoir species of a large number of viruses, we used a metagenomic approach to investigate the CRESS DNA virus diversity in Pacific flying fox (Pteropus tonganus) faeces. Faecal matter from four roosting sites located in Ha'avakatolo, Kolovai, Ha'ateiho and Lapaha on Tongatapu Island was collected in April 2014 and January 2015. From these samples we identified five novel cycloviruses representing three putative species, 25 gemycircularviruses representing at least 14 putative species, 17 other CRESS DNA viruses (15 putative species), two circular DNA molecules and a putative novel multi-component virus for which we have identified three cognate molecules. This study demonstrates that there exists a large diversity of CRESS DNA viruses in Pacific flying fox faeces.
Collapse
Affiliation(s)
- Maketalena F Male
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
35
|
Adriaenssens EM, van Zyl LJ, Cowan DA, Trindade MI. Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses 2016; 8:v8010014. [PMID: 26761024 PMCID: PMC4728574 DOI: 10.3390/v8010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| |
Collapse
|
36
|
Rosario K, Schenck RO, Harbeitner RC, Lawler SN, Breitbart M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front Microbiol 2015. [PMID: 26217327 PMCID: PMC4498126 DOI: 10.3389/fmicb.2015.00696] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Ryan O Schenck
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Rachel C Harbeitner
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Stephanie N Lawler
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| |
Collapse
|