1
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Rolbiecki D, Harnisz M, Korzeniewska E, Buta M, Hubeny J, Zieliński W. Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Int J Hyg Environ Health 2021; 237:113831. [PMID: 34455199 DOI: 10.1016/j.ijheh.2021.113831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding β-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of blaSHV and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. blaGES-type carbapenemases significantly contributed to the spread of drug resistance in the environment.
Collapse
Affiliation(s)
- Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| |
Collapse
|
3
|
Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF, Adams G, Pavlu J, Innes AJ, Eades C, Brannigan ET, Findlay J, White L, Bolt F, Kadhani T, Chow Y, Patel B, Mookerjee S, Otter JA, Sriskandan S, Woodford N, Holmes A. A Multispecies Cluster of GES-5 Carbapenemase-Producing Enterobacterales Linked by a Geographically Disseminated Plasmid. Clin Infect Dis 2021; 71:2553-2560. [PMID: 31746994 PMCID: PMC7744980 DOI: 10.1093/cid/ciz1130] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics, but rare resistance mechanisms can compromise detection. One year after a Guiana Extended-Spectrum (GES)-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole-genome sequencing (WGS; later found to be part of a cluster of 3 cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS Bacteria were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, antimicrobial susceptibility testing followed European Committee on Antimicrobial Susceptibility Testing guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using polymerase chain reaction (PCR) detection of GES, pulsed-field gel electrophoresis (PFGE), and WGS for the second cluster. RESULTS The identification of the first GES-5 K. oxytoca isolate was delayed, being identified by WGS. Implementation of a GES-gene PCR informed the occurrence of the second cluster in real time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the 2 clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca, Escherichia coli, and Enterobacter cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from 3 hospitals elsewhere in the United Kingdom. CONCLUSIONS Genomic sequencing revolutionized the epidemiological understanding of the clusters; it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.
Collapse
Affiliation(s)
- Matthew J Ellington
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Frances Davies
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Elita Jauneikaite
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - George Adams
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jiri Pavlu
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Andrew J Innes
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Christopher Eades
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Eimear T Brannigan
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jacqueline Findlay
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Leila White
- Microbiology, Royal Preston Hospital, Lancashire Teaching Hospitals National Health Service Foundation Trust, Preston, United Kingdom
| | - Frances Bolt
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Tokozani Kadhani
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Yimmy Chow
- North West London Health Protection Team, Public Health England, London, United Kingdom
| | - Bharat Patel
- Public Health Laboratory London, National Infections Service, Public Health England, London, United Kingdom
| | - Siddharth Mookerjee
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jonathan A Otter
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infections Service, Public Health England, London, United Kingdom
| | - Alison Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial College Healthcare National Health Service Trust, London, United Kingdom
| |
Collapse
|
4
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
5
|
Bonnin RA, Jousset AB, Emeraud C, Oueslati S, Dortet L, Naas T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 2021; 7:616490. [PMID: 33553210 PMCID: PMC7855592 DOI: 10.3389/fmed.2020.616490] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria, especially Enterobacterales, have emerged as major players in antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-negative agents, becoming multidrug resistant or even pan-drug resistant. Currently, β-lactamase-mediated resistance does not spare even the most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The dissemination of carbapenemases-encoding genes among Enterobacterales is a matter of concern, given the importance of carbapenems to treat nosocomial infections. Based on their amino acid sequences, carbapenemases are grouped into three major classes. Classes A and D use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two zinc ions for their activity. The most important and clinically relevant carbapenemases are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to the different classes are less frequently detected. They correspond to class A (SME-, Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10 and ACT-28), and to class D (OXA-372). This review will address the genetic diversity, biochemical properties, and detection methods of minor acquired carbapenemases in Enterobacterales.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Agnès B Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Spread of Klebsiella pneumoniae ST45 Producing GES-5 Carbapenemase or GES-1 Extended-Spectrum β-Lactamase in Newborns and Infants. Antimicrob Agents Chemother 2020; 64:AAC.00595-20. [PMID: 32631822 DOI: 10.1128/aac.00595-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Kostyanev T, Nguyen MN, Markovska R, Stankova P, Xavier BB, Lammens C, Marteva-Proevska Y, Velinov T, Cantón R, Goossens H, Malhotra-Kumar S. Emergence of ST654 Pseudomonas aeruginosa co-harbouring bla NDM-1 and bla GES-5 in novel class I integron In1884 from Bulgaria. J Glob Antimicrob Resist 2020; 22:672-673. [PMID: 32585404 DOI: 10.1016/j.jgar.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tomislav Kostyanev
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - M N Nguyen
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - R Markovska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - P Stankova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - B B Xavier
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - C Lammens
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Y Marteva-Proevska
- Central Laboratory of Microbiology, Alexandrovska University Hospital, Sofia, Bulgaria
| | - T Velinov
- Central Laboratory of Microbiology, Alexandrovska University Hospital, Sofia, Bulgaria
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - H Goossens
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - S Malhotra-Kumar
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Anforderungen der Hygiene an abwasserführende Systeme in medizinischen Einrichtungen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:484-501. [DOI: 10.1007/s00103-020-03118-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Spread of Plasmid-Encoded NDM-1 and GES-5 Carbapenemases among Extensively Drug-Resistant and Pandrug-Resistant Clinical Enterobacteriaceae in Durban, South Africa. Antimicrob Agents Chemother 2018; 62:AAC.02178-17. [PMID: 29507063 DOI: 10.1128/aac.02178-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
Whole-genome sequence analyses revealed the presence of blaNDM-1 (n = 31), blaGES-5 (n = 8), blaOXA-232 (n = 1), or blaNDM-5 (n = 1) in extensively drug-resistant and pandrug-resistant Enterobacteriaceae organisms isolated from in-patients in 10 private hospitals (2012 to 2013) in Durban, South Africa. Two novel NDM-1-encoding plasmids from Klebsiella pneumoniae were circularized by PacBio sequencing. In p19-10_01 [IncFIB(K); 223.434 bp], blaNDM-1 was part of a Tn1548-like structure (16.276 bp) delineated by IS26 The multireplicon plasmid p18-43_01 [IncR_1/IncFIB(pB171)/IncFII(Yp); 212.326 bp] shared an 80-kb region with p19-10_01, not including the blaNDM-1-containing region. The two plasmids were used as references for tracing NDM-1-encoding plasmids in the other genome assemblies. The p19-10_01 sequence was detected in K. pneumoniae (n = 7) only, whereas p18-43_01 was tracked to K. pneumoniae (n = 4), Klebsiella michiganensis (n = 1), Serratia marcescens (n = 11), Enterobacter spp. (n = 7), and Citrobacter freundii (n = 1), revealing horizontal spread of this blaNDM-1-bearing plasmid structure. Global phylogeny showed clustering of the K. pneumoniae (18/20) isolates together with closely related carbapenemase-negative ST101 isolates from other geographical origins. The South African isolates were divided into three phylogenetic subbranches, where each group had distinct resistance and replicon profiles, carrying either p19-10_01, p18-10_01, or pCHE-A1 (8,201 bp). The latter plasmid carried blaGES-5 and aacA4 within an integron mobilization unit. Our findings imply independent plasmid acquisition followed by local dissemination. Additionally, we detected blaOXA-232 carried by pPKPN4 in K. pneumoniae (ST14) and blaNDM-5 contained by a pNDM-MGR194-like genetic structure in Escherichia coli (ST167), adding even more complexity to the multilayer molecular mechanisms behind nosocomial spread of carbapenem-resistant Enterobacteriaceae in Durban, South Africa.
Collapse
|
10
|
Ludden C, Reuter S, Judge K, Gouliouris T, Blane B, Coll F, Naydenova P, Hunt M, Tracey A, Hopkins KL, Brown NM, Woodford N, Parkhill J, Peacock SJ. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb Genom 2017; 3:e000114. [PMID: 29026655 PMCID: PMC5605956 DOI: 10.1099/mgen.0.000114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Catherine Ludden
- 1London School of Hygiene and Tropical Medicine, London, UK.,2Wellcome Trust Sanger Institute, Cambridge, UK
| | - Sandra Reuter
- 3Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kim Judge
- 2Wellcome Trust Sanger Institute, Cambridge, UK.,3Department of Medicine, University of Cambridge, Cambridge, UK
| | - Theodore Gouliouris
- 3Department of Medicine, University of Cambridge, Cambridge, UK.,4Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Beth Blane
- 3Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesc Coll
- 1London School of Hygiene and Tropical Medicine, London, UK.,2Wellcome Trust Sanger Institute, Cambridge, UK
| | | | - Martin Hunt
- 2Wellcome Trust Sanger Institute, Cambridge, UK
| | - Alan Tracey
- 2Wellcome Trust Sanger Institute, Cambridge, UK
| | - Katie L Hopkins
- 5Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Nicholas M Brown
- 4Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Neil Woodford
- 5Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | | | | |
Collapse
|
11
|
Conte D, Palmeiro JK, da Silva Nogueira K, de Lima TMR, Cardoso MA, Pontarolo R, Degaut Pontes FL, Dalla-Costa LM. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:62-69. [PMID: 27816836 DOI: 10.1016/j.ecoenv.2016.10.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 05/09/2023]
Abstract
Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of blaCTX-M (51/55, 92.7%) and blaSHV (8/55, 14.5%) ESBLs, and blaGES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may contribute to the emergence and spreading of resistance in the environment, making this a natural reservoir.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe (FPP/IPPPP), Curitiba, Paraná, Brazil.
| | - Jussara Kasuko Palmeiro
- Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe (FPP/IPPPP), Curitiba, Paraná, Brazil; Hospital de Clínicas, Universidade Federal do Paraná (HC-UFPR), Curitiba, Paraná, Brazil.
| | - Keite da Silva Nogueira
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | | - Marco André Cardoso
- Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe (FPP/IPPPP), Curitiba, Paraná, Brazil; Pharmacy Department, Health Sciences Sector, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Roberto Pontarolo
- Pharmacy Department, Health Sciences Sector, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Flávia Lada Degaut Pontes
- Pharmacy Department, Health Sciences Sector, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Libera Maria Dalla-Costa
- Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe (FPP/IPPPP), Curitiba, Paraná, Brazil; Hospital de Clínicas, Universidade Federal do Paraná (HC-UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
12
|
Gatica J, Tripathi V, Green S, Manaia CM, Berendonk T, Cacace D, Merlin C, Kreuzinger N, Schwartz T, Fatta-Kassinos D, Rizzo L, Schwermer CU, Garelick H, Jurkevitch E, Cytryn E. High Throughput Analysis of Integron Gene Cassettes in Wastewater Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11825-11836. [PMID: 27689892 DOI: 10.1021/acs.est.6b03188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Integrons are extensively targeted as a proxy for anthropogenic impact in the environment. We developed a novel high-throughput amplicon sequencing pipeline that enables characterization of thousands of integron gene cassette-associated reads, and applied it to acquire a comprehensive overview of gene cassette composition in effluents from wastewater treatment facilities across Europe. Between 38 100 and 172 995 reads per-sample were generated and functionally characterized by screening against nr, SEED, ARDB and β-lactamase databases. Over 75% of the reads were characterized as hypothetical, but thousands were associated with toxin-antitoxin systems, DNA repair, cell membrane function, detoxification and aminoglycoside and β-lactam resistance. Among the reads characterized as β-lactamases, the carbapenemase blaOXA was dominant in most of the effluents, except for Cyprus and Israel where blaGES was also abundant. Quantitative PCR assessment of blaOXA and blaGES genes in the European effluents revealed similar trends to those displayed in the integron amplicon sequencing pipeline described above, corroborating the robustness of this method and suggesting that these integron-associated genes may be excellent targets for source tracking of effluents in downstream environments. Further application of the above analyses revealed several order-of-magnitude reductions in effluent-associated β-lactamase genes in effluent-saturated soils, suggesting marginal persistence in the soil microbiome.
Collapse
Affiliation(s)
- Joao Gatica
- The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, Israel
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Vijay Tripathi
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Stefan Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Celia M Manaia
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Lisboa, Portugal
| | - Thomas Berendonk
- Faculty of Environmental Sciences, Technische Universität Dresden , Dresden, Germany
| | - Damiano Cacace
- Faculty of Environmental Sciences, Technische Universität Dresden , Dresden, Germany
| | - Christophe Merlin
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol , 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LCPME , UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy, France
| | - Norbert Kreuzinger
- Institute for Water Quality, Resources and Waste Managment, Technische Universität Wien , Wien, Austria
| | - Thomas Schwartz
- Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno , Salerno, Italy
| | | | - Hemda Garelick
- School of Science and Technology, Middlesex University , London, U.K
| | - Edouard Jurkevitch
- The Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Eddie Cytryn
- The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, Israel
| |
Collapse
|
13
|
Dang B, Mao D, Luo Y. Complete Nucleotide Sequence of IncP-1β Plasmid pDTC28 Reveals a Non-Functional Variant of the blaGES-Type Gene. PLoS One 2016; 11:e0154975. [PMID: 27152950 PMCID: PMC4859535 DOI: 10.1371/journal.pone.0154975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 01/02/2023] Open
Abstract
Plasmid pDTC28 was isolated from the sediments of Haihe River using E. coli CV601 (gfp-tagged) as recipient and indigenous bacteria from the sediment as donors. This plasmid confers reduced susceptibility to tetracycline and sulfamethoxazole. The complete sequence of plasmid pDTC28 was 61,503 bp in length with an average G+C content of 64.09%. Plasmid pDTC28 belongs to the IncP-1β group by phylogenetic analysis. The backbones of plasmid pDTC28 and other IncP-1β plasmids are very classical and conserved, whereas the accessory regions of these plasmids are diverse. A blaGES-5-like gene was found on the accessory region, and this blaGES-5-like gene contained 18 silent mutations and 7 missense mutations compared with the blaGES-5 gene. The mutations resulted in 7 amino acid substitutions in GES-5 carbapenemase, causing the loss of function of the blaGES-5-like gene on plasmid pDTC28 against carbapenems and even β-lactams. The enzyme produced by the blaGES-5-like gene cassette may be a new variant of GES-type enzymes. Thus, the plasmid sequenced in this study will expand our understanding of GES-type β-lactamases and provide insights into the genetic platforms used for the dissemination of GES-type genes.
Collapse
Affiliation(s)
- Bingjun Dang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- * E-mail: (YL); (DM)
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
- * E-mail: (YL); (DM)
| |
Collapse
|
14
|
Naas T, Dortet L, Iorga BI. Structural and Functional Aspects of Class A Carbapenemases. Curr Drug Targets 2016; 17:1006-28. [PMID: 26960341 PMCID: PMC5405625 DOI: 10.2174/1389450117666160310144501] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/02/2015] [Accepted: 03/05/2016] [Indexed: 01/28/2023]
Abstract
The fight against infectious diseases is probably one of the greatest public health challenges faced by our society, especially with the emergence of carbapenem-resistant gram-negatives that are in some cases pan-drug resistant. Currently,β-lactamase-mediated resistance does not spare even the newest and most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The worldwide dissemination of carbapenemases in gram-negative organisms threatens to take medicine back into the pre-antibiotic era since the mortality associated with infections caused by these "superbugs" is very high, due to limited treatment options. Clinically-relevant carbapenemases belong either to metallo-β- lactamases (MBLs) of Ambler class B or to serine-β-lactamases (SBLs) of Ambler class A and D enzymes. Class A carbapenemases may be chromosomally-encoded (SME, NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38), plasmid-encoded (KPC, GES, FRI-1) or both (IMI). The plasmid-encoded enzymes are often associated with mobile elements responsible for their mobilization. These enzymes, even though weakly related in terms of sequence identities, share structural features and a common mechanism of action. They variably hydrolyse penicillins, cephalosporins, monobactams, carbapenems, and are inhibited by clavulanate and tazobactam. Three-dimensional structures of class A carbapenemases, in the apo form or in complex with substrates/inhibitors, together with site-directed mutagenesis studies, provide essential input for identifying the structural factors and subtle conformational changes that influence the hydrolytic profile and inhibition of these enzymes. Overall, these data represent the building blocks for understanding the structure-function relationships that define the phenotypes of class A carbapenemases and can guide the design of new molecules of therapeutic interest.
Collapse
Affiliation(s)
- Thierry Naas
- Service de Bactériologie- Hygiène, Hôpital de Bicêtre, APHP, EA7361, Faculté de Médecine Paris- Sud, LabEx LERMIT, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
15
|
El-Kfoury KA. WITHDRAWN: Multidrug-resistant Gram-negative bacilli in the wastewater of a Lebanese hospital: Profiles and mechanisms of resistance. J Infect Public Health 2015:S1876-0341(15)00216-6. [PMID: 26707704 DOI: 10.1016/j.jiph.2015.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
|
16
|
Munck C, Albertsen M, Telke A, Ellabaan M, Nielsen PH, Sommer MOA. Limited dissemination of the wastewater treatment plant core resistome. Nat Commun 2015; 6:8452. [PMID: 26419330 PMCID: PMC4598724 DOI: 10.1038/ncomms9452] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome.
Collapse
Affiliation(s)
- Christian Munck
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Hørsholm, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Amar Telke
- Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mostafa Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Hørsholm, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Hørsholm, Denmark
| |
Collapse
|
17
|
Roffey R, Lindberg A, Molin L, Wikman-Svahn P. A plausible worst-case scenario of increasing multidrug resistance as a tool for assessing societal risks and capabilities in Sweden. Health Secur 2015; 13:174-83. [PMID: 26042861 DOI: 10.1089/hs.2014.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A "plausible worst-case scenario" of a gradually increasing level of multidrug-resistant bacteria (carbapenem-resistant E. coli) in the human population was developed and used to study how Swedish authorities would manage this situation and to identify preventive measures that could be taken. Key findings include: (1) a scenario in which 5% of the population in southern Sweden become carriers of carbapenem-resistant E. coli is possible or even likely in 10 to 15 years; (2) it is not clear when and how the increase of E. coli resistant to carbapenems as in the scenario would be detected in the general human population; (3) identified negative consequences of the scenario on society were primarily due to increased demands on the healthcare system and potential consequences for food-producing animals, food safety, and environmental health; and (4) a number of preventive and mitigation measures were suggested, including initiating long-term screening programs for public and animal health as well as for food and water production to monitor increasing levels of carbapenem resistance. Strategies and plans to prevent and handle future increasing prevalence of multidrug-resistant bacteria need to be developed.
Collapse
Affiliation(s)
- Roger Roffey
- Roger Roffey, MScChemEng, is Deputy Research Director; Anna Lindberg, MScEngBiol, is an Analyst; Lena Molin, PhD, is a Senior Researcher; and Per Wikman-Svahn, PhD, is a Scientist; all at the Swedish Defence Research Agency, FOI, Division of Defence Analysis, Stockholm, Sweden
| | - Anna Lindberg
- Roger Roffey, MScChemEng, is Deputy Research Director; Anna Lindberg, MScEngBiol, is an Analyst; Lena Molin, PhD, is a Senior Researcher; and Per Wikman-Svahn, PhD, is a Scientist; all at the Swedish Defence Research Agency, FOI, Division of Defence Analysis, Stockholm, Sweden
| | - Lena Molin
- Roger Roffey, MScChemEng, is Deputy Research Director; Anna Lindberg, MScEngBiol, is an Analyst; Lena Molin, PhD, is a Senior Researcher; and Per Wikman-Svahn, PhD, is a Scientist; all at the Swedish Defence Research Agency, FOI, Division of Defence Analysis, Stockholm, Sweden
| | - Per Wikman-Svahn
- Roger Roffey, MScChemEng, is Deputy Research Director; Anna Lindberg, MScEngBiol, is an Analyst; Lena Molin, PhD, is a Senior Researcher; and Per Wikman-Svahn, PhD, is a Scientist; all at the Swedish Defence Research Agency, FOI, Division of Defence Analysis, Stockholm, Sweden
| |
Collapse
|
18
|
Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibáñez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol 2015; 4:75-95. [DOI: 10.5497/wjp.v4.i1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Carbapenems are potent β-lactams with activity against extended-spectrum cephalosporinases and β-lactamases. These antibiotics, derived from thienamycn, a carbapenem produced by the environmental bacterium Streptomyces cattleya, were initially used as last-resort treatments for severe Gram-negative bacterial infections presenting resistance to most β-lactams but have become an empirical option in countries with high prevalence of Extended Spectrum β-lactamase-producing bacterial infections. Imipenem, the first commercially available carbapenem, was approved for clinical use in 1985. Since then, a wide variety of carbapenem-resistant bacteria has appeared, primarily Enterobacteriaceae such as Escherichia coli or Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa and Acinetobacter baumannii, presenting different resistance mechanisms. The most relevant mechanism is the production of carbapenem-hydrolyzing β-lactamases, also known as carbapenemases. These enzymes also inactivate all known β-lactams, and some of these enzymes can be acquired through horizontal gene transfer. Moreover, plasmids, transposons and integrons harboring these genes typically carry other resistance determinants, rendering the recipient bacteria resistant to almost all currently used antimicrobials, as is the case for K. pneumoniae carbapenemase - or New Delhi metallo-β-lactamases-type enzymes. The recent advent of these enzymes in the health landscape presents a serious challenge. First, the emergence of carbapenemases limits the currently available treatment options; second, these enzymes pose a risk to patients, as some studies have demonstrated high mortality associated with carbapenemase-producing bacterial infections; and third, these circumstances require an extra cost to sanitary systems, which are particularly cumbersome in developing countries. Therefore, emphasis should be placed on the early detection of these enzymes, the prevention of the spread of carbapenemase-producing bacteria and the development of new drugs resistant to carbapenemase hydrolysis.
Collapse
|
19
|
In vitro prediction of the evolution of GES-1 β-lactamase hydrolytic activity. Antimicrob Agents Chemother 2015; 59:1664-70. [PMID: 25561336 DOI: 10.1128/aac.04450-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resistance to β-lactams is constantly increasing due to the emergence of totally new enzymes but also to the evolution of preexisting β-lactamases. GES-1 is a clinically relevant extended-spectrum β-lactamase (ESBL) that hydrolyzes penicillins and broad-spectrum cephalosporins but spares monobactams and carbapenems. However, several GES-1 variants (i.e., GES-2 and GES-5) previously identified among clinical isolates display an extended spectrum of activity toward carbapenems. To study the evolution potential of the GES-1 β-lactamase, this enzyme was submitted to in vitro-directed evolution, with selection on increasing concentrations of the cephalosporin cefotaxime, the monobactam aztreonam, or the carbapenem imipenem. The highest resistance levels were conferred by a combination of up to four substitutions. The A6T-E104K-G243A variant selected on cefotaxime and the A6T-E104K-T237A-G243A variant selected on aztreonam conferred high resistance to cefotaxime, ceftazidime, and aztreonam. Conversely, the A6T-G170S variant selected on imipenem conferred high resistance to imipenem and cefoxitin. Of note, the A6T substitution involved in higher MICs for all β-lactams is located in the leader peptide of the GES enzyme and therefore is not present in the mature protein. Acquired cross-resistance was not observed, since selection with cefotaxime or aztreonam did not select for resistance to imipenem, and vice versa. Here, we demonstrate that the β-lactamase GES-1 exhibits peculiar properties, with a significant potential to gain activity against broad-spectrum cephalosporins, monobactams, and carbapenems.
Collapse
|
20
|
Boyd D, Taylor G, Fuller J, Bryce E, Embree J, Gravel D, Katz K, Kibsey P, Kuhn M, Langley J, Mataseje L, Mitchell R, Roscoe D, Simor A, Thomas E, Turgeon N, Mulvey M. Complete Sequence of Four Multidrug-Resistant MOBQ1 Plasmids Harboring blaGES-5 Isolated from Escherichia coli and Serratia marcescens Persisting in a Hospital in Canada. Microb Drug Resist 2014; 21:253-60. [PMID: 25545311 DOI: 10.1089/mdr.2014.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The usefulness of carbapenems for gram-negative infections is becoming compromised by organisms harboring carbapenemases, enzymes which can hydrolyze the drug. Currently KPC (class A), NDM (class B), and OXA-48 types (class D) are the most globally widespread carbapenemases. However, among the GES-type class A extended-spectrum β-lactamases (ESBLs) there are variants that hydrolyze carbapenems, with blaGES-5 being the most common. Two Escherichia coli and two Serratia marcescens harboring blaGES-5 on plasmids were isolated by the Canadian Nosocomial Infection Surveillance Program (CNISP) from four different patients in a single hospital over a 2-year period. Complete sequencing of the blaGES-5 plasmids indicated that all four had nearly identical backbones consisting of genes for replication, partitioning, and stability, but contained variant accessory regions consisting of mobile elements and antimicrobial resistance genes. The plasmids were of a novel replicon type, but belonged to the MOBQ1 group based on relaxase sequences, and appeared to be mobilizable, but not self-transmissible. Considering the time periods of bacterial isolation, it would appear the blaGES-5 plasmid has persisted in an environmental niche for at least 2 years in the hospital. This has implications for infection control and clinical care when it is transferred to clinically relevant gram-negative organisms.
Collapse
Affiliation(s)
- David Boyd
- 1National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Geoffrey Taylor
- 2Faculty of Medicine and Dentistry, University of Alberta Hospital, Edmonton, AB, Canada
| | - Jeff Fuller
- 2Faculty of Medicine and Dentistry, University of Alberta Hospital, Edmonton, AB, Canada
| | | | - Joanne Embree
- 4Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Denise Gravel
- 5Centre for Communicable Disease and Infection Control, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Kevin Katz
- 6Infection Prevention and Control, North York General Hospital, Toronto, ON, Canada
| | - Pamela Kibsey
- 7Department of Laboratory Medicine, Victoria General Hospital, Victoria, BC, Canada
| | | | | | - Laura Mataseje
- 1National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Robyn Mitchell
- 5Centre for Communicable Disease and Infection Control, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Diane Roscoe
- 3Vancouver General Hospital, Vancouver, BC, Canada
| | - Andrew Simor
- 10Infectious Diseases Division, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eva Thomas
- 11Children's and Women's Health Centre, Vancouver, BC, Canada
| | | | - Michael Mulvey
- 1National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | |
Collapse
|
21
|
Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2014; 20:831-8. [PMID: 24766097 DOI: 10.1111/1469-0691.12655] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The emergence and rapid spread of carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter (EPA) species is becoming a major public health crisis worldwide, and is responsible for large number of hospital-acquired and nosocomial infections. In this article, we review the current knowledge on the classification, phylogeny and genetic platforms of the main carbapenemases already described in Gram-negative bacteria.
Collapse
Affiliation(s)
- S M Diene
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | | |
Collapse
|
22
|
Manageiro V, Ferreira E, Caniça M, Manaia CM. GES-5 among theβ-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiol Lett 2013; 351:64-69. [DOI: 10.1111/1574-6968.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
- Centre for the Study of Animal Sciences (CECA/ICETA); University of Oporto; Oporto Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Célia M. Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| |
Collapse
|
23
|
|
24
|
Lupo A, Papp-Wallace KM, Sendi P, Bonomo RA, Endimiani A. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013; 77:179-94. [PMID: 24091103 DOI: 10.1016/j.diagmicrobio.2013.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023]
Abstract
In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Characterization of OXA-204, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 2012; 57:633-6. [PMID: 23114766 DOI: 10.1128/aac.01034-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Klebsiella pneumoniae clinical isolate recovered in Tunisia showed resistance to all β-lactams and decreased susceptibility to carbapenems. K. pneumoniae 204 expressed the carbapenem-hydrolyzing β-lactamase OXA-204, differing from OXA-48 by two amino acid substitutions (Gln98His and Thr99Arg) (class D β-lactamase [DBL] numbering). OXA-48 and OXA-204 shared similar resistance profiles, hydrolyzing carbapenems but sparing broad-spectrum cephalosporins. The bla(OXA-204) gene was located on a ca. 150-kb IncA/C-type plasmid, which also carried the bla(CMY-4) gene. The bla(OXA-204) gene was associated with an ISEcp1 element, whereas the bla(OXA-48) genes are usually associated with IS1999.
Collapse
|
26
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|