1
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Bacci G, Fratini S, Meriggi N, Cheng CLY, Ng KH, Pindo M, Iannucci A, Mengoni A, Cavalieri D, Cannicci S. Conserved organ-specific microbial assemblages in different populations of a terrestrial crab. Front Microbiol 2023; 14:1113617. [PMID: 37378290 PMCID: PMC10291174 DOI: 10.3389/fmicb.2023.1113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Microorganisms are ubiquitous in the environment and provide genetic and physiological functions to multicellular organisms. Knowledge on the associated microbiota is becoming highly relevant to understand the host's ecology and biology. Among invertebrates, many examples of endosymbiosis have been described, such as those in corals, ants, and termites. At present, however, little is known on the presence, diversity, and putative roles of the microbiota associated to brachyuran crabs in relation to their environment. In this work we investigated the associated microbiota of three populations of the terrestrial brachyuran crab Chiromantes haematocheir to find evidence of a conserved organ-specific microbiome unrelated to the population of origin and dissimilar from environmental microbial assemblages. Bacterial 16S rRNA gene and fungal ITS sequences were obtained from selected crab organs and environmental matrices to profile microbial communities. Despite the presence of truly marine larval stages and the absence of a gregarious behaviour, favouring microbiota exchanges, we found common, organ-specific microbiota, associated with the gut and the gills of crabs from the different populations (with more than 15% of the genera detected specifically enriched only in one organ). These findings suggest the presence of possible functional roles of the organ-specific microbiota.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Sara Fratini
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | - Ka Hei Ng
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Massimo Pindo
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Cooper WR, Walker WB, Angelella GM, Swisher Grimm KD, Foutz JJ, Harper SJ, Nottingham LB, Northfield TD, Wohleb CH, Strausbaugh CA. Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas. ENVIRONMENTAL ENTOMOLOGY 2023; 52:243-253. [PMID: 36869841 DOI: 10.1093/ee/nvad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 06/18/2023]
Abstract
Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.
Collapse
Affiliation(s)
- William Rodney Cooper
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - William B Walker
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Gina M Angelella
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Kylie D Swisher Grimm
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Jillian J Foutz
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA 99164, USA
| | - Scott J Harper
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Education Center, Prosser, WA 99350, USA
| | - Louis B Nottingham
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Tobin D Northfield
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Carrie H Wohleb
- Washington State University Extension, 1525 E. Wheeler Road, Moses Lake, WA 98837, USA
| | - Carl A Strausbaugh
- USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| |
Collapse
|
4
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
5
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
6
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02117-2. [PMID: 36178538 DOI: 10.1007/s00248-022-02117-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan.
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| |
Collapse
|
7
|
The Impact of Environmental Habitats and Diets on the Gut Microbiota Diversity of True Bugs (Hemiptera: Heteroptera). BIOLOGY 2022; 11:biology11071039. [PMID: 36101420 PMCID: PMC9312191 DOI: 10.3390/biology11071039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary There is a wide variety of insects in the suborder Heteroptera (true bugs), with various feeding habits and living habitats. Microbes that live inside insect guts play critical roles in aspects of host nutrition, physiology, and behavior. However, most studies have focused on herbivorous stink bugs of the infraorder Pentatomomorpha and the gut microbiota associated with the megadiverse heteropteran lineages, and the implications of ecological and diet variance have been less studied. Here, we investigated the gut microbial biodiversity of 30 species of true bugs representative of different ecological niches and diets. Proteobacteria and Firmicutes dominated all samples. True bugs that live in aquatic environments had a variety of bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs had distinct gut microbiomes compared to herbivorous species. In particular, assassin bugs of the family Reduviidae had a characteristic gut microbiota consisting mainly of Enterococcus and different species of Proteobacteria, implying a specific association between the gut bacteria and the host. These findings reveal that the environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. Abstract Insects are generally associated with gut bacterial communities that benefit the hosts with respect to diet digestion, limiting resource supplementation, pathogen defense, and ecological niche expansion. Heteroptera (true bugs) represent one of the largest and most diverse insect lineages and comprise species consuming different diets and inhabiting various ecological niches, even including underwater. However, the bacterial symbiotic associations have been characterized for those basically restricted to herbivorous stink bugs of the infraorder Pentatomomorpha. The gut microbiota associated with the megadiverse heteropteran lineages and the implications of ecological and diet variance remain largely unknown. Here, we conducted a bacterial 16S rRNA amplicon sequencing of the gut microbiota across 30 species of true bugs representative of different ecological niches and diets. It was revealed that Proteobacteria and Firmicute were the predominant bacterial phyla. Environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. True bugs living in aquatic environments harbored multiple bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs possessed distinct gut microbiota compared to phytophagous species. Particularly, assassin bugs of the family Reduviidae possessed a characterized gut microbiota predominantly composed of one Enterococcus with different Proteobacteria, implying a specific association between the gut bacteria and host. Overall, our findings highlight the importance of the comprehensive surveillance of gut microbiota association with true bugs for understanding the molecular mechanisms underpinning insect–bacteria symbiosis.
Collapse
|
8
|
Wada N, Hsu MT, Tandon K, Hsiao SSY, Chen HJ, Chen YH, Chiang PW, Yu SP, Lu CY, Chiou YJ, Tu YC, Tian X, Chen BC, Lee DC, Yamashiro H, Bourne DG, Tang SL. High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata. SCIENCE ADVANCES 2022; 8:eabo2431. [PMID: 35857470 PMCID: PMC9258956 DOI: 10.1126/sciadv.abo2431] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 05/29/2023]
Abstract
Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.
Collapse
Affiliation(s)
- Naohisa Wada
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Ming-Tsung Hsu
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Silver Sung-Yun Hsiao
- Institute of Astronomy and Astrophysics, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Yu-Hsiang Chen
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Jing Chiou
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Yung-Chi Tu
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| | - Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, 4811 QLD, Australia
- Australian Institute of Marine Science, Townsville, 4810 QLD, Australia
- AIMS@JCU, Townsville, 4811 QLD, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Bhattacherjee R, De S, Sharma G, Ghosh S, Mishra S, Suman DS, Banerjee D. Prevalence of mouthpart sensilla and protease producing symbiotic gut bacteria in the forensic fly Chrysomya megacephala (Fabricius, 1794): Insight from foraging to digestion. Acta Trop 2022; 229:106380. [PMID: 35217030 DOI: 10.1016/j.actatropica.2022.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
The blow fly, Chrysomya megacephala (Fabricius, 1794) is a globally prevalent forensically important species that helps to estimate accurate postmortem interval since the death. This fly occasionally causes cutaneous myiasis and transmits several pathogenic bacteria. To understand their ability of corpse detection and digestion of protein-rich meal, the present study describes the mouthpart sensilla and assessment of protease producing symbiotic gut bacteria. Scanning electron microscopy (SEM) showed the prevalence of trichoid sensilla (Tr), basiconic sensilla (Ba) and microtrichia (Mr) on labellar lobes, haustellum and maxillary palps of mouthparts. Bacterial particles of both rod (small and large) and spherical shaped were detected in the gut of C. megacephala using SEM. The bacterial density was higher on the foregut and midgut in comparison to the hindgut. From 72 bacterial isolates, 10 isolates from the foregut region showed considerable protease-producing efficacy ranging between 3.98 - 6.83 GHR and 9.73 - 34.68 U/ml protease. Among these, the most promising protease-producing bacterial isolate showed 16S rDNA sequence similarity (99.85%) with Chryseobacterium artocarpi DNA. This bacterium was the first report from flies. The findings of the study might help in better understanding of the role of sensilla in host perception and foregut symbiotic bacterial association in protein digestion in C. megacephala.
Collapse
|
10
|
Zhou Z, Huang H, Che X. Bacterial Communities in the Feces of Laboratory Reared Gampsocleis gratiosa (Orthoptera: Tettigoniidae) across Different Developmental Stages and Sexes. INSECTS 2022; 13:insects13040361. [PMID: 35447806 PMCID: PMC9024567 DOI: 10.3390/insects13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae) is an economically important singing pet in China. In the present study, the bacterial communities of the laboratory-reared G. gratiosa feces were characterized using Illumina sequencing of the 16S rDNA V3-V4 region. Abstract We used Illumina sequencing of the 16S rDNA V3-V4 region to identify the bacterial community in laboratory-reared G. gratiosa feces across different developmental stages (1st–7th instar nymph day 0, and 0-, 7-, 14-, and 21-day adult) and sexes. In total, 14,480,559 high-quality reads were clustered into 2982 species-level operational taxonomic units (OTUs), with an average of 481.197 (±137.366) OTUs per sample. These OTUs were assigned into 25 phyla, 42 classes, 60 orders, 116 families, 241 genera, and some unclassified groups. Only 21 core OTUs were shared by all samples. The most representative phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes, and Acidobacteria. At the genus level, Kluyvera (387 OTUs), Obesumbacterium (339 OTUs), Buttiauxella (296 OTUs), Lactobacillus (286 OTUs), and Hafnia (152 OTUs) were dominant bacteria. The early-instar nymphs harbored a similar bacterial community with other developmental stages, which contain higher species diversity. Both principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) failed to provide a clear clustering based on the developmental stages and sexes. Overall, we assume that G. gratiosa transmits bacteria vertically by eating contaminated eggshells, and both developmental stages and sexes had no significant effect on the fecal bacterial community.
Collapse
Affiliation(s)
- Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence:
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| | - Xuting Che
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| |
Collapse
|
11
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
12
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
13
|
Sanaei E, Lin YP, Cook LG, Engelstädter J. Wolbachia in scale insects: a distinct pattern of infection frequencies and potential transfer routes via ant associates. Environ Microbiol 2021; 24:1326-1339. [PMID: 34792280 DOI: 10.1111/1462-2920.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the 'master of manipulation', Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and the infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
14
|
Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family. Sci Rep 2021; 11:7731. [PMID: 33833268 PMCID: PMC8032781 DOI: 10.1038/s41598-021-86574-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Nutritional symbioses between bacteria and insects are prevalent and diverse, allowing insects to expand their feeding strategies and niches. A common consequence of long-term associations is a considerable reduction in symbiont genome size likely influenced by the radical shift in selective pressures as a result of the less variable environment within the host. While several of these cases can be found across distinct insect species, most examples provide a limited view of a single or few stages of the process of genome reduction. Stink bugs (Pentatomidae) contain inherited gamma-proteobacterial symbionts in a modified organ in their midgut and are an example of a long-term nutritional symbiosis, but multiple cases of new symbiont acquisition throughout the history of the family have been described. We sequenced the genomes of 11 symbionts of stink bugs with sizes that ranged from equal to those of their free-living relatives to less than 20%. Comparative genomics of these and previously sequenced symbionts revealed initial stages of genome reduction including an initial pseudogenization before genome reduction, followed by multiple stages of progressive degeneration of existing metabolic pathways likely to impact host interactions such as cell wall component biosynthesis. Amino acid biosynthesis pathways were retained in a similar manner as in other nutritional symbionts. Stink bug symbionts display convergent genome reduction events showing progressive changes from a free-living bacterium to a host-dependent symbiont. This system can therefore be used to study convergent genome evolution of symbiosis at a scale not previously available.
Collapse
|
15
|
The Gut Microbiota of the Insect Infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the Light of Ecology and Evolution. Microorganisms 2021; 9:microorganisms9020464. [PMID: 33672230 PMCID: PMC7926433 DOI: 10.3390/microorganisms9020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
The stinkbugs of the infraorder Pentatomomorpha are a group of important plant sap-feeding insects, which host diverse microorganisms. Some are located in their complex morphological midgut compartments, while some within the specialized bacteriomes of insect hosts. This perpetuation of symbioses through host generations is reinforced via the diverse routes of vertical transmission or environmental acquisition of the symbionts. These symbiotic partners, reside either through the extracellular associations in midgut or intracellular associations in specialized cells, not only have contributed nutritional benefits to the insect hosts but also shaped their ecological and evolutionary basis. The stinkbugs and gut microbe symbioses present a valuable model that provides insights into symbiotic interactions between agricultural insects and microorganisms and may become potential agents for insect pest management.
Collapse
|
16
|
Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc Natl Acad Sci U S A 2020; 117:31979-31986. [PMID: 33257562 DOI: 10.1073/pnas.2000860117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages. Here we report the discovery of a nascent obligate symbiosis in Howardula aoronymphium, a well-studied nematode parasite of Drosophila flies. We have found that H aoronymphium and its sister species harbor a maternally inherited intracellular bacterial symbiont. We never find the symbiont in nematode-free flies, and virtually all nematodes in the field and the laboratory are infected. Treating nematodes with antibiotics causes a severe reduction in fly infection success. The association is recent, as more distantly related insect-parasitic tylenchid nematodes do not host these endosymbionts. We also report that the Howardula nematode symbiont is a member of a widespread monophyletic group of invertebrate host-associated microbes that has independently given rise to at least four obligate symbioses, one in nematodes and three in insects, and that is sister to Pectobacterium, a lineage of plant pathogenic bacteria. Comparative genomic analysis of this group, which we name Candidatus Symbiopectobacterium, shows signatures of genome erosion characteristic of early stages of symbiosis, with the Howardula symbiont's genome containing over a thousand predicted pseudogenes, comprising a third of its genome.
Collapse
|
17
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
18
|
Cellular Localization of Two Rickettsia Symbionts in the Digestive System and within the Ovaries of the Mirid Bug, Macrolophous pygmaeus. INSECTS 2020; 11:insects11080530. [PMID: 32823761 PMCID: PMC7469188 DOI: 10.3390/insects11080530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Simple Summary Like most insects, those that feed on both prey and plant materials harbor symbiotic bacteria in their body. Yet the involvement of bacteria in the feeding habits of these omnivorous consumers has yet to be investigated. In the present study, we took the first step toward testing the hypothesis that bacterial symbionts are involved in the feeding habits of the omnivorous bug Macrolophus pygmaeus. We (I) characterized the microbiome (the assembly of bacteria and fungi) of M. pygmaeus, and (II) determined the identity and location of the most dominant bacteria species within the host body. We found that M. pygmaeus microbiome is dominated by two Rickettsia species, R. belli and R. limoniae. These bacteria are found in high numbers in the digestive system of the bug, each exhibiting a unique distribution pattern, and for the most part, do not share the same cells in the gut. These results strongly suggest that the host bug may gain some nutritional benefits by hosting the two dominant symbiotic bacteria in its gut. Abstract Bacterial symbionts in arthropods are common, vary in their effects, and can dramatically influence the outcome of biological control efforts. Macrolophus pygmaeus (Heteroptera: Miridae), a key component of biological control programs, is mainly predaceous but may also display phytophagy. M. pygmaeus hosts symbiotic Wolbachia, which induce cytoplasmic incompatibility, and two Rickettsia species, R. bellii and R. limoniae, which are found in all individuals tested. To test possible involvement of the two Rickettsia species in the feeding habits of M. pygmaeus, we first showed that the microbiome of the insect is dominated by these three symbionts, and later described the distribution pattern of the two Rickettsia species in its digestive system. Although both Rickettsia species were located in certain gut bacteriocyes, in caeca and in Malpighian tubules of both sexes, each species has a unique cellular occupancy pattern and specific distribution along digestive system compartments. Infrequently, both species were found in a cell. In females, both Rickettsia species were detected in the germarium, the apical end of the ovarioles within the ovaries, but not in oocytes. Although the cause for these Rickettsia distribution patterns is yet unknown, it is likely linked to host nutrition while feeding on prey or plants.
Collapse
|
19
|
Alba-Alejandre I, Alba-Tercedor J, Hunter WB. Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography. Sci Rep 2020; 10:7161. [PMID: 32346040 PMCID: PMC7189384 DOI: 10.1038/s41598-020-64132-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fluorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the first detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a significant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Wayne B Hunter
- U.S. Department Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA
| |
Collapse
|
20
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
21
|
Hellemans S, Kaczmarek N, Marynowska M, Calusinska M, Roisin Y, Fournier D. Bacteriome-associated Wolbachia of the parthenogenetic termite Cavitermes tuberosus. FEMS Microbiol Ecol 2019; 95:5247714. [PMID: 30551145 DOI: 10.1093/femsec/fiy235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Wolbachia has deeply shaped the ecology and evolution of many arthropods, and interactions between the two partners are a continuum ranging from parasitism to mutualism. Non-dispersing queens of the termite Cavitermes tuberosus are parthenogenetically produced through gamete duplication, a mode of ploidy restoration generally induced by Wolbachia. These queens display a bacteriome-like structure in the anterior part of the mesenteron. Our study explores the possibility of a nutritional mutualistic, rather than a parasitic, association between Wolbachia and C. tuberosus. We found a unique strain (wCtub), nested in the supergroup F, in 28 nests collected in French Guiana, the island of Trinidad and the state of Paraíba, Brazil (over 3500 km). wCtub infects individuals regardless of caste, sex or reproductive (sexual versus parthenogenetic) origin. qPCR assays reveal that Wolbachia densities are higher in the bacteriome-like structure and in the surrounding gut compared to other somatic tissues. High-throughput 16S rRNA gene amplicon sequencing reveals that Wolbachia represents over 97% of bacterial reads present in the bacteriome structure. BLAST analyses of 16S rRNA, bioA (a gene of the biosynthetic pathway of B vitamins) and five multilocus sequence typing genes indicated that wCtub shares 99% identity with wCle, an obligate nutritional mutualist of the bedbug Cimex lectularius.
Collapse
Affiliation(s)
- Simon Hellemans
- Evolutionary Biology & Ecology, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Nicolas Kaczmarek
- Evolutionary Biology & Ecology, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Martyna Marynowska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Yves Roisin
- Evolutionary Biology & Ecology, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Denis Fournier
- Evolutionary Biology & Ecology, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| |
Collapse
|
22
|
Juárez ML, Pimper LE, Bachmann GE, Conte CA, Ruiz MJ, Goane L, Medina Pereyra P, Castro F, Salgueiro J, Cladera JL, Fernández PC, Bourtzis K, Lanzavecchia SB, Vera MT, Segura DF. Gut bacterial diversity and physiological traits of Anastrepha fraterculus Brazilian-1 morphotype males are affected by antibiotic treatment. BMC Microbiol 2019; 19:283. [PMID: 31870309 PMCID: PMC6929401 DOI: 10.1186/s12866-019-1645-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. Results AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. Conclusions Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.
Collapse
Affiliation(s)
- María Laura Juárez
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Unidad Ejecutora Lillo, Fundación Miguel Lillo, Tucumán, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lida Elena Pimper
- Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - Guillermo Enrique Bachmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - Claudia Alejandra Conte
- Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - María Josefina Ruiz
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Goane
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Felipe Castro
- Instituto de Fisiología Animal, Fundación Miguel Lillo, Tucumán, Argentina
| | - Julieta Salgueiro
- Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - Jorge Luis Cladera
- Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - Patricia Carina Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Estación Agropecuaria Delta, Instituto Nacional de Tecnología Agropecuaria (INTA), Campana, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina
| | - María Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Fernando Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Instituto de Genética Ewald A. Favret (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA) - GV Instituto de Agrobiotecnología y Biología Molecular (IABIMO, CONICET), Hurlingham, Argentina.
| |
Collapse
|
23
|
Kuechler SM, Fukatsu T, Matsuura Y. Repeated evolution of bacteriocytes in lygaeoid stinkbugs. Environ Microbiol 2019; 21:4378-4394. [PMID: 31573127 DOI: 10.1111/1462-2920.14804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Host-microbe symbioses often evolved highly complex developmental processes and colonization mechanisms for establishment of stable associations. It has long been recognized that many insects harbour beneficial bacteria inside specific symbiotic cells (bacteriocytes) or organs (bacteriomes). However, the evolutionary origin and mechanisms underlying bacterial colonization in bacteriocyte/bacteriome formation have been poorly understood. In order to uncover the origin of such evolutionary novelties, we studied the development of symbiotic organs in five stinkbug species representing the superfamily Lygaeoidea in which diverse bacteriocyte/bacteriome systems have evolved. We tracked the symbiont movement within the eggs during the embryonic development and determined crucial stages at which symbiont infection and bacteriocyte formation occur, using whole-mount fluorescence in situ hybridization. In summary, three distinct developmental patterns were observed: two different modes of symbiont transfer from initial symbiont cluster (symbiont ball) to presumptive bacteriocytes in the embryonic abdomen, and direct incorporation of the symbiont ball without translocation of bacterial cells. Across the host taxa, only closely related species seemed to have evolved relatively conserved types of bacteriome development, suggesting repeated evolution of host symbiotic cells and organs from multiple independent origins.
Collapse
Affiliation(s)
- Stefan Martin Kuechler
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany.,Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
24
|
Ohbayashi T, Itoh H, Lachat J, Kikuchi Y, Mergaert P. Burkholderia Gut Symbionts Associated with European and Japanese Populations of the Dock Bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ 2019; 34:219-222. [PMID: 31167992 PMCID: PMC6594735 DOI: 10.1264/jsme2.me19011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insects of the heteropteran superfamilies Coreoidea and Lygaeoidea are consistently associated with symbionts of a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group. The symbiosis is maintained by the environmental transmission of symbionts. We investigated European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). High nymphal mortality in reared aposymbiotic insects suggested an obligate host-symbiont association in this species. Molecular phylogenetic analyses based on 16S rRNA gene sequences revealed that all 173 individuals investigated were colonized by Burkholderia, which were further assigned to different subgroups of the SBE in a region-dependent pattern.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center
| | - Joy Lachat
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center.,Computational Bio Big Data Open Innovation Laboratory (CBBDOIL), AIST, Hokkaido Center
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA
| |
Collapse
|
25
|
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biol Evol 2018; 9:2893-2910. [PMID: 29036401 PMCID: PMC5737371 DOI: 10.1093/gbe/evx202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Spain
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Konrad Dettner
- Department of Animal Ecology II, University of Bayreuth, Germany
| | | |
Collapse
|
26
|
Scopel W, Cônsoli FL. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros. Antonie van Leeuwenhoek 2018; 111:2413-2424. [PMID: 30019154 DOI: 10.1007/s10482-018-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
Abstract
Symbionts are widely distributed in eukaryotes, and potentially affect the physiology, ecology and evolution of their host. Most insects harbour free-living bacteria in their haemocoel and gut lumen, intracellular-living bacteria in a range of tissues or bacteria in host-derived specialized cells. Stinkbugs, as do many arthropods, harbour extracellular bacteria in the gut that may affect the fitness of their host. This study identified the culturable symbionts associated with the ovaries, spermatheca, seminal vesicle and posterior midgut region (V4) of males and females of Euschistus heros (F.) (Hemiptera: Pentatomidae). Several culture media were used to isolate the bacteria associated with these structures. The selected colonies (morphotypes) were cultured in liquid medium, subjected to genomic DNA extraction, 16S rRNA gene amplification, and restriction fragment length polymorphism (RFLP) analyses. Morphotypes with distinct RFLP patterns were purified and sequenced, and the sequences obtained were used for putative identification and phylogenetic analysis. Comparison of the sequences with those available in the EzTaxon-e database and the use of a matrix of paired distances grouped the isolates in phylotypes belonging to the Phylum Proteobacteria. Proteobacteria was represented by γ-Proteobacteria phylotypes belonging to Enterobacteriaceae, while Firmicutes had Bacilli phylotypes distributed in Enterococcaceae and Staphylococcaceae. Some of the phylotypes identified were associated exclusively with single structures, such as ovaries, spermatheca and the V4 midgut region of males and females. All culturable bacteria associated with the seminal vesicle were also associated with other tissues.
Collapse
Affiliation(s)
- Wanessa Scopel
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
27
|
Morrow JL, Hall AAG, Riegler M. Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. MICROBIOME 2017; 5:58. [PMID: 28587661 PMCID: PMC5461708 DOI: 10.1186/s40168-017-0276-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/15/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Obligate bacterial primary (P-) endosymbionts that are maternally inherited and codiverge with hosts are widespread across insect lineages with nutritionally restricted diets. Secondary (S-) endosymbionts are mostly facultative, but in some hosts, they complement P-endosymbiont function and therefore become obligate. Phylogenetic evidence exists for host switching and replacement of S-endosymbionts. The community dynamics that precede endosymbiont replacement and complementation have been little studied across host species, yet they are fundamental to the evolution of endosymbiosis. RESULTS We performed bacterial 16S rRNA gene amplicon sequencing of 25 psyllid species (Hemiptera, Psylloidea) across different developmental stages and ecological niches by focusing on the characterisation of the bacteria other than the universally present P-endosymbiont Carsonella (Gammaproteobacteria). Most species harboured only one dominant representative of diverse gammaproteobacterial S-endosymbionts that was consistently detected across all host individuals and populations (Arsenophonus in eight species, Sodalis or Sodalis-like bacteria in four species, unclassified Enterobacteriaceae in eight species). The identity of this dominant obligate S-endosymbiont varied across closely related host species. Unexpectedly, five psyllid species had two or three co-occurring endosymbiont species other than Carsonella within all host individuals, including a Rickettsiella-like bacterium (Gammaproteobacteria) in one psyllid species. Based on standard and quantitative PCR, all psyllids carried Carsonella, at higher titres than their dominant S-endosymbionts. Some psyllids also had Alphaproteobacteria (Lariskella, Rickettsia, Wolbachia) at varying prevalence. Incidence of other bacteria, including known plant pathogens, was low. Ecological niche of gall-forming, lerp-forming and free-living psyllid species did not impact endosymbiont communities. Two flush-feeding psyllid species had population-specific differences, and this was attributable to the higher endosymbiont diversity in native ranges and the absence of some endosymbionts in invasive ranges. CONCLUSIONS Our data support the hypothesis of strict vertical transmission of minimal core communities of bacteria in psyllids. We also found evidence for S-endosymbiont replacement across closely related psyllid species. Multiple dominant S-endosymbionts present in some host species, including at low titre, constitute potential examples of incipient endosymbiont complementation or replacement. Our multiple comparisons of deep-sequenced minimal insect bacterial communities exposed the dynamics involved in shaping insect endosymbiosis.
Collapse
Affiliation(s)
- Jennifer L. Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - Aidan A. G. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Current address: Department of Agriculture and Water Resources, 1 Crewe Place, Rosebery, NSW 2018 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
28
|
Sudakaran S, Kost C, Kaltenpoth M. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends Microbiol 2017; 25:375-390. [DOI: 10.1016/j.tim.2017.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
|
29
|
Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect–microbe symbiotic associations. Res Microbiol 2017; 168:175-187. [DOI: 10.1016/j.resmic.2016.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023]
|
30
|
Szklarzewicz T, Michalik A. Transovarial Transmission of Symbionts in Insects. Results Probl Cell Differ 2017; 63:43-67. [PMID: 28779313 DOI: 10.1007/978-3-319-60855-6_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many insects, on account of their unbalanced diet, live in obligate symbiotic associations with microorganisms (bacteria or yeast-like symbionts), which provide them with substances missing in the food they consume. In the body of host insect, symbiotic microorganisms may occur intracellularly (e.g., in specialized cells of mesodermal origin termed bacteriocytes, in fat body cells, in midgut epithelium) or extracellularly (e.g., in hemolymph, in midgut lumen). As a rule, symbionts are vertically transmitted to the next generation. In most insects, symbiotic microorganisms are transferred from mother to offspring transovarially within female germ cells. The results of numerous ultrastructural and molecular studies on symbiotic systems in different groups of insects have shown that they have a large diversity of symbiotic microorganisms and different strategies of their transmission from one generation to the next. This chapter reviews the modes of transovarial transmission of symbionts between generations in insects.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
31
|
Gordon ERL, McFrederick Q, Weirauch C. Phylogenetic Evidence for Ancient and Persistent Environmental Symbiont Reacquisition in Largidae (Hemiptera: Heteroptera). Appl Environ Microbiol 2016; 82:7123-7133. [PMID: 27694238 PMCID: PMC5118923 DOI: 10.1128/aem.02114-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
The insect order Hemiptera, one of the best-studied insect lineages with respect to bacterial symbioses, still contains major branches that lack comprehensive characterization of associated bacterial symbionts. The Pyrrhocoroidea (Largidae [220 species] and Pyrrhocoridae [∼300 species]) is a clade of the hemipteran infraorder Pentatomomorpha. Studies on bacterial symbionts of this group have focused on members of Pyrrhocoridae, but recent examination of species of two genera of Largidae demonstrated divergent symbiotic complexes in these putative sister families. We surveyed the associated bacterial diversity of this group using paired-end Illumina sequencing and targeted Sanger sequencing of bacterial 16S rRNA amplicons of 30 pyrrhocoroid taxa, including 17 species of Largidae, in order to determine bacterial associates and the similarity of associated microbial communities among species. We also used molecular data (4,800 bp in 5 loci, for 57 ingroup and 12 outgroup taxa) to infer a phylogeny of the host superfamily, in order to trace the evolution of symbiotic complexes among Pentatomomorpha species. We undertook multiple lines of investigation (i.e., experimental rearing, fluorescence in situ hybridization microscopy, and phylogenetic and coevolutionary analyses) to elucidate potential transmission routes for largid symbionts. We found a prevalent and specific association of Largidae with Burkholderia strains of the plant-associated beneficial and environmental clade, housed in midgut tubules. As in other distantly related Heteroptera, symbiotic bacteria seem to be acquired from the environment every generation. We review the current understanding of symbiotic complexes within Pentatomomorpha and discuss means to further investigate the evolution and function of these symbioses. IMPORTANCE Obligate symbioses with bacteria are common in insects, particularly Hemiptera, in which various forms of symbiosis occur. However, knowledge regarding symbionts remains incomplete for major hemipteran lineages. Thus, an accurate understanding of how these partnerships evolved and changed over millions of years is not yet achievable. We contribute to our understanding of the evolution of symbiotic complexes in Hemiptera by characterizing bacterial associates of Pyrrhocoroidea, focusing on the family Largidae. Members of Largidae are associated with specific symbiotic Burkholderia strains from a different clade than Burkholderia symbionts in other Burkholderia-associated Hemiptera. Evidence suggests that species of Largidae reacquire specific symbiotic bacteria from the environment every generation, which is a rare strategy for insects, with potentially volatile evolutionary ramifications, but one that must have persisted in Largidae and related lineages since their origin in the Cretaceous Period.
Collapse
Affiliation(s)
| | - Quinn McFrederick
- Department of Entomology, University of California-Riverside, Riverside, California, USA
| | - Christiane Weirauch
- Department of Entomology, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
32
|
Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasit Vectors 2016; 9:636. [PMID: 27938415 PMCID: PMC5148865 DOI: 10.1186/s13071-016-1926-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Background Triatomine bugs (Hemiptera: Reduviidae) are vectors of the flagellate Trypanosoma cruzi, the causative agent of Chagas disease. The study of triatomine gut microbiota has gained relevance in the last years due to its possible role in vector competence and prospective use in control strategies. The objective of this study is to examine changes in the gut microbiota composition of triatomines in response to a T. cruzi-infected blood meal and identifying key factors determining those changes. Results We sampled colony-reared individuals from six triatomine vectors (Panstrongylus megistus, Rhodnius prolixus, Triatoma brasiliensis, T. infestans, T. juazeirensis and T. sherlocki) comparing experimentally T. cruzi strain 0354-challenged and non-challenged insects. The microbiota of gut and gonad tissues was characterized using high throughput sequencing of region V3-V4 of bacterial 16S rRNA gene. The triatomine microbiota had a low intra-individual diversity, and a high inter-individual variation within the same host species. Arsenophonous appeared as the dominant triatomine bacterial symbiont in our study (59% of the total 16S coverage), but there were significant differences in the distribution of bacterial genera among vectors. In Rhodnius prolixus the dominant symbiont was Pectobacterium. Conclusions Trypanosoma cruzi-challenge significantly affects microbiota composition, with challenged vectors harbouring a significantly more diverse bacterial community, both in the gut and the gonads. Our results show that blood-feeding with T. cruzi epimastigotes strongly affects microbiota composition in a species-specific manner. We suggest that triatomine-adapted enterobacteria such as Arsenophonus could be used as stable vectors for genetic transformation of triatomine bugs and control of Chagas disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1926-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastián Díaz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca Villavicencio
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nathália Correia
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L Haag
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
33
|
Xu Y, Buss EA, Boucias DG. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis. PLoS One 2016; 11:e0161699. [PMID: 27548682 PMCID: PMC4993365 DOI: 10.1371/journal.pone.0161699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained.
Collapse
Affiliation(s)
- Yao Xu
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Eileen A. Buss
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
| | - Drion G. Boucias
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
34
|
Kuechler SM, Matsuura Y, Dettner K, Kikuchi Y. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ 2016; 31:145-53. [PMID: 27265344 PMCID: PMC4912149 DOI: 10.1264/jsme2.me16042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.
Collapse
|
35
|
Takeshita K, Matsuura Y, Itoh H, Navarro R, Hori T, Sone T, Kamagata Y, Mergaert P, Kikuchi Y. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ 2015; 30:321-9. [PMID: 26657305 PMCID: PMC4676555 DOI: 10.1264/jsme2.me15153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.
Collapse
|
36
|
Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, Tago K, Hori T, Hayatsu M, Asano K, Kamagata Y, Lee BL, Fukatsu T, Kikuchi Y. Insect's intestinal organ for symbiont sorting. Proc Natl Acad Sci U S A 2015; 112:E5179-88. [PMID: 26324935 PMCID: PMC4577176 DOI: 10.1073/pnas.1511454112] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazutaka Takeshita
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Kanako Tago
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan
| | - Masahito Hayatsu
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, Korea
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan;
| |
Collapse
|
37
|
Matsuura Y, Kikuchi Y, Miura T, Fukatsu T. Ultrabithorax is essential for bacteriocyte development. Proc Natl Acad Sci U S A 2015; 112:9376-81. [PMID: 26170303 PMCID: PMC4522796 DOI: 10.1073/pnas.1503371112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Symbiosis often entails the emergence of novel adaptive traits in organisms. Microbial symbionts are indispensable for diverse insects via provisioning of essential nutrients, wherein novel host cells and organs for harboring the microbes, called bacteriocytes and bacteriomes, have evolved repeatedly. Molecular and developmental mechanisms underpinning the emergence of novel symbiotic cells and organs comprise an unsolved question in evolutionary developmental biology. Here, we report that a conserved homeotic gene, Ultrabithorax, plays a pivotal role in the bacteriocyte differentiation in a hemipteran insect Nysius plebeius. During embryonic development, six pairs of aggregated presumptive bacteriocytes appear on both sides of six abdominal segments, incorporate the symbiotic bacteria at the stage of germband retraction, and fuse into a pair of lateral bacteriomes at the stage of germband flip, where bacteriocyte-associated Ultrabithorax expression coincides with the symbiont infection process. Suppression of Ultrabithorax expression by maternal RNA interference results in disappearance of the bacteriocytes and the symbiont localization therein, suggesting that Ultrabithorax is involved in differentiation of the host cells for symbiosis. Suppression of other homeotic genes abdominal-A and Antennapedia disturbs integrity and positioning of the bacteriomes, affecting the configuration of the host organs for symbiosis. Our findings unveil the molecular and developmental mechanisms underlying the bacteriocyte differentiation, which may have evolved either via cooption of the transcription factors for inducing the novel symbiotic cells, or via revival of the developmental pathway for the bacteriocytes that had existed in the ancestral hemipterans.
Collapse
Affiliation(s)
- Yu Matsuura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo 062-8517, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
38
|
Becerra JX, Venable GX, Saeidi V. Wolbachia-Free Heteropterans Do Not Produce Defensive Chemicals or Alarm Pheromones. J Chem Ecol 2015; 41:593-601. [PMID: 26070722 DOI: 10.1007/s10886-015-0596-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 01/05/2023]
Abstract
The true bugs, or heteropterans, are known for their widespread production of anti-predator chemicals and alarm pheromones in scent glands, a derived trait that constitutes one of the defining characters of the suborder Heteroptera and a potential novel trait that contributed to their diversification. We investigated whether symbiotic bacteria could be involved in the formation of these chemicals using Thasus neocalifornicus, a coreid bug that produces semiochemicals frequently found in other bugs. Using DNA phylogenetic methodology and experiments using antibiotics coupled with molecular techniques, we identified Wolbachia as the microorganism infecting the scent glands of this bug. Decreasing the level of Wobachia infection using antibiotics was correlated with a diminution of heteropteran production of defensive compounds and alarm pheromones, suggesting that this symbiotic bacterium might be implicated in the formation of chemicals.
Collapse
Affiliation(s)
- Judith X Becerra
- Department of Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA,
| | | | | |
Collapse
|
39
|
Sudakaran S, Retz F, Kikuchi Y, Kost C, Kaltenpoth M. Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME JOURNAL 2015; 9:2587-604. [PMID: 26023876 DOI: 10.1038/ismej.2015.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 11/09/2022]
Abstract
Evolutionary adaptations for the exploitation of nutritionally challenging or toxic host plants represent a major force driving the diversification of phytophagous insects. Although symbiotic bacteria are known to have essential nutritional roles for insects, examples of radiations into novel ecological niches following the acquisition of specific symbionts remain scarce. Here we characterized the microbiota across bugs of the family Pyrrhocoridae and investigated whether the acquisition of vitamin-supplementing symbionts enabled the hosts to diversify into the nutritionally imbalanced and chemically well-defended seeds of Malvales plants as a food source. Our results indicate that vitamin-provisioning Actinobacteria (Coriobacterium and Gordonibacter), as well as Firmicutes (Clostridium) and Proteobacteria (Klebsiella) are widespread across Pyrrhocoridae, but absent from the sister family Largidae and other outgroup taxa. Despite the consistent association with a specific microbiota, the Pyrrhocoridae phylogeny is neither congruent with a dendrogram based on the hosts' microbial community profiles nor phylogenies of individual symbiont strains, indicating frequent horizontal exchange of symbiotic partners. Phylogenetic dating analyses based on the fossil record reveal an origin of the Pyrrhocoridae core microbiota in the late Cretaceous (81.2-86.5 million years ago), following the transition from crypt-associated beta-proteobacterial symbionts to an anaerobic community localized in the M3 region of the midgut. The change in symbiotic syndromes (that is, symbiont identity and localization) and the acquisition of the pyrrhocorid core microbiota followed the evolution of their preferred host plants (Malvales), suggesting that the symbionts facilitated their hosts' adaptation to this imbalanced nutritional resource and enabled the subsequent diversification in a competition-poor ecological niche.
Collapse
Affiliation(s)
- Sailendharan Sudakaran
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Franziska Retz
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Japan
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
40
|
Caspi-Fluger A, Inbar M, Steinberg S, Friedmann Y, Freund M, Mozes-Daube N, Zchori-Fein E. Characterization of the symbiont Rickettsia in the mirid bug Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:681-688. [PMID: 25062354 DOI: 10.1017/s0007485314000492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is an omnivorous insect used for biological control. Augmentative release and conservation of N. tenuis have been used for pest control in tomato crops. Intracellular bacterial symbionts of arthropods are common in nature and have diverse effects on their hosts; in some cases they can dramatically affect biological control. Fingerprinting methods showed that the symbiotic complex associated with N. tenuis includes Wolbachia and Rickettsia. Rickettsia of N. tenuis was further characterized by sequencing the 16S rRNA and gltA bacterial genes, measuring its amount in different developmental stages of the insect by real-time polymerase chain reaction, and localizing the bacteria in the insect's body by fluorescence in situ hybridization. The Rickettsia in N. tenuis exhibited 99 and 96% similarity of both sequenced genes to Rickettsia bellii and Rickettsia reported from Bemisia tabaci, respectively. The highest amount of Rickettsia was measured in the 5th instar and adult, and the symbionts could be detected in the host gut and ovaries. Although the role played by Rickettsia in the biology of N. tenuis is currently unknown, their high amount in the adults and localization in the gut suggest that they may have a nutritional role in this insect.
Collapse
Affiliation(s)
- A Caspi-Fluger
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| | - M Inbar
- Department of Evolutionary and Environmental Biology,University of Haifa,Haifa 31905,Israel
| | - S Steinberg
- BioBee Sde Eliyahu Ltd,Kibbutz Sde Eliyahu 10810,Israel
| | - Y Friedmann
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences,The Hebrew University of Jerusalem,Jerusalem 91904,Israel
| | - M Freund
- BioBee Sde Eliyahu Ltd,Kibbutz Sde Eliyahu 10810,Israel
| | - N Mozes-Daube
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| | - E Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center,ARO,Ramat-Yishay 30095,Israel
| |
Collapse
|
41
|
Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:579-87. [PMID: 25102427 DOI: 10.1016/j.asd.2014.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 05/15/2023]
Abstract
The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94-100%) to the endosymbiont 'Candidatus Sulcia muelleri' (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97-99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98-99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Marta Kot
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Aniela Gołas
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
42
|
Burdfield-Steel ER, Shuker DM. The evolutionary ecology of the Lygaeidae. Ecol Evol 2014; 4:2278-301. [PMID: 25360267 PMCID: PMC4201440 DOI: 10.1002/ece3.1093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
The Lygaeidae (sensu lato) are a highly successful family of true bugs found worldwide, yet many aspects of their ecology and evolution remain obscure or unknown. While a few species have attracted considerable attention as model species for the study of insect physiology, it is only relatively recently that biologists have begun to explore aspects of their behavior, life history evolution, and patterns of intra- and interspecific ecological interactions across more species. As a result though, a range of new phenotypes and opportunities for addressing current questions in evolutionary ecology has been uncovered. For example, researchers have revealed hitherto unexpectedly rich patterns of bacterial symbiosis, begun to explore the evolutionary function of the family's complex genitalia, and also found evidence of parthenogenesis. Here we review our current understanding of the biology and ecology of the group as a whole, focusing on several of the best-studied characteristics of the group, including aposematism (i.e., the evolution of warning coloration), chemical communication, sexual selection (especially, postcopulatory sexual selection), sexual conflict, and patterns of host-endosymbiont coevolution. Importantly, many of these aspects of lygaeid biology are likely to interact, offering new avenues for research, for instance into how the evolution of aposematism influences sexual selection. With the growing availability of genomic tools for previously “non-model” organisms, combined with the relative ease of keeping many of the polyphagous species in the laboratory, we argue that these bugs offer many opportunities for behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Emily R Burdfield-Steel
- Centre for Biological Diversity, School of Biology, University of St Andrews Harold Mitchell Building, St Andrews, KY16 9TH, UK
| | - David M Shuker
- Centre for Biological Diversity, School of Biology, University of St Andrews Harold Mitchell Building, St Andrews, KY16 9TH, UK
| |
Collapse
|
43
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
44
|
Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol 2013; 15:2031-42. [PMID: 23452253 DOI: 10.1111/1462-2920.12101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/16/2022]
Abstract
Many hemipterans are associated with symbiotic bacteria, which are usually found intracellularly in specific bacteriomes. In this study, we provide the first molecular identification of the bacteriome-associated, obligate endosymbiont in a Gondwanan relict insect taxon, the moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae), which represents one of the oldest lineages within the Hemiptera. Endosymbiotic associations of fifteen species of the family were analysed, covering representatives from South America, Australia/Tasmania and New Zealand. Phylogenetic analysis based on four kilobases of 16S-23S rRNA gene fragments showed that the obligate endosymbiont of Peloridiidae constitute a so far unknown group of Gammaproteobacteria which is named here 'Candidatus Evansia muelleri'. They are related to the sternorrhynchous endosymbionts Candidatus Portiera and Candidatus Carsonella. Comparison of the primary-endosymbiont and host (COI + 28S rRNA) trees showed overall congruence indicating co-speciation the hosts and their symbionts. The distribution of the endosymbiont within the insect body and its transmission was studied using FISH. The endosymbionts were detected endocellularly in a pair of bacteriomes as well as in the 'symbiont ball' of the posterior pole of each developing oocyte. Furthermore, ultrastructural analysis of the Malpighian tubules revealed that most host nuclei are infected by an endosymbiotic, intranuclear bacterium that was determined as an Alphaproteobacterium of the genus Rickettsia.
Collapse
Affiliation(s)
- Stefan Martin Kuechler
- Department of Animal Ecology II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
45
|
Swiatoniowska M, Ogorzalek A, Golas A, Michalik A, Szklarzewicz T. Ultrastructure, distribution, and transovarial transmission of symbiotic microorganisms in Nysius ericae and Nithecus jacobaeae (Heteroptera: Lygaeidae: Orsillinae). PROTOPLASMA 2013; 250:325-32. [PMID: 22588432 PMCID: PMC3557392 DOI: 10.1007/s00709-012-0416-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/30/2012] [Indexed: 05/14/2023]
Abstract
The organization of the symbiotic system (i.e., distribution and ultrastructure of symbionts) and the mode of inheritance of symbionts in two species, Nysius ericae and Nithecus jacobaeae belonging to Heteroptera: Lygaeidae, are described. Like most hemipterans, Nysius ericae and Nithecus jacobaeae harbor obligate prokaryotic symbionts. The symbiotic bacteria are harbored in large, specialized cells termed bacteriocytes which are localized in the close vicinity of the ovaries as well as inside the ovaries. The ovaries are composed of seven ovarioles of the telotrophic type. Bacteriocytes occur in each ovariole in the basal part of tropharium termed the infection zone. The bacteriocytes form a ring surrounding the early previtellogenic oocytes. The cytoplasm of the bacteriocytes is tightly packed with large elongated bacteria. In the bacteriocytes of Nysius ericae, small, rod-shaped bacteria also occur. Both types of bacteria are transovarially transmitted from one generation to the next.
Collapse
Affiliation(s)
- Malgorzata Swiatoniowska
- Department of Animal Developmental Biology, Zoological Institute, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Antoni Ogorzalek
- Department of Animal Developmental Biology, Zoological Institute, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Aniela Golas
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
46
|
Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (hippoboscoidea, nycterophiliinae). Appl Environ Microbiol 2012; 78:8639-49. [PMID: 23042170 DOI: 10.1128/aem.02455-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.
Collapse
|
47
|
Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 2012; 21:6134-51. [PMID: 23017151 DOI: 10.1111/mec.12027] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 12/13/2022]
Abstract
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture-independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid-gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri-dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid-gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid-gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.
Collapse
Affiliation(s)
- Sailendharan Sudakaran
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
48
|
Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 2012; 78:4149-56. [PMID: 22504806 DOI: 10.1128/aem.00673-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here we report a novel clade of secondary endosymbionts associated with insects and other arthropods. Seed bugs of the genus Nysius (Hemiptera: Lygaeidae) harbor the primary gammaproteobacterial symbiont Schneideria nysicola within a pair of bacteriomes in the abdomen. Our survey of Nysius species for their facultative bacterial associates consistently yielded a novel type of alphaproteobacterial 16S rRNA gene sequence in addition to those of Wolbachia. Diagnostic PCR survey of 343 individuals representing 24 populations of four Nysius species revealed overall detection rates of the alphaproteobacteria at 77.6% in Nysius plebeius, 87.7% in Nysius sp. 1, 81.0% in Nysius sp. 2, and 100% in Nysius expressus. Further survey of diverse stinkbugs representing 24 families, 191 species, and 582 individuals detected the alphaproteobacteria from an additional 12 species representing six families. Molecular phylogenetic analysis showed that the alphaproteobacteria from the stinkbugs form a distinct and coherent monophyletic group in the order Rickettsiales together with several uncharacterized endosymbionts from fleas and ticks. The alphaproteobacterial symbiont clade was allied to bacterial clades such as the endosymbionts of acanthamoebae, the endosymbionts of cnidarians, and Midichloria spp., the mitochondrion-associated endosymbionts of ticks. In situ hybridization and electron microscopy identified small filamentous bacterial cells in various tissues of N. plebeius, including the bacteriome and ovary. The concentrated localization of the symbiont cells at the anterior pole of oocytes indicated its vertical transmission route through host insect generations. The designation "Candidatus Lariskella arthropodarum" is proposed for the endosymbiont clade.
Collapse
|