1
|
Bralet T, Risco-Castillo V, Valsecchi I, Laidebeure S, Sailler A, Lécu A, Botterel F, Guillot J, Arné P, Jouvion G. Aspergillosis in a colony of Humboldt penguins (Spheniscus humboldti) in a french zoological park: evaluation of environmental exposure. Vet Res Commun 2024; 48:437-448. [PMID: 37819485 DOI: 10.1007/s11259-023-10220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Aspergillosis is a major health problem in captive penguins due to the inhalation and the development of airborne spores of opportunistic environmental molds of the genus Aspergillus. Diagnosis is often delayed and treatments, based on the use of azole antifungals, are not fully effective. This study assesses the risk of exposure to Aspergillus sp. and determines the environmental reservoirs in the direct environment of a colony of Humboldt penguins (Spheniscus humboldti) in a zoological park in Paris, and the risk of contamination with resistant isolates. Every 15 days between February and May 2022, environmental samples (air and subtract from the nests, pond water, pigeon and penguin droppings) were carried out in the penguin enclosure as well as clinical samples (one-time non-invasive sampling on chicks), and screened for Aspergillus sp. conidia. From 191 environmental samples, 264 strains of Aspergillus including 221 strains of A. fumigatus were isolated, mostly from ambient air, in the nests, and pond water. No "at risk" areas in the penguin environment have been highlighted, nor an increased risk because of the proximity with urban wild birds. However, the load of airborne Aspergillus in the nests increased significantly with outdoor temperature. Of the 221 strains isolated, we identified only one azole-resistant strain, displaying the TR34/L98H mutation in the cyp51A gene. This low prevalence of resistant strains may probably be partly explained by the urban location of the zoological park, surrounded by kilometers of urban areas without agricultural activities.
Collapse
Affiliation(s)
- Tristan Bralet
- Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC ANSES, Dynamyc research team, Créteil, F-94000, France
- French Food Safety Agency, Bacterial Zoonosis unit, Maisons-Alfort, F-94700, France
| | - Veronica Risco-Castillo
- Anses, INRAE, Laboratoire de Santé Animale, Ecole nationale vétérinaire d'Alfort, BIPAR, Maisons- Alfort, F-94700, France
- Ecole nationale vétérinaire d'Alfort, Centre Hospitalo-Universitaire de la Faune Sauvage, Maisons-Alfort, F-94700, France
| | - Isabel Valsecchi
- Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC ANSES, Dynamyc research team, Créteil, F-94000, France
| | - Sylvie Laidebeure
- Parc Zoologique de Paris, Museum national d'Histoire naturelle, Paris, F-75012, France
| | - Anaïs Sailler
- Parc Zoologique de Paris, Museum national d'Histoire naturelle, Paris, F-75012, France
| | - Alexis Lécu
- Parc Zoologique de Paris, Museum national d'Histoire naturelle, Paris, F-75012, France
| | - Françoise Botterel
- Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC ANSES, Dynamyc research team, Créteil, F-94000, France
| | - Jacques Guillot
- Dermatology, Parasitology and Mycology department, ONIRIS, Nantes, F-44300, France
- Université d'Angers, Université de Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Pascal Arné
- Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC ANSES, Dynamyc research team, Créteil, F-94000, France
- Ecole nationale vétérinaire d'Alfort, Centre Hospitalo-Universitaire de la Faune Sauvage, Maisons-Alfort, F-94700, France
| | - Grégory Jouvion
- Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC ANSES, Dynamyc research team, Créteil, F-94000, France.
- Histology and pathology unit, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, F-94700, France.
| |
Collapse
|
2
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
3
|
Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog 2021; 17:e1009711. [PMID: 34324607 PMCID: PMC8321103 DOI: 10.1371/journal.ppat.1009711] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole-resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.
Collapse
Affiliation(s)
- Caroline Burks
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Alexandria Darby
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Luisa Gómez Londoño
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Plant Biology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Marin T. Brewer
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Dynamics of Aspergillus fumigatus in Azole Fungicide-Containing Plant Waste in the Netherlands (2016-2017). Appl Environ Microbiol 2021; 87:AEM.02295-20. [PMID: 33127811 PMCID: PMC7783342 DOI: 10.1128/aem.02295-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023] Open
Abstract
The treatment of patients suffering from Aspergillus diseases is hampered due to infections with Aspergillus fumigatus that are already resistant to medical azoles. Previous work has suggested that A. fumigatus likely gains resistance through environmental azole exposure in so-called hot spots. Here, we investigated A. fumigatus resistance dynamics over time at three sites at which farmers used azole fungicides for crop protection. Over 16 months, 114 samples were taken from stockpiles of decaying plant waste. A. fumigatus and azole fungicide residues were ubiquitously present in the plant waste. On average, 105 A. fumigatus CFU/g was recovered, of which roughly half were itraconazole and tebuconazole resistant. Similar tandem repeat-mediated resistance mechanisms were found in colonies cultured from plant waste as reported in clinical azole-resistant isolates. Our results show a consistent high burden of azole-resistant A. fumigatus in azole-containing plant waste and underscores the need to further investigate resistance-reducing interventions and transmission routes.IMPORTANCE Aspergillus fumigatus is consistently present independently on season at a high abundance in plant waste material throughout the sampling period. Our study confirmed that long-term storage sites of azole-containing decaying plant material can indeed be considered hot spots, which can sustain resistance development and maintenance in A. fumigatus Roughly half of individual isolates were azole resistant and carried genetic mutations that are highly similar to those found in patients with azole-resistant invasive aspergillosis. Our work suggests that environmental sources of azole resistance in A. fumigatus may be important, underscoring the need for further studies on environment-to-patient transmission routes.
Collapse
|
5
|
He P, Wei S, Shao L, Lü F. Aerosolization behavior of prokaryotes and fungi during composting of vegetable waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:103-113. [PMID: 31079724 DOI: 10.1016/j.wasman.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Aerobic composting is one of the most effective ways to treat biowaste. However, microorganisms, including prokaryotes (i.e. bacteria and archaea) and fungi, are inevitably released from the compost as bioaerosols during biowaste composting. The release pattern of bioaerosols was analyzed during vegetable waste composting through onsite direct sampling of bioaerosol, compost on the pile surface, and compost inside the windrows to have a systematic understanding of the aerosolization behavior of bacteria, archaea, and fungi during composting. A total of six and three dominant microbial phyla were detected in the vegetable compost and aerosol, respectively. The overall aerosolization index of archaea and bacteria was 0-79 and 0-214, respectively, while that of fungi ranged from 0 to 397. The major preferentially aerosolized microorganism phyla included Bacteroidetes (bacteria) and Basidiomycota (fungi). Furthermore, the aerosolization index of bacterial and fungal genera was 0-22,500 and 0-9000, respectively. Seven major preferentially aerosolized bacterial genera, including Brevundimonas, Massilia, Chryseobacterium, Chryseobacterium, Kurthia, Burkholderia-Paraburkholderia, and Acinetobacter were detected with aerosolization indices of 171, 491, 1478, 22,460, 5525, 4014, and 631, respectively. With regard to fungal genera, Cochliobolus, Sclerotinia, and Aspergillus were noted to get easily aerosolized, with maximum aerosolization indices of 7344, 8582, and 439, respectively. The microbial number in the aerosol from composts ranged from 400 to 4800 cell/m3. Besides, more than 90% of easily aerosolized microbial genera were Gram-negative and pathogenic. Thus, the microorganisms released from vegetable compost may have certain detrimental effect on human health.
Collapse
Affiliation(s)
- Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shunyan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Williams B, Douglas P, Roca Barcelo A, Hansell AL, Hayes E. Estimating Aspergillus fumigatus exposure from outdoor composting activities in England between 2005 and 14. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 84:235-244. [PMID: 30691898 DOI: 10.1016/j.wasman.2018.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Bioaerosols, ubiquitous in ambient air, are released in elevated concentrations from composting facilities with open-air processing areas. However, spatial and temporal variability of bioaerosols, particularly in relation to meteorology, is not well understood. Here we model relative concentrations of Aspergillus fumigatus at each postcode-weighted centroid within 4 km of 217 composting facilities in England between 2005 and 2014. Facilities were geocoded with the aid of satellite imagery. Data from existing bioaerosol modelling literature were used to build emission profiles in ADMS. Variation in input parameters between each modelled facility was reduced to a minimum. Meteorological data for each composting facility was derived from the nearest SCAIL-Agriculture validated meteorological station. According to our results, modelled exposure risk was driven primarily by wind speed, direction and time-varying emissions factors incorporating seasonal fluctuations in compostable waste. Modelled A.fumigatus concentrations decreased rapidly from the facility boundary and plateaued beyond 1.5-2.0 km. Where multiple composting facilities were within 4 km of each other, complex exposure risk patterns were evident. More long-term bioaerosol monitoring near facilities is needed to help improve exposure estimation and therefore assessment of any health risks to local populations.
Collapse
Affiliation(s)
- B Williams
- Air Quality Management Resource Centre, University of the West of England, Faculty of Environment and Technology, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - P Douglas
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK; Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, London SW3 6LR, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards, Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - A Roca Barcelo
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards, Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - A L Hansell
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards, Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK; Directorate of Public Health and Primary Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK; Centre for Environmental Health and Sustainability, George Davies Centre University of Leicester, University Road, Leicester LE1 7RH, UK
| | - E Hayes
- Air Quality Management Resource Centre, University of the West of England, Faculty of Environment and Technology, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
7
|
Feeney P, Rodríguez SF, Molina R, McGillicuddy E, Hellebust S, Quirke M, Daly S, O'Connor D, Sodeau J. A comparison of on-line and off-line bioaerosol measurements at a biowaste site. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:323-338. [PMID: 29477650 DOI: 10.1016/j.wasman.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
An air measurement campaign was carried out at a green-waste composting site in the South of Ireland during Spring 2016. The aim was to quantify and identify the levels of Primary Biological Aerosol Particles (PBAP) that were present using the traditional off-line, impaction/optical microscopy method alongside an on-line, spectroscopic approach termed WIBS (Wideband Integrated Bioaerosol Sensor), which can provide number concentrations, sizes and "shapes" of airborne PBAP in real-time by use of Light Induced Fluorescence (LIF). The results from the two techniques were compared in order to validate the use of the spectroscopic method for determining the releases of the wide-range of PBAP present there as a function of site activity and meteorological conditions. The seven-day monitoring period undertaken was much longer than any real-time studies that have been previously performed and allowed due comparison between weekday (working) activities at the site and weekend (closed) releases. The time-span also allowed relationships between site activities like turning, agitation or waste delivery and the WIBS data to be determined in a quantitative manner. This information cannot be obtained with the Andersen Sampling methods generally employed at green-waste management sites. Furthermore, few specific bioaerosol types other than Aspergillus fumigatus, are identified using the traditional protocols employed for site licensing purposes. Here though the co-location of WIBS with the impaction instrument made it possible to identify the real-time release behaviour of a specific plant pathogenic spore, Ustilago maydis, present after green-waste deliveries were made by a local distillery.
Collapse
Affiliation(s)
- Patrick Feeney
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | | | - Rafael Molina
- Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Eoin McGillicuddy
- School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - Stig Hellebust
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Michael Quirke
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Shane Daly
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - David O'Connor
- School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - John Sodeau
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Douglas P, Hayes ET, Williams WB, Tyrrel SF, Kinnersley RP, Walsh K, O'Driscoll M, Longhurst PJ, Pollard SJT, Drew GH. Use of dispersion modelling for Environmental Impact Assessment of biological air pollution from composting: Progress, problems and prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:22-29. [PMID: 28889991 DOI: 10.1016/j.wasman.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
With the increase in composting asa sustainable waste management option, biological air pollution (bioaerosols) from composting facilities have become a cause of increasing concern due to their potential health impacts. Estimating community exposure to bioaerosols is problematic due to limitations in current monitoring methods. Atmospheric dispersion modelling can be used to estimate exposure concentrations, however several issues arise from the lack of appropriate bioaerosol data to use as inputs into models, and the complexity of the emission sources at composting facilities. This paper analyses current progress in using dispersion models for bioaerosols, examines the remaining problems and provides recommendations for future prospects in this area. A key finding is the urgent need for guidance for model users to ensure consistent bioaerosol modelling practices.
Collapse
Affiliation(s)
- P Douglas
- UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom; School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | - E T Hayes
- Air Quality Management Resource Centre, University of the West of England, Faculty of Environment and Technology, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - W B Williams
- Air Quality Management Resource Centre, University of the West of England, Faculty of Environment and Technology, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - S F Tyrrel
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | - R P Kinnersley
- Environment Agency, Environment and Business Directorate, Deanery Road, Bristol BS1 5AH, UK.
| | - K Walsh
- Environment Agency, Environment and Business Directorate, Deanery Road, Bristol BS1 5AH, UK.
| | - M O'Driscoll
- Environment Agency, Air Quality Modelling Assessment Unit, Deanery Road, Bristol BS1 5AH, United Kingdom.
| | - P J Longhurst
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | - S J T Pollard
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | - G H Drew
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
9
|
Magro M, Sykes J, Vishkautsan P, Martínez-López B. Spatial Patterns and Impacts of Environmental and Climatic Factors on Canine Sinonasal Aspergillosis in Northern California. Front Vet Sci 2017; 4:104. [PMID: 28717638 PMCID: PMC5494614 DOI: 10.3389/fvets.2017.00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Sinonasal aspergillosis (SNA) causes chronic nasal discharge in dogs and has a worldwide distribution, although most reports of SNA in North America originate from the western USA. SNA is mainly caused by Aspergillus fumigatus, a ubiquitous saprophytic filamentous fungus. Infection is thought to follow inhalation of spores. SNA is a disease of the nasal cavity and/or sinuses with variable degrees of local invasion and destruction. While some host factors appear to predispose to SNA (such as belonging to a dolichocephalic breed), environmental risk factors have been scarcely studied. Because A. fumigatus is also the main cause of invasive aspergillosis in humans, unraveling the distribution and the environmental and climatic risk factors for this agent in dogs would be of great benefit for public health studies, advancing understanding of both distribution and risk factors in humans. In this study, we reviewed electronic medical records of 250 dogs diagnosed with SNA between 1990 and 2014 at the University of California Davis Veterinary Medical Teaching Hospital (VMTH). A 145-mile radius catchment area around the VMTH was selected. Data were aggregated by zip code and incorporated into a multivariate logistic regression model. The logistic regression model was compared to an autologistic regression model to evaluate the effect of spatial autocorrelation. Traffic density, active composting sites, and environmental and climatic factors related with wind and temperature were significantly associated with increase in disease occurrence in dogs. Results provide valuable information about the risk factors and spatial distribution of SNA in dogs in Northern California. Our ultimate goal is to utilize the results to investigate risk-based interventions, promote awareness, and serve as a model for further studies of aspergillosis in humans.
Collapse
Affiliation(s)
- Monise Magro
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Jane Sykes
- William R. Pritchard Veterinary Medical Teaching Hospital (VMTH), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Polina Vishkautsan
- Internal Medicine, Veterinary Specialty Center of Tucson, Tucson, AZ, United States
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
10
|
A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. mBio 2017; 8:mBio.00791-17. [PMID: 28655821 PMCID: PMC5487732 DOI: 10.1128/mbio.00791-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50) azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45) wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45) harbored the TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-resistant mutation (TR463/Y121F/M172I/T289A/G448S) with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates showed that the novel TR463 mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR46 repeats. Importantly, in the laboratory, we recovered the TR463 mutation from a sexual cross between two TR46 isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs) during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment of Aspergillus diseases. Composting of organic matter containing azole residues might be important for resistance development and subsequent spread of resistance mutations in Aspergillus fumigatus. In this article, we show the dominance of azole-resistant A. fumigatus in azole-exposed compost and the discovery of a new resistance mutation with clinical relevance. Furthermore, our study indicates that current fungicide application is not sustainable as new resistance mutations continue to emerge, thereby threatening the use of triazoles in medicine. We provide evidence that the sexual part of the fungal life cycle may play a role in the emergence of resistance mutations because under laboratory conditions, we reconstructed the resistance mutation through sexual crossing of two azole-resistant A. fumigatus isolates derived from the same compost heap. Understanding the mechanisms of resistance selection in the environment is needed to design strategies against the accumulation of resistance mutations in order to retain the azole class for crop protection and treatment of Aspergillus diseases.
Collapse
|
11
|
Douglas P, Tyrrel SF, Kinnersley RP, Whelan M, Longhurst PJ, Hansell AL, Walsh K, Pollard SJT, Drew GH. Predicting Aspergillus fumigatus exposure from composting facilities using a dispersion model: A conditional calibration and validation. Int J Hyg Environ Health 2016; 220:17-28. [PMID: 27745825 DOI: 10.1016/j.ijheh.2016.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022]
Abstract
Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are unclear. Exposure levels are difficult to quantify as established sampling methods are costly, time-consuming and current data provide limited temporal and spatial information. Confidence in dispersion model outputs in this context would be advantageous to provide a more detailed exposure assessment. We present the calibration and validation of a recognised atmospheric dispersion model (ADMS) for bioaerosol exposure assessments. The model was calibrated by a trial and error optimisation of observed Aspergillus fumigatus concentrations at different locations around a composting site. Validation was performed using a second dataset of measured concentrations for a different site. The best fit between modelled and measured data was achieved when emissions were represented as a single area source, with a temperature of 29°C. Predicted bioaerosol concentrations were within an order of magnitude of measured values (1000-10,000CFU/m3) at the validation site, once minor adjustments were made to reflect local differences between the sites (r2>0.7 at 150, 300, 500 and 600m downwind of source). Results suggest that calibrated dispersion modelling can be applied to make reasonable predictions of bioaerosol exposures at multiple sites and may be used to inform site regulation and operational management.
Collapse
Affiliation(s)
- Philippa Douglas
- Imperial College London, Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health and National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, in Partnership with Public Health England and Collaboration with Imperial College London, United Kingdom; Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom.
| | - Sean F Tyrrel
- Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom.
| | - Robert P Kinnersley
- Environment Agency, Evidence Directorate, Deanery Road, Bristol, United Kingdom.
| | - Michael Whelan
- Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom; Leicester University, Department of Geography, Leicestershire LE1 7RH, United Kingdom.
| | - Philip J Longhurst
- Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom.
| | - Anna L Hansell
- Imperial College London, Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health and National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, in Partnership with Public Health England and Collaboration with Imperial College London, United Kingdom; Imperial College Healthcare NHS Trust, Public Health and Primary Care, United Kingdom.
| | - Kerry Walsh
- Environment Agency, Evidence Directorate, Deanery Road, Bristol, United Kingdom.
| | - Simon J T Pollard
- Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom.
| | - Gillian H Drew
- Cranfield University, School of Water, Energy, and Environment, Cranfield, Bedfordshire, United Kingdom.
| |
Collapse
|
12
|
Verweij PE, Zhang J, Debets AJM, Meis JF, van de Veerdonk FL, Schoustra SE, Zwaan BJ, Melchers WJG. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. THE LANCET. INFECTIOUS DISEASES 2016; 16:e251-e260. [PMID: 27638360 DOI: 10.1016/s1473-3099(16)30138-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
Aspergillus fumigatus causes a range of diseases in human beings, some of which are characterised by fungal persistence. A fumigatus can persist by adapting to the human lung environment through physiological and genomic changes. The physiological changes are based on the large biochemical versatility of the fungus, and the genomic changes are based on the capacity of the fungus to generate genetic diversity by spontaneous mutations or recombination and subsequent selection of the genotypes that are most adapted to the new environment. In this Review, we explore the adaptation strategies of A fumigatus in relation to azole resistance selection and the clinical implications thereof for management of diseases caused by Aspergillus spp. We hypothesise that the current diagnostic tools and treatment strategies do not take into account the biology of the fungus and might result in an increased likelihood of fungal persistence in patients. Stress factors, such as triazole exposure, cause mutations that render resistance. The process of reproduction-ie, sexual, parasexual, or asexual-is probably crucial for the adaptive potential of Aspergillus spp. As any change in the environment can provoke adaptation, switching between triazoles in patients with chronic pulmonary aspergillosis might result in a high-level pan-triazole-resistant phenotype through the accumulation of resistance mutations. Alternatively, when triazole therapy is stopped, an azole-free environment is created that could prompt selection for compensatory mutations that overcome any fitness costs that are expected to accompany resistance development. As a consequence, starting, switching, and stopping azole therapy has the risk of selecting for highly resistant strains with wildtype fitness. A similar adaptation is expected to occur in response to other stress factors, such as endogenous antimicrobial peptides; over time the fungus will become increasingly adapted to the lung environment, thereby limiting the probability of eradication. Our hypothesis challenges current management strategies, and future research should investigate the genomic dynamics during infection to understand the key factors facilitating adaptation of Aspergillus spp.
Collapse
Affiliation(s)
- Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Jianhua Zhang
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | | | | | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Pahari AK, Dasgupta D, Patil RS, Mukherji S. Emission of bacterial bioaerosols from a composting facility in Maharashtra, India. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 53:22-31. [PMID: 27155946 DOI: 10.1016/j.wasman.2016.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
This study was undertaken to quantify and characterize size-segregated bacterial bioaerosols both on-site and off-site of a waste treatment facility (WTF) in Maharashtra employing windrow composting. Viable bacterial bioaerosols on nutrient agar (NA) and actinomycetes isolation agar (AIA) were quantified after sampling using Anderson-six stage impactor. Viable bacterial bioaerosols were identified based on 16S rDNA sequencing. Approximately, 16-34% of the total viable bacteria collected at the WTF were in the size range 0.65-2.1μm that can penetrate deep into the respiratory tract and also represents bacteria present in free form. Thus, 66-84% of bacterial bioaerosols were associated with coarse airborne particles greater than 2.1μm. A total of 24 bacterial species were isolated and characterized through gram staining. Among these 25% were gram negative and 75% were gram positive. The predominant bacterial genera were Bacillus, Streptococcus, Staphylococcus, Acinetobacter and Kocuria. The mean on-site concentration of total viable bacteria on NA and AIA and airborne particles (PM2.5 and PM10) were higher than the corresponding off-site values. The mean on-site concentration of viable bacteria on NA and AIA were in the range of 3.8×10(3) to 5.4×10(4)CFU/m(3) and 9.8×10(3) to 1.2×10(5)CFU/m(3), respectively, during activity period. Good correlation (R(2)=0.999) was observed between total bioaerosols and aerosols (PM10) collected using Anderson impactor and High volume sampler, respectively. Sampling size segregated aerosols using the Siotus personal cascade impactor indicated higher association of bacteria with the coarse fraction (greater than 2.5μm).
Collapse
Affiliation(s)
- Arnab Kumar Pahari
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Maharastra 400076, India
| | - Debdeep Dasgupta
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Maharastra 400076, India
| | - Rashmi S Patil
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Maharastra 400076, India
| | - Suparna Mukherji
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Maharastra 400076, India.
| |
Collapse
|
14
|
Morey PR, Hoffman BH. Enclosure of Composting Operations to Minimize Bioaerosol Emissions into Ambient Air. APPLIED BIOSAFETY 2016. [DOI: 10.1177/153567600300800204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Morey PR, Hoffman BH. Enclosure of Composting Operations to Minimize Bioaerosol Emissions into Ambient Air—Part 2. APPLIED BIOSAFETY 2016. [DOI: 10.1177/153567600400900102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wéry N. Bioaerosols from composting facilities--a review. Front Cell Infect Microbiol 2014; 4:42. [PMID: 24772393 PMCID: PMC3983499 DOI: 10.3389/fcimb.2014.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling.
Collapse
Affiliation(s)
- Nathalie Wéry
- INRA, UR0050, Laboratoire de Biotechnologie de l'EnvironnementNarbonne, France
| |
Collapse
|
17
|
Development and evaluation of a method for the quantification of airborne Thermoactinomyces vulgaris by real-time PCR. J Microbiol Methods 2012; 92:25-32. [PMID: 23103956 DOI: 10.1016/j.mimet.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/21/2022]
Abstract
Actinomycetes are ubiquitous and some can be potentially pathogenic for humans when present in the air of some working areas. It's notably the case for Thermoactinomyces vulgaris in composting facilities where aerial concentrations can reach high values of more than 10(7) CFU·m(-3). Workers exposure to these inhalable bioaerosols can be the source of various diseases. The literature reveals a lack of knowledge about risk assessment: there is neither dose-effects relationship for most agents, or threshold limit value. The objectives of this study were to develop and standardize a method to quantify workers exposure to bioaerosols. We have developed and evaluated a method to quantify airborne T. vulgaris based on DNA extraction of aerial microbial communities and qPCR. Four DNA extraction protocols were compared, and primers and a hydrolysis probe were designed for specific amplification of the target species (gyrB gene). This method was compared to traditional methods based on viable or cultivable counting by epifluorescence microscopy or plating on selective media. The method was applied on environmental bioaerosols sampled under real exposure conditions in composting plants. We demonstrate that the method to quantify T. vulgaris in bioaerosols is specific, sensitive and repeatable. We demonstrate the occurrence and quantified T. vulgaris in the atmosphere of composting facilities with concentrations ranging from 3×10(2) to 3×10(6)×m(-3).
Collapse
|
18
|
|
19
|
Perrott JK, Armstrong DP. Aspergillus fumigatus densities in relation to forest succession and edge effects: implications for wildlife health in modified environments. ECOHEALTH 2011; 8:290-300. [PMID: 22076057 DOI: 10.1007/s10393-011-0716-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The hihi (or stitchbird, Notiomystis cincta) is a New Zealand endemic nectivorous forest bird now restricted to one pristine island. Relocation to establish viable hihi populations on other islands has been the main conservation action since the early 1980s. To date, hihi reintroductions to young growth islands have had poor success despite the absence of mammalian predators. It was thought that past failures were due to food limitation, but research suggests that food limitation alone cannot account for their poor survivorship. Post-mortems of dead hihi has shown that aspergillosis caused by Aspergillus fumigatus is a major mortality factor and there is current concern regarding their susceptibility to this fungal disease. In this paper we develop and assess the hypothesis that A. fumigatus limits hihi population viability on modified islands, and suggest that A. fumigatus is a potential indicator species for habitat disturbance. We report that the prevalence of A. fumigatus spores in the soil is much higher in young growth forests and forest edge habitats. Results suggest that hihi mortality rates between islands are potentially due to differential exposure to A. fumigatus spores. We assess relationships between habitat disturbance, A. fumigatus contamination and hihi mortality rates by testing the following predictions: (1) that densities of A. fumigatus spores will be higher on modified islands, (2) that densities of A. fumigatus spores on islands will be correlated with hihi mortality rates and (3) that densities of A. fumigatus spores will be higher at the forest edge than in the interior. We test each of these predictions using soil samples, air samples and samples of nectar from plant species fed on by hihi.
Collapse
Affiliation(s)
- John K Perrott
- Wildlife Ecology Group, Institute of Natural Resources, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | | |
Collapse
|
20
|
Abstract
The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis.
Collapse
|
21
|
Le Goff O, Bru-Adan V, Bacheley H, Godon JJ, Wéry N. The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 2010; 108:325-40. [DOI: 10.1111/j.1365-2672.2009.04427.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Schlosser O, Huyard A, Cartnick K, Yañez A, Catalán V, Quang ZD. Bioaerosol in composting facilities: occupational health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2009; 81:866-77. [PMID: 19860143 DOI: 10.2175/106143009x407258] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This research found evidence of an association between occupational exposure to bioaerosols in composting plants and health outcome occurrence in exposed workers. An occupational exposure assessment in six composting plants was performed to better characterize personal exposure levels and evaluate associated health risk in workers. Sampling results showed large ranges of concentrations of dust, bacteria, molds, and endotoxin in ambient air and in personal samples, both when driving a front-end loader and when cleaning, monitoring, and performing maintenance tasks. Mean personal exposure levels were high at 100 to more than 10,000 times higher than outdoor background levels and fully consistent with occurrence of inflammatory and allergic respiratory outcomes among workers. Engineering control, personal protection, and education and training programs for employees, health, and safety officials, and occupational physicians are being developed and implemented.
Collapse
Affiliation(s)
- Olivier Schlosser
- SUEZ ENVIRONNEMENT, CIRSEE, 38 rue du President Wilson, 78230 Le Pecq, France.
| | | | | | | | | | | |
Collapse
|
23
|
Fischer G, Albrecht A, Jäckel U, Kämpfer P. Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. Int J Hyg Environ Health 2008; 211:132-42. [DOI: 10.1016/j.ijheh.2007.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 05/27/2007] [Accepted: 05/27/2007] [Indexed: 10/22/2022]
|
24
|
Albrecht A, Fischer G, Brunnemann-Stubbe G, Jäckel U, Kämpfer P. Recommendations for study design and sampling strategies for airborne microorganisms, MVOC and odours in the surrounding of composting facilities. Int J Hyg Environ Health 2007; 211:121-31. [PMID: 17765659 DOI: 10.1016/j.ijheh.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/29/2022]
Abstract
Microorganisms and odour emissions from composting plants often lead to complaints by residents, especially by people living close to such plants. Both parameters were studied in a systematic approach under specific local meteorological conditions at nine different composting plants in Germany with emphasis on dispersal of microorganisms. Measurements were done at emission points and at sampling sites in the downwind and upwind directions of the facilities under 'normal case' (i.e. weather conditions typical for the location in combination with working activities at the plants) and 'real worst case' conditions (dispersal of bioaerosols into the surroundings expected to occur with high probability). Airborne microorganisms were sampled using filtration and impingement. Subsequent cultivation on four different culture media allowed quantification and identification of the culturable microflora. It turned out that a general assessment of emissions and dispersal of bioaerosols from composting plants is not possible because of the coherences of various factors influencing the dispersal. The site-specific meteorological situations must be considered carefully, whenever sampling locations are selected and need to be recorded in any sampling protocol. Air inversions in particular can lead to high concentrations of microorganisms (>10(4)-10(5)cfu m(-3) of thermophilic actinomycetes and thermotolerant fungi) in the surroundings of composting plants. Finally, it was shown that both thermotolerant fungi and thermophilic actinomycetes can serve as indicator organisms.
Collapse
Affiliation(s)
- Andreas Albrecht
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
25
|
Schnürer A, Schnürer J. Fungal survival during anaerobic digestion of organic household waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:1205-11. [PMID: 16293407 DOI: 10.1016/j.wasman.2005.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 06/30/2005] [Accepted: 09/15/2005] [Indexed: 05/05/2023]
Abstract
Anaerobic digestion of organic waste yields energy rich biogas and retains nutrients (N, P, K, S, etc.) in a stabilised residue. For the residue to be used as a soil fertiliser, it must be free from pollutants and harmful microorganisms. Fungal survival during sanitation and anaerobic treatment of source-separated organic household waste and during aerobic storage of the residue obtained was investigated. Decimal reduction times were determined for inoculated fungi (Aspergillus flavus and Aspergillus fumigatus, Penicillium roqueforti, Rhizomucor pusillus, Thermoascus crustaceus and Thermomyces lanuginosus). Several different fungal species were found after waste sanitation treatment (70 degrees C, 1 h), with Aspergillus species dominating in non-inoculated waste. Anaerobic waste degradation decreased the diversity of fungal species for processes run at both 37 and 55 degrees C, but not total fungal colony forming units. Fungi surviving the mesophilic anaerobic digestion were mainly thermotolerant Talaromyces and Paecilomyces species. T. crustaceus and T. lanuginosus were the only inoculated fungi to survive the thermophilic anaerobic degradation process. Aerobic storage of both types of anaerobic residues for one month significantly decreased fungal counts.
Collapse
Affiliation(s)
- Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
26
|
Sanchez-Monedero MA, Stentiford EI, Mondini C. Biofiltration at composting facilities: effectiveness for bioaerosol control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:4299-303. [PMID: 14524468 DOI: 10.1021/es0202309] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biofiltration was evaluated as a method to control the airborne microorganisms released at composting facilities. Seven commercial composting plants were selected for this study because of their different operating conditions and biofilter designs. In all plants, the biofilters were originally designed for odor control. The concentrations of both Aspergillus fumigatus and mesophilic bacteria were measured in the air stream before and after passing through the biofilters and compared with the background concentrations in the surrounding area. Results showed that biofiltration achieved an average reduction greater than 90% and 39% in the concentrations of A. fumigatus and mesophilic bacteria, respectively. In all the plants, the airborne A. fumigatus concentration after the biofilter was lower than 1.2 x 10(3) cfu m(-3), independent of the inlet concentration, whereas the mesophilic bacteria concentration was dependent on the inlet concentration. The different behaviors of the two microorganism groups were thought to be due to the different aerodynamic characteristics of the particles that affected the capture by impact in the biofilter bed. The fungus, whose spores had a maximum of diameter size distribution between 2.1 and 3.3 microm, were more effectively captured in the biofilter than the bacteria, which had diameters mainly between 1.1 and 2.1 microm.
Collapse
|
27
|
Pillai SD, Ricke SC. Bioaerosols from municipal and animal wastes: background and contemporary issues. Can J Microbiol 2002; 48:681-96. [PMID: 12381025 DOI: 10.1139/w02-070] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Global population increases, coupled with intensive animal and livestock production practices, have resulted in the generation, accumulation, and disposal of large amounts of wastes around the world. Aerosolization of microbial pathogens, endotoxins, odors, and dust particles is an inevitable consequence of the generation and handling of waste material. Bioaerosols can be a source of microbial pathogens, endotoxins, and other allergens. Given the close proximity of population centers to concentrated animal-rearing operations and municipal treatment facilities in many parts of the world, there is concern regarding the occupational and public health impacts associated with the exposure to bioaerosols from municipal and animal wastes. Major advances have been made in our understanding of bioaerosol characteristics, identifying the hazards, and identifying possible human and animal health links with aerosolized pathogens and allergens. However, significant knowledge and technology gaps still exist. These include a lack of clear understanding of the fate and transport of bioaerosols, especially within the open environment, an inability to accurately predict the health risks associated with bioaerosolized pathogens, and a lack of standardized bioaerosol sampling protocols, and efficient samplers. This review synthesizes the information related to bioaerosols and addresses the contemporary issues associated with bioaerosols from municipal and animal wastes, with a focus on pathogens.
Collapse
Affiliation(s)
- Suresh D Pillai
- Poultry Science Department, Texas A&M University, College Station 77843-2472, USA.
| | | |
Collapse
|
28
|
Brandi G, Sisti M, Amagliani G. Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. J Appl Microbiol 2000; 88:845-52. [PMID: 10792545 DOI: 10.1046/j.1365-2672.2000.01024.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using three sampler devices (SAS, Andersen Six-Stages and All Glass Impinger), the environmental impact of bacterial and fungal aerosols generated by municipal wastewater treatment plants operating with different methods of sludge oxygenation were evaluated. The highest microbial concentrations were recovered above the tanks (2247 cfu m-3) and in downwind positions (1425 cfu m-3), where a linear correlation (P < 0.05) was found between the quantity of sewage treated and the entities of microbial aerosol dispersion. Moreover, an exponential increase (P < 0.05) in the bacteria recovered from the air occurred at increasing times of treatment. However, after long-term plant operation, high bacterial and fungal concentrations were found in almost all of the sites around the plant. Coliforms, enterococci, Escherichia coli and staphylococci were almost always recovered in downwind positions. Considerable fractions (20-40%) of sampled bacteria were able to penetrate the final stages of the Andersen apparatus and thus, are likely to be able to penetrate the lungs. The plant operating with a fine bubble diffused air system instead was found to generate rather low concentrations of bacteria and fungi; moreover, staphylococci and indicator micro-organisms were almost absent. Finally, salmonellae, Shigella, Pseudomonas aeruginosa and Aeromonas spp. were not detected in either of the plants. The results indicate a remarkable dispersion of airborne bacteria and fungi from tanks in which oxygen is supplied via a mechanical agitation of sludge, and suggest the need to convert them to diffused aeration systems which pose a lesser hazard for human health.
Collapse
Affiliation(s)
- G Brandi
- Institute of Toxicologic, Hygienic and Environmental Science, University of Urbino, Urbino, Italy.
| | | | | |
Collapse
|
29
|
Déportes I, Benoit-Guyod JL, Zmirou D. Hazard to man and the environment posed by the use of urban waste compost: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 1995; 172:197-22. [PMID: 8525355 PMCID: PMC7127558 DOI: 10.1016/0048-9697(95)04808-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/1994] [Accepted: 02/23/1995] [Indexed: 04/14/2023]
Abstract
This review presents the current state of knowledge on the relationship between the environment and the use of municipal waste compost in terms of health risk assessment. The hazards stem from chemical and microbiological agents whose nature and magnitude depend heavily on the degree of sorting and on the composting methods. Three main routes of exposure can be determined and are quantified in the literature: (i) The ingestion of soil/compost mixtures by children, mostly in cases of pica, can be a threat because of the amount of lead, chromium, cadmium, PCDD/F and fecal streptococci that can be absorbed. (ii) Though concern about contamination through the food chain is weak when compost is used in agriculture, some authors anticipate accumulation of pollutants after several years of disposal, which might lead to future hazards. (iii) Exposure is also associated with atmospheric dispersion of compost organic dust that convey microorganisms and toxicants. Data on hazard posed by organic dust from municipal composts to the farmer or the private user is scarce. To date, microorganisms are only measured at composting plants, thus raising the issue of extrapolation to environmental situations. Lung damage and allergies may occur because of organic dust, Gram negative bacteria, actinomycetes and fungi. Further research is needed on the risk related to inhalation of chemical compounds.
Collapse
Affiliation(s)
- I Déportes
- Public Health Laboratory, School of Medicine and Pharmacy, Joseph Fourier University, La Tronche, France
| | | | | |
Collapse
|
30
|
Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses. Appl Environ Microbiol 1985; 49:1191-6. [PMID: 2988442 PMCID: PMC238528 DOI: 10.1128/aem.49.5.1191-1196.1985] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacteria- and virus-containing aerosols were studied during the late summer and fall seasons in a midwestern suburb of the United States before and during the start-up and operation of an unenclosed activated sludge wastewater treatment plant. The study showed that the air in this suburban area contained low-level densities of indicator microorganisms. After the plant began operating, the densities of total aerobic bacteria-containing particles, standard plate count bacteria, total coliforms, fecal coliforms, fecal streptococci, and coliphages increased significantly in the air within the perimeter of the plant. Before plant operations, bacteria were detected from five genera, Klebsiella, Enterobacter, Serratia, Salmonella, and Aeromonas. During plant operations, the number of genera identified increased to 11. In addition to those genera found before plant operations, Escherichia, Providencia, Citrobacter, Acinetobacter, Pasteurella, and Proteus, were also identified. Enteric viruses were detected in low densities from the air emissions of this plant. Only standard plate count bacteria remained at significantly higher than base-line densities beyond 250 m downwind from the center of the aeration tanks. Fecal streptococci and coliphages appeared to be more stable in aerosols than the other indicator microorganisms studied. In general, the densities of microorganism-containing aerosols were higher at night than during the day. The techniques used in this study may be employed to establish microorganism-containing aerosol exposure during epidemiological investigations.
Collapse
|
31
|
Kothary MH, Chase T, Macmillan JD. Levels of Aspergillus fumigatus in air and in compost at a sewage sludge composting site. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0143-1471(84)90084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Clark CS, Rylander R, Larsson L. Levels of gram-negative bacteria, Aspergillus fumigatus, dust, and endotoxin at compost plants. Appl Environ Microbiol 1983; 45:1501-5. [PMID: 6347061 PMCID: PMC242491 DOI: 10.1128/aem.45.5.1501-1505.1983] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Airborne gram-negative bacteria, endotoxins, dust, and Aspergillus fumigatus were measured in four compost plants in Sweden. At sites where material was processed, the number of airborne A. fumigatus exceeded 10(6)/m3, whereas the number of gram-negative bacteria was usually lower. Dust levels were moderate, and endotoxin levels were well below 0.5 micrograms/m3. Medical studies to evaluate the effects of this type of microbial exposure are recommended.
Collapse
|
33
|
Jones BL, Cookson JT. Natural atmospheric microbial conditions in a typical suburban area. Appl Environ Microbiol 1983; 45:919-34. [PMID: 6342536 PMCID: PMC242393 DOI: 10.1128/aem.45.3.919-934.1983] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ambient outdoor concentrations and size distributions of airborne microbial particles were measured approximately weekly for 2 years in a Washington, D.C., suburban area. The study objective was to characterize microbial air quality in the vicinity of a proposed sewage sludge composting facility. During the study, 379 samples were taken at 17 stations, using Andersen microbial samplers. Concentration ranges (in viable particles per cubic meter) were as follows: airborne mesophilic fungi, 0 to 7,220 with a geometric mean of 273; thermophilic fungi, 0 to 193 with a median of 2.1; Aspergillus fumigatus, 0 to 71 with a median of 1.0; aerobic bacteria, 4.2 to 1,640 with a geometric mean of 79; and fecal streptococci, 0 to 5.7 with a median of 0. No fecal coliforms were recovered. The potentially respirable fraction (less than 8 microns) averaged 34% for total bacteria, 56% for mesophilic fungi, 91% for thermophilic fungi, and 95% for A. fumigatus. The specific sampling location was not a major factor affecting microbial particle concentrations or size distributions. Conversely, the time of year was an important determinant of viable particle concentrations for all groups of microorganisms studied. The highest concentrations were observed in summer and fall, with significantly lower levels detected in winter. In general, the microbial data did not correlate with other variables, including weather conditions, measured in this study.
Collapse
|
34
|
Passman FJ. Recovery of Aspergillus fumigatus aerospora from municipal sewage sludge composting operations in the state of Maine. Mycopathologia 1983; 83:41-51. [PMID: 6355853 DOI: 10.1007/bf00437412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An investigation was conducted to determine the effect of composting activity on ambient and transient viable Aspergillus fumigatus aerospora at three composting operations (Westbrook, Bangor, Old Town) in the State of Maine. Meteorological conditions and seasonality were also considered. The purpose of the study was to determine whether composting operations caused increased public health risks due to the generation and dispersal of elevated A. fumigatus aerospora concentrations. Ambient aerospora concentrations at the Westbrook facility did not change during the first year of operation, nor did they differ from concentrations recovered before the composting facility was constructed. Ambient aerospora at Bangor and Old Town were also present at background concentrations. Background aerospora concentrations (less than 50 CFU/m3) were determined at control sites. Spatially and temporally restricted increases in transient A. fumigatus aerospora concentrations were observed. The greatest increases (up to 1 X 10(4) CFU/m3) were associated with wood chip manipulation activities. Aerospora concentrations always returned to background levels within 1 hr after the monitored activities ceased. Meteorological conditions which tended to reduce dust concentrations also decreased A. fumigatus aerospora yields. Evidence regarding seasonality as a factor affecting aerospora concentrations was equivocal. The results of the study demonstrated that residents in the vicinity of the Westbrook, Bangor and Old Town composting operations were not exposed to increased concentrations of A. fumigatus aerospora.
Collapse
|