1
|
Elizabeth George S, Wan Y. Advances in characterizing microbial community change and resistance upon exposure to lead contamination: Implications for ecological risk assessment. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 50:2223-2270. [PMID: 34326626 PMCID: PMC8318135 DOI: 10.1080/10643389.2019.1698260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advancement in molecular techniques has spurred waves of studies on responses of microorganisms to lead contamination exposure, leveraging detailed phylogenetic analyses and functional gene identification to discern the effects of lead toxicity on microbial communities. This work provides a comprehensive review of recent research on (1) microbial community changes in contaminated aquatic sediments and terrestrial soils; (2) lead resistance mechanisms; and (3) using lead resistance genes for lead biosensor development. Sufficient evidence in the literature, including both in vitro and in situ studies, indicates that exposure to lead contamination inhibits microbial activity resulting in reduced respiration, suppressed metabolism, and reduced biomass as well as altered microbial community structure. Even at sites where microbial communities do not vary compositionally with contamination levels due to extremely long periods of exposure, functional differences between microbial communities are evident, indicating that some microorganisms are susceptible to lead toxicity as others develop resistance mechanisms to survive in lead contaminated environments. The main mechanisms of lead resistance involve extracellular and intracellular biosorption, precipitation, complexation, and/or efflux pumps. These lead resistance mechanisms are associated with suites of genes responsible for specific lead resistance mechanisms and may serving as indicators of lead contamination in association with dominance of certain phyla. This allows for development of several lead biosensors in environmental biotechnology. To promote applications of these advanced understandings, molecular techniques, and lead biosensor technology, perspectives of future work on using microbial indicators for site ecological assessment is presented.
Collapse
Affiliation(s)
- S. Elizabeth George
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| | - Yongshan Wan
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| |
Collapse
|
2
|
Naguib MM, El-Gendy AO, Khairalla AS. Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874070701812010056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Mercury is a toxic metal that is present in small amounts in the environment, but its level is rising steadily, due to different human activities, such as industrialization. It can reach humans through the food chain, amalgam fillings, and other sources, causing different neurological disorders, memory loss, vision impairment, and may even lead to death; making its detoxification an urgent task.Methods:Various physical and chemical mercury remediation techniques are available, which generally aim at: (i) reducing its mobility or solubility; (ii) causing its vaporization or condensation; (iii) its separation from contaminated soils. Biological remediation techniques, commonly known as bioremediation, are also another possible alternative, which is considered as cheaper than the conventional means and can be accomplished using either (i) organisms harboring themeroperon genes (merB,merA,merR,merP,merT,merD,merF,merC,merE,merHandmerG), or (ii) plants expressing metal-binding proteins. Recently, differentmerdeterminants have been genetically engineered into several organisms, including bacteria and plants, to aid in detoxification of both ionic and organic forms of mercury.Results:Bacteria that are resistant to mercury compounds have at least a mercuric reductase enzyme (MerA) that reduces Hg+2to volatile Hg0, a membrane-bound protein (MerT) for Hg+2uptake and an additional enzyme, MerB, that degrades organomercurials by protonolysis. Presence of bothmerA andmerB genes confer broad-spectrum mercury resistance. However,merA alone confers narrow spectrum inorganic mercury resistance.Conclusion:To conclude, this review discusses the importance of mercury-resistance genes in mercury bioremediation. Functional analysis ofmeroperon genes and the recent advances in genetic engineering techniques could provide the most environmental friendly, safe, effective and fantastic solution to overcome mercuric toxicity.
Collapse
|
3
|
Diels L, Mergeay M. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 2010; 56:1485-91. [PMID: 16348196 PMCID: PMC184435 DOI: 10.1128/aem.56.5.1485-1491.1990] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alcaligenes eutrophus CH34 DNA fragments encoding resistance to Cd, Co, Zn (czc), or Hg (merA) were cloned and used as probes in colony hybridization procedures with bacteria isolated from polluted environments such as a zinc factory area (desertified because of the toxic effects of zinc contamination) and from sediments from factories of nonferrous metallurgy in Belgium and mine areas in Zaire. From the different soil samples, strains could be isolated and hybridized with the czc probe (resistance to Cd, Co, and Zn from plasmid pMOL30). Percentages of CFU isolated on nonselective plates which hybridized with the czc and the mercury resistance probes were, respectively, 25 and 0% for the zinc desert, 15 to 20 and 10 to 20% for the two Belgian factories, and 40 and 40% for the Likasi mine area. Most of these strains also carried two large plasmids of about the same size as those of A. eutrophus CH34 and shared many phenotypic traits with this strain. These findings indicated a certain correlation between the heavy-metal content in contaminated soils and the presence of heavy-metal-resistant megaplasmid-bearing A. eutrophus strains.
Collapse
Affiliation(s)
- L Diels
- Laboratory of Genetics and Biotechnology, Center of Studies for Nuclear Energy, S.C.K.-C.E.N., B-2400 Mol, Belgium
| | | |
Collapse
|
4
|
Paul JH, Deflaun MF, Jeffrey WH. Mechanisms of DNA utilization by estuarine microbial populations. Appl Environ Microbiol 2010; 54:1682-8. [PMID: 16347679 PMCID: PMC202728 DOI: 10.1128/aem.54.7.1682-1688.1988] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of utilization of DNA by estuarine microbial populations were investigated by competition experiments and DNA uptake studies. Deoxyribonucleoside monophosphates, thymidine, thymine, and RNA all competed with the uptake of radioactivity from [H]DNA in 4-h incubations. In 15-min incubations, deoxyribonucleoside monophosphates had no effect or stimulated [H]DNA binding, depending on the concentration. The uptake of radioactivity from [H]DNA resulted in little accumulation of trichloroacetic acid-soluble intracellular radioactivity and was inhibited by the DNA synthesis inhibitor novobiocin. Molecular fractionation studies indicated that some radioactivity from [H]DNA appeared in the RNA (10 and 30% at 4 and 24 h, respectively) and protein (approximately 3%) fractions. The ability of estuarine microbial assemblages to transport gene sequences was investigated by plasmid uptake studies, followed by molecular probing. Although plasmid DNA was detected on filters after filtration of plasmid-amended incubations, DNase treatment of filters removed this DNA, indicating that there was little transport of intact gene sequences. These observations led to the following model for DNA utilization by estuarine microbial populations. (i) DNA is rapidly bound to the cell surface and (ii) hydrolyzed by cell-associated and extracellular nonspecific nucleases. (iii) DNA hydrolysis products are transported, and (iv) the products are rapidly salvaged into nucleic acids, with little accumulation into intracellular nucleotide pools.
Collapse
Affiliation(s)
- J H Paul
- Department of Marine Science, University of South Florida, St. Petersburg, Florida 33701
| | | | | |
Collapse
|
5
|
Devereux R, Rublee P, Paul JH, Field KG, Domingo JWS. Development and applications of microbial ecogenomic indicators for monitoring water quality: report of a workshop assessing the state of the science, research needs and future directions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2006; 116:459-79. [PMID: 16779607 DOI: 10.1007/s10661-006-7665-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/19/2005] [Indexed: 05/10/2023]
Abstract
This article brings forth recommendations from a workshop sponsored by the U.S. Environmental Protection Agency's Science to Achieve Results (STAR) and Environmental Monitoring and Assessment (EMAP) Programs and by the Council of State Governments, held during May 2002 in Kansas City, Kansas. The workshop assembled microbial ecologists and environmental scientists to determine what research and science is needed to bring existing molecular biological approaches and newer technologies arising from microbial genomic research into environmental monitoring and water quality assessments. Development of genomics and proteomics technologies for environmental science is a very new area having potential to improve environmental water quality assessments. The workshop participants noted that microbial ecologists are already using molecular biological methods well suited for monitoring and water quality assessments and anticipate that genomics-enabled technologies could be made available for monitoring within a decade. Recommendations arising from the workshop include needs for (i) identification of informative microbial gene sequences, (ii) improved understandings of linkages between indicator taxa, gene expression and environmental condition, (iii) technological advancements towards field application, and (iv) development of the appropriate databases.
Collapse
Affiliation(s)
- Richard Devereux
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, 1 Sabine Island Dr., Gulf Breeze, FL 32561, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
A direct viable counting method for enumerating viable bacteria was modified and made compatible with image analysis. A comparison was made between viable cell counts determined by the spread plate method and direct viable counts obtained using epifluorescence microscopy either manually or by automatic image analysis. Cultures of Escherichia coli, Salmonella typhimurium, Vibrio cholerae, Yersinia enterocolitica and Pseudomonas aeruginosa were incubated at 35 degrees C in a dilute nutrient medium containing nalidixic acid. Filtered samples were stained for epifluorescence microscopy and analysed manually as well as by image analysis. Cells enlarged after incubation were considered viable. The viable cell counts determined using image analysis were higher than those obtained by either the direct manual count of viable cells or spread plate methods. The volume of sample filtered or the number of cells in the original sample did not influence the efficiency of the method. However, the optimal concentration of nalidixic acid (2.5-20 micrograms ml-1) and length of incubation (4-8 h) varied with the culture tested. The results of this study showed that under optimal conditions, the modification of the direct viable count method in combination with image analysis microscopy provided an efficient and quantitative technique for counting viable bacteria in a short time.
Collapse
Affiliation(s)
- A Singh
- Department of Microbiology, Montana State University, Bozeman
| | | | | |
Collapse
|
7
|
Eismann F, Montuelle B. Microbial methods for assessing contaminant effects in sediments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1999; 159:41-93. [PMID: 9921139 DOI: 10.1007/978-1-4612-1496-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Contaminated sediments influence drastically the long-term toxicological and ecological properties of aquatic ecosystems. During the past three decades, scientific knowledge about sediment-water exchange processes and the deposition and distribution of pollutants in water and sediment phases has been supplemented by extensive research on the effects of sediment-associated pollutants on aquatic organisms. Basic research in microbiology, ecology, and toxicology has uncovered the crucial role of sediment microorganisms for the biodegradation of organic matter and for the cycling of nutrients, as well as the susceptibility of these processes to toxic pollution events. Microorganisms have been extensively applied in aquatic toxicology, and various microbial toxicity tests are today available that successfully couple microbial toxicity endpoints to the specificity of the sediment matrix. Sediment-associated toxicants can be brought in contact with test bacteria using sediment pore waters, elutriates, extracts, or whole-sediment material. Toxicity indication principles for microorganisms are versatile and comprise growth and biomass determinations, respiration or oxygen uptake, bacterial luminescence, the activity of a variety of enzymes, and a compendium of genotoxicity assays. The border between toxicological and ecological contaminant effect evaluations in sediments is flexible, and long-term ecological predictions should also include an assessment of pollutant degradation capacities and of key reactions in element cycling. Evaluating microbial community structure and function in environmental systems makes use of modern molecular techniques and bioindicators that could trigger a new quality in the assessment of contaminated sediments in terms of indication of subtoxic effects and early-warning requirements.
Collapse
Affiliation(s)
- F Eismann
- University of Leipzig, Institute for Animal Hygiene and Public Veterinary Affairs, Germany
| | | |
Collapse
|
8
|
Jeffrey WH, Nazaret S, Barkay T. Detection of the merA gene and its expression in the environment. MICROBIAL ECOLOGY 1996; 32:293-303. [PMID: 8849424 DOI: 10.1007/bf00183064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial transformation of mercury in the environment has received much attention owing to the toxicity of both the ionic form and organomercurial compounds. Bacterial resistance to mercury and the role of bacteria in mercury cycling have been widely studied. The genes specifying the required functions for resistance to mercury are organized on the mer operon. Gene probing methodologies have been used for several years to detect specific gene sequences in the environment that are homologous to cloned mer genes. While mer genes have been detected in a wide variety of environments, less is known about the expression of these genes under environmental conditions. We combined new methodologies for recovering specific gene mRNA transcripts and mercury detection with a previously described method for determining biological potential for mercury volatilization to examine the effect of mercury concentrations and nutrient availability on rates of mercury volatilization and merA transcription. Levels of merA-specific transcripts and Hg(II) volatilization were influenced more by microbial activity (as manipulated by nutrient additions) than by the concentration of total mercury. The detection of merA-specific transcripts in some samples that did not reduce Hg(II) suggests that rates of mercury volatilization in the environment may not always be proportional to merA transcription.
Collapse
Affiliation(s)
- WH Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL 32514, USA
| | | | | |
Collapse
|
9
|
Holt RJ, Strike P, Bruce KD. Phylogenetic analysis of tnpR genes in mercury resistant soil bacteria: the relationship between DNA sequencing and RFLP typing approaches. FEMS Microbiol Lett 1996; 144:95-102. [PMID: 8870257 DOI: 10.1111/j.1574-6968.1996.tb08514.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The diversity of resolvase (tnpR) genes carried by a number of mercury resistant soil bacteria has been investigated by DNA sequencing. The resulting DNA sequence information was compared to previously published tnpR DNA sequences and to previously published restriction fragment length polymorphism (RFLP) data, permitting the relationships between DNA sequencing and RFLP approaches to be studied by the use of phylogenetic trees. DNA maximum likelihood and DNA parsimony were used to construct a variety of phylogenetic trees. DNA sequencing confirmed the validity of RFLP analysis and highlighted the importance of restriction endonuclease choice upon the resulting RFLP patterns and dendrogram topology. The tnpR genes of two previously uncharacterised mercury resistant bacteria, T2-7 and T2-12 were also studied. DNA sequence data placed T2-7 in a previously described gene class, tnpR-D and T2-12 in a new gene class, tnpR-F. The significance of this data with respect to the recombination and evolution events occurring within bacterial populations are discussed.
Collapse
Affiliation(s)
- R J Holt
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, UK.
| | | | | |
Collapse
|
10
|
Bruce KD, Osborn AM, Pearson AJ, Strike P, Ritchie DA. Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria. Mol Ecol 1995; 4:605-12. [PMID: 7582168 DOI: 10.1111/j.1365-294x.1995.tb00260.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Individual merRT delta P regions were amplified from DNA directly isolated from soil and sediment samples using consensus primers derived from the conserved mer sequences of Tn501, Tn21 and pMER419. Soil and sediment samples were taken from four sites in the British Isles; one 'pristine' (SB) and three polluted (SO, SE, T2) with respect to mercury. The sizes of the PCR products amplified (approximately 1 kb) were consistent with their generation from mer determinants related to the archetypal elements found in Gram negative bacteria. Forty-five individual clones of sequences obtained from these four sites were isolated which hybridized (> 70% homology) to a merRT delta P probe from Tn501. The diversity of these amplified mer genes was analysed using Restriction Fragment Length Polymorphism (RFLP) profiling. Fourteen RFLP classes were distinguished, 12 of which proved to be novel and only two of which had been identified in an earlier study of 40 Gram negative mercury resistant bacteria cultured from the same four sites. UPGMA analysis was used to examine the relationships between the 22 classes of determinant identified. The T2 site, which has the longest history of mercury exposure, was found to have the greatest level of diversity in terms of numbers of classes of determinant, while the SO site, which had the highest mercury levels showed relatively low variation. Variation of mer genes within and between the sequences from cultivated bacteria and from total bacterial DNA shows clearly that analysing only sequences from cultivated organisms results in a gross underestimation of genetic variation.
Collapse
Affiliation(s)
- K D Bruce
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, UK
| | | | | | | | | |
Collapse
|
11
|
Lal R, Lal S, Dhanaraj PS, Saxena DM. Manipulations of catabolic genes for the degradation and detoxification of xenobiotics. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:55-95. [PMID: 7572336 DOI: 10.1016/s0065-2164(08)70308-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | |
Collapse
|
12
|
LEUNG K, ENGLAND LS, CASSIDY MB, TREVORS JT, WEIR S. Microbial diversity in soil: effect of releasing genetically engineered micro-organisms. Mol Ecol 1994. [DOI: 10.1111/j.1365-294x.1994.tb00081.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Osborn AM, Bruce KD, Strike P, Ritchie DA. Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl Environ Microbiol 1993; 59:4024-30. [PMID: 7904439 PMCID: PMC195862 DOI: 10.1128/aem.59.12.4024-4030.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mercury resistant (Hgr) bacteria were isolated from four terrestrial sites: three containing high levels of mercury (sites T2, SE, and SO) and one uncontaminated site (SB). The frequencies of Hgr bacteria in the total cultivable populations were 0.05% (SB), 0.69% (SO), 4.8% (SE), and 25% (T2). Between 35 and 100% of the isolates from the four sites contained DNA sequences homologous to a DNA probe from the mercury resistance (mer) operon of the Tn501 Hgr determinant. The mer sequences of 10 Tn501-homologous Hgr determinants from each site were amplified by the polymerase chain reaction, with primers designed to consensus sequences of the mer determinants of Tn501, Tn21, and pMJ100, and were classified on the basis of the size of the amplified product and the restriction fragment length polymorphism pattern. Two main groups of amplification product were identified. The first, represented by the T2 and SB isolates and one SE isolate, gave an amplification product indistinguishable in size from that amplified from Tn501 (approximately 1,010 bp). The second group, represented by the SO isolates and the majority of the SE isolates, produced larger amplification products of 1,040 or 1,060 bp. Restriction fragment length polymorphism analysis revealed that each amplification product size group could be further subdivided into five subgroups.
Collapse
Affiliation(s)
- A M Osborn
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, United Kingdom
| | | | | | | |
Collapse
|
14
|
Holben WE, Schroeter BM, Calabrese VG, Olsen RH, Kukor JK, Biederbeck VO, Smith AE, Tiedje JM. Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 1992; 58:3941-8. [PMID: 1476437 PMCID: PMC183208 DOI: 10.1128/aem.58.12.3941-3948.1992] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Soils with a history of 2,4-dichlorophenoxyacetic acid (2,4-D) treatment at field application rates and control soils with no prior exposure to 2,4-D were amended with 2,4-D in the laboratory. Before and during these treatments, the populations of 2,4-D-degrading bacteria were monitored by most-probable-number (MPN) enumeration and hybridization analyses, using probes for the tfd genes of plasmid pJP4, which encode enzymes for 2,4-D degradation. Data obtained by these alternate methods were compared. Several months after the most recent field application of 2,4-D (approximately 1 ppm), soils with a 42-year history of 2,4-D treatment did not have significantly higher numbers of 2,4-D-degrading organisms than did control soils with no prior history of treatment. In response to laboratory amendments with 2,4-D, both the previously treated soils and those with no prior history of exposure exhibited a dramatic increase in the number of 2,4-D-metabolizing organisms. The MPN data indicate a 4- to 5-log population increase after one amendment with 250 ppm of 2,4-D and ultimately a 6- to 7-log increase after four additional amendments, each with 400 ppm of 2,4-D. Similarly, when total bacterial DNA from the soil microbial community of these samples was analyzed by using a probe for the tfdA gene (2,4-D monoxygenase) or the tfdB gene (2,4-dichlorophenol hydroxylase) a dramatic increase in the level of hybridization was observed in both soils.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W E Holben
- Center for Microbial Ecology, Michigan State University, East Lansing 48824
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jeffrey WH, Cuskey SM, Chapman PJ, Resnick S, Olsen RH. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. J Bacteriol 1992; 174:4986-96. [PMID: 1629155 PMCID: PMC206312 DOI: 10.1128/jb.174.15.4986-4996.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutants of Pseudomonas putida mt-2 that are unable to convert benzoate to catechol were isolated and grouped into two classes: those that did not initiate attack on benzoate and those that accumulated 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (benzoate diol). The latter mutants, represents by strain PP0201, were shown to lack benzoate diol dehydrogenase (benD) activity. Mutants from the former class were presumed either to carry lesions in one or more subunit structural genes of benzoate dioxygenase (benABC) or the regulatory gene (benR) or to contain multiple mutations. Previous work in this laboratory suggested that benR can substitute for the TOL plasmid-encoded xylS regulatory gene, which promotes gene expression from the OP2 region of the lower or meta pathway operon. Accordingly, structural and regulatory gene mutations were distinguished by the ability of benzoate-grown mutant strains to induce expression from OP2 without xylS by using the TOL plasmid xylE gene (encoding catechol 2,3-dioxygenase) as a reporter. A cloned 12-kb BamHI chromosomal DNA fragment from the P. aeruginosa PAO1 chromosome complemented all of the mutations, as shown by restoration of growth on benzoate minimal medium. Subcloning and deletion analyses allowed identification of DNA fragments carrying benD, benABC, and the region possessing xylS substitution activity, benR. Expression of these genes was examined in a strain devoid of benzoate-utilizing ability, Pseudomonas fluorescens PFO15. The disappearance of benzoate and the production of catechol were determined by chromatographic analysis of supernatants from cultures grown with casamino acids. When P. fluorescens PFO15 was transformed with plasmids containing only benABCD, no loss of benzoate was observed. When either benR or xylS was cloned into plasmids compatible with those plasmids containing only the benABCD regions, benzoate was removed from the medium and catechol was produced. Regulation of expression of the chromosomal structural genes by benR and xylS was quantified by benzoate diol dehydrogenase enzyme assays. The results obtained when xylS was substituted for benR strongly suggest an isofunctional regulatory mechanism between the TOL plasmid lower-pathway genes (via the OP2 promoter) and chromosomal benABC. Southern hybridizations demonstrated that DNA encoding the benzoate dioxygenase structural genes showed homology to DNA encoding toluate dioxygenase from the TOL plasmid pWW0, but benR did not show homology to xylS. Evolutionary relationships between the regulatory systems of chromosomal and plasmid-encoded genes for the catabolism of benzoate and related compounds are suggested.
Collapse
Affiliation(s)
- W H Jeffrey
- Technical Resources, Inc., Gulf Breeze, Florida
| | | | | | | | | |
Collapse
|
16
|
Atlas RM. Molecular methods for environmental monitoring and containment of genetically engineered microorganisms. Biodegradation 1992; 3:137-46. [PMID: 1369233 DOI: 10.1007/bf00129079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plans to introduce genetically engineered microorganisms into the environment has led to concerns over safety and has raised questions about how to detect and to contain such microorganisms. Specific gene sequences, such as lacZ, have been inserted into genetically engineered microorganisms to permit their phenotypic detection. Molecular methods have been developed based upon recovery of DNA from environmental samples and gene probe hybridization to specific diagnostic gene sequences for the specific detection of genetically engineered microorganisms. DNA amplification using the polymerase chain reaction has been applied to enhance detection sensitivity so that single gene targets can be detected. Detection of messenger RNA has permitted the monitoring of gene expression in the environment. The use of reporter genes, such as the lux gene for bioluminescence, likewise has permitted the observation of gene expression. Conditional lethal constructs have been developed as models for containment of genetically engineered microorganisms. Suicide vectors, based upon the hok gene have been developed as model containment systems.
Collapse
Affiliation(s)
- R M Atlas
- Department of Biology, University of Louisville, KY 40292
| |
Collapse
|
17
|
Synthetic oligonucleotide probes for detection of mercury-resistance genes in environmental freshwater microbial communities in response to pollutants. World J Microbiol Biotechnol 1992; 8:30-8. [DOI: 10.1007/bf01200680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1991] [Revised: 04/23/1991] [Accepted: 04/30/1991] [Indexed: 11/26/2022]
|
18
|
Hussey C. Recombinant plasmids. SAFETY IN INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY 1992. [PMCID: PMC7155667 DOI: 10.1016/b978-0-7506-1105-3.50010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Richardson KJ, Stewart MH, Wolfe RL. Application of Gene Probe Technology to the Water Industry. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/j.1551-8833.1991.tb07216.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Rochelle PA, Wetherbee MK, Olson BH. Distribution of DNA Sequences Encoding Narrow- and Broad-Spectrum Mercury Resistance. Appl Environ Microbiol 1991; 57:1581-1589. [PMID: 16348501 PMCID: PMC183436 DOI: 10.1128/aem.57.6.1581-1589.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of DNA sequences homologous with three mer genes was determined in unselected and mercury-resistant water and sediment isolates. The maximum proportions of unselected bacterial isolates containing DNA hybridizing with the 358merA, 358merB, and 501merR probes, derived from gram-negative organisms, were 93.8, 21, and 100%, respectively. Up to 53.3% of mercury chloride-resistant isolates and 54% of methylmercury hydroxide-resistant isolates did not contain DNA homologous with 358merA or 358merB, respectively. Hybridizations performed at high and low stringencies demonstrated that divergence of the merA gene accounted for many of the mercury-resistant but probe-negative isolates. Sixteen mercury-resistant Bacillus spp. isolated from the least contaminated site all contained DNA homologous with 258merA, originally from a gram-positive organism, but only four hybridized weakly with 358merA. The results demonstrate the wide distribution of mercury resistance genes but, because of the diversity of genetic determinants, highlight the importance of using multiple detection techniques and gene probes derived from a variety of origins for such studies.
Collapse
Affiliation(s)
- Paul A Rochelle
- Environmental Analysis, Social Ecology, University of California, Irvine, California 92717
| | | | | |
Collapse
|
21
|
Comparison of three nonradioactive and a radioactive DNA probe for the detection of target DNA by DNA hybridization. Curr Microbiol 1991. [DOI: 10.1007/bf02105380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Gilmour CC, Henry EA. Mercury methylation in aquatic systems affected by acid deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1991; 71:131-169. [PMID: 15092118 DOI: 10.1016/0269-7491(91)90031-q] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/1990] [Accepted: 10/17/1990] [Indexed: 05/24/2023]
Abstract
Recently, it has been noted that fish in acidified lakes may contain elevated levels of mercury. While there is correlation among lakes between depressed pH and high mercury concentrations in fish, the cause of this problem is unknown. A number of hypotheses have been advanced in explanation, including increased mercury deposition, changes in mercury mobility due to acidification, pH dependent changes in mercury uptake by biota, and alterations in population size and/or structure which result in increased bioaccumulation in fish. Because fish accumulate mercury mainly in an organic form, methylmercury, changes in the biogeochemical cycling of this compound might account for elevated bioaccumulation. Mercury methylation is predominantly a microbial process which occurs in situ in lakes. This review focuses on microbiological and biogeochemical changes that may lead to increased levels of methylmercury in fresh waters impacted by acid-deposition. In particular, we focus on the hypothesis that sulfate-reducing bacteria are important mediators of metal methylation in aquatic systems and, moreover, that sulfate-deposition may stimulate methylmercury production by enhancing the activity of sulfate-reducing bacteria in sediments.
Collapse
Affiliation(s)
- C C Gilmour
- Academy of Natural Sciences, Benedict Estuarine Research Laboratory, Benedict, MD 20612, USA
| | | |
Collapse
|
23
|
Belliveau BH, Trevors JT. Mercury resistance determined by a self-transmissible plasmid in Bacillus cereus 5. BIOLOGY OF METALS 1990; 3:188-96. [PMID: 2127369 DOI: 10.1007/bf01140578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inducible mercuric reductase activity in Bacillus cereus 5 was plasmid-encoded. Plasmid analysis revealed three plasmids with molecular masses of 2.6, 5.2 and 130 MDa. A mating system permitted transfer of the resistance determinant among strains of B. cereus and B. thuringiensis. Transfer of mercury resistance from B. cereus 5 to B. cereus 569 and B. thuringiensis occurred during mixed culture incubation on agar surfaces. The 130-MDa plasmid (pGB130) was responsible for transfer; frequencies ranged from 10(-5) to 10(-4). B. cereus 569 transconjugants inheriting pGB130 were also effective donors. High transfer frequencies and the finding that cell-free filtrates of donor cultures were ineffective in mediating transfer suggested mercury-resistance transfer was not phage-mediated. Transfer was also insensitive to DNase activity. Further evidence that pGB130 DNA carried the mercury-resistance determinant was transformation of B. cereus 569 by electroporation with pGB130 DNA isolated from B. cereus 5 and a mercury-resistant B. cereus 569 transconjugant. Mercury-resistant transconjugants and transformants exhibited mercuric reductase activity. Plasmid pGB130 also conferred resistance to phenylmercuric acetate.
Collapse
Affiliation(s)
- B H Belliveau
- Department of Environmental Biology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
24
|
Barkay T, Gillman M, Liebert C. Genes encoding mercuric reductases from selected gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. Appl Environ Microbiol 1990; 56:1695-701. [PMID: 2166470 PMCID: PMC184495 DOI: 10.1128/aem.56.6.1695-1701.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An investigation of the Hg2+ resistance mechanism of four freshwater and four coastal marine bacteria that did not hybridize with a mer operonic probe was conducted (T. Barkay, C. Liebert, and M. Gillman, Appl. Environ. Microbiol. 55:1196-1202, 1989). Hybridization with a merA probe, the gene encoding the mercuric reductase polypeptide, at a stringency of hybridization permitting hybrid formation between evolutionarily distant merA genes (as exists between gram-positive and -negative bacteria), detected merA sequences in the genomes of all tested strains. Inducible Hg2+ volatilization was demonstrated for all eight organisms, and NADPH-dependent mercuric reductase activities were detected in crude cell extracts of six of the strains. Because these strains represented random selections of bacteria from three aquatic environments, it is concluded that merA encodes a common molecular mechanism for Hg2+ resistance and volatilization in aerobic heterotrophic aquatic communities.
Collapse
Affiliation(s)
- T Barkay
- Microbial Ecology and Biotechnology Branch, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561
| | | | | |
Collapse
|
25
|
Sayler GS, Hooper SW, Layton AC, King JM. Catabolic plasmids of environmental and ecological significance. MICROBIAL ECOLOGY 1990; 19:1-20. [PMID: 24196251 DOI: 10.1007/bf02015050] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The environmental and ecological significance of catabolic plasmids and their host strains are discussed in the context of their potential application for environmental biotechnology. Included is a comprehensive list of naturally occurring discrete catabolic plasmids isolated from either natural habitats or selective enrichment studies. General properties, such as plasmid maintenance, stability and transfer, are discussed together with the techniques for plasmid detection and monitoring in the environment. The issues concerning the construction of catabolic strains with new or broader substrate ranges and the uses of monocultures or consortia for in situ treatment are addressed.
Collapse
Affiliation(s)
- G S Sayler
- Department of Microbiology, Graduate Program in Ecology, and Center for Environmental Biotechnology, University of Tennessee, 10515 Research Drive, Suite 200, 37932-2567, Knoxville, Tennessee, USA
| | | | | | | |
Collapse
|
26
|
Stotzky G, Devanas MA, Zeph LR. Methods for studying bacterial gene transfer in soil by conjugation and transduction. ADVANCES IN APPLIED MICROBIOLOGY 1990; 35:57-169. [PMID: 2205084 DOI: 10.1016/s0065-2164(08)70243-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- G Stotzky
- Department of Biology, New York University, New York 10003
| | | | | |
Collapse
|
27
|
Walia S, Khan A, Rosenthal N. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl Environ Microbiol 1990; 56:254-9. [PMID: 2106826 PMCID: PMC183298 DOI: 10.1128/aem.56.1.254-259.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.
Collapse
Affiliation(s)
- S Walia
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4411
| | | | | |
Collapse
|
28
|
Mirgain I, Werneburg B, Harf C, Monteil H. Phenylmercuric acetate biodegradation by environmental strains of Pseudomonas species. Res Microbiol 1989; 140:695-707. [PMID: 2626597 DOI: 10.1016/0923-2508(89)90200-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organomercurial pollution occurring in the Rhine river in 1986 led us to study the possibility of depollution by mercury-resistant environmental aquatic strains. Four species of Pseudomonas were investigated for their ability to biotransform phenylmercuric acetate (PMA). Such biological depollution was demonstrated to be due to an enzymatic activity in whole cells and in cell-free extracts from Pseudomonas fluorescens and other Pseudomonas species. PMA biotransformation was followed by high-performance liquid chromatography. Some of those bacteria growing between 4 and 41 degrees C probably represent a natural means of organomercurial depollution, which acts slowly in interaction with other organisms and non-organic porous surfaces.
Collapse
Affiliation(s)
- I Mirgain
- Laboratoire d'Ecologie bactérienne, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Siddiqui RA, Benthin K, Schlegel HG. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 1989; 171:5071-8. [PMID: 2549012 PMCID: PMC210319 DOI: 10.1128/jb.171.9.5071-5078.1989] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 163-kilobase-pair (kb) plasmid pMOL28, which determines inducible resistance to nickel, cobalt, chromate, and mercury salts in its native host Alcaligenes eutrophus CH34, was transferred to a derivative of A. eutrophus H16 and subjected to cloning procedures. After Tn5 transposon mutagenesis, restriction endonuclease analysis, and DNA-DNA hybridization, two DNA fragments, a 9.5-kb KpnI fragment and a 13.5-kb HindIII fragment (HKI), were isolated. HKI contained EK1, the KpnI fragment, as a subfragment flanked on both sides by short regions. Both fragments were ligated into the suicide vector pSUP202, the broad-host-range vector pVK101, and pUC19. Both fragments restored a nickel-sensitive Tn5 mutant to full nickel and cobalt resistance. The hybrid plasmid pVK101::HKI expressed full nickel resistance in all nickel-sensitive derivatives, either pMOL28-deficient or -defective, of the native host CH34. The hybrid plasmid pVK101::HKI also conferred nickel and cobalt resistance to A. eutrophus strains H16 and JMP222, Alcaligenes hydrogenophilus, Pseudomonas putida, and Pseudomonas oleovorans, but to a lower level of resistance. In all transconjugants the metal resistances coded by pVK101::HKI were expressed constitutively rather than inducibly. The hybrid plasmid metal resistance was not expressed in Escherichia coli. DNA sequences responsible for nickel resistance in newly isolated strains showed homology to the cloned pMOL28-encoded nickel and cobalt resistance determinant.
Collapse
Affiliation(s)
- R A Siddiqui
- Institut für Mikrobiologie, Universität Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
30
|
Barkay T, Liebert C, Gillman M. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl Environ Microbiol 1989; 55:1574-7. [PMID: 2764567 PMCID: PMC202907 DOI: 10.1128/aem.55.6.1574-1577.1989] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids extracted from microbial biomass without prior culturing were hybridized with probes representing four mer operons to detect genes encoding adaptation to Hg2+ in whole-community genomes. A 29-fold enrichment in sequences similar to the mer genes of transposon Tn501 occurred during adaptation in a freshwater community. In an estuarine community, all four mer genes were only slightly enriched (by three- to fivefold), suggesting that additional, yet uncharacterized, mer genes encoded adaptation to Hg2+.
Collapse
Affiliation(s)
- T Barkay
- Microbial Ecology and Biotechnology Branch U.S., Environmental Protection Agency, Sabine Island, Gulf Breeze, Florida 32561
| | | | | |
Collapse
|
31
|
Chaudhry GR, Toranzos GA, Bhatti AR. Novel method for monitoring genetically engineered microorganisms in the environment. Appl Environ Microbiol 1989; 55:1301-4. [PMID: 2667463 PMCID: PMC184297 DOI: 10.1128/aem.55.5.1301-1304.1989] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A method has been devised for directly detecting and monitoring genetically engineered microorganisms (GEMs) by using in vitro amplification of the target DNAs by a polymerase chain reaction and then hybridizing the DNAs with a specific oligonucleotide or DNA probe. A cloned 0.3-kilobase napier grass (Pennisetum purpureum) genomic DNA that did not hybridize to DNAs isolated from various microorganisms, soil sediments, and aquatic environments was inserted into a derivative of a 2,4-dichlorophenoxyacetic acid-degradative plasmid, pRC10, and transferred into Escherichia coli. This genetically altered microorganism, seeded into filter-sterilized lake and sewage water samples (10(4)/ml), was detected by a plate count method in decreasing numbers for 6 and 10 days of sample incubation, respectively. The new method detected the amplified unique marker (0.3-kilobase DNA) of the GEM even after 10 to 14 days of incubation. This method is highly sensitive (it requires only picogram amounts of DNA) and has an advantage over the plate count technique, which can detect only culturable microorganisms. The method may be useful for monitoring GEMs in complex environments, where discrimination between GEMs and indigenous microorganisms is either difficult or requires time-consuming tests.
Collapse
Affiliation(s)
- G R Chaudhry
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | | | | |
Collapse
|
32
|
Barkay T, Liebert C, Gillman M. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters. Appl Environ Microbiol 1989; 55:1196-202. [PMID: 2547336 PMCID: PMC184276 DOI: 10.1128/aem.55.5.1196-1202.1989] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation.
Collapse
Affiliation(s)
- T Barkay
- Microbial Ecology and Biotechnology Branch, Environmental Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561
| | | | | |
Collapse
|
33
|
Phenylmercuric acetate biodegradation by environmental strains of Pseudomonas species. Res Microbiol 1989. [DOI: 10.1016/0923-2508(89)90009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
|
35
|
Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J Bacteriol 1989; 171:83-92. [PMID: 2536669 PMCID: PMC209558 DOI: 10.1128/jb.171.1.83-92.1989] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.
Collapse
Affiliation(s)
- Y Wang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| | | | | | | | | | | |
Collapse
|
36
|
Steffan RJ, Atlas RM. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 1988; 54:2185-91. [PMID: 3190225 PMCID: PMC202834 DOI: 10.1128/aem.54.9.2185-2191.1988] [Citation(s) in RCA: 235] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The polymerase chain reaction (PCR) was performed to amplify a 1.0-kilobase (kb) probe-specific region of DNA from the herbicide-degrading bacterium Pseudomonas cepacia AC1100 in order to increase the sensitivity of detecting the organism by dot-blot analysis. The 1.0-kb region was an integral portion of a larger 1.3-kb repeat sequence which is present as 15 to 20 copies on the P. cepacia AC1100 genome. PCR was performed by melting the target DNA, annealing 24-base oligonucleotide primers to unique sequences flanking the 1.0-kb region, and performing extension reactions with DNA polymerase. After extension, the DNA was again melted, and the procedure was repeated for a total of 25 to 30 cycles. After amplification the reaction mixture was transferred to nylon filters and hybridized against radiolabeled 1.0-kb fragment probe DNA. Amplified target DNA was detectable in samples initially containing as little as 0.3 pg of target. The addition of 20 micrograms of nonspecific DNA isolated from sediment samples did not hinder amplification or detection of the target DNA. The detection of 0.3 pg of target DNA was at least a 10(3)-fold increase in the sensitivity of detecting gene sequences compared with dot-blot analysis of nonamplified samples. PCR performed after bacterial DNA was isolated from sediment samples permitted the detection of as few as 100 cells of P. cepacia AC1100 per 100 g of sediment sample against a background of 10(11) diverse nontarget organisms; that is, P. cepacia AC1100 was positively detected at a concentration of 1 cell per g of sediment. This represented a 10(3)-fold increase in sensitivity compared with nonamplified samples.
Collapse
Affiliation(s)
- R J Steffan
- Department of Biology, University of Louisville, Kentucky 40292
| | | |
Collapse
|
37
|
Goldstein RA, Olson BH, Porcella DB. Conceptual model of genetic regulation of mercury biogeochemical cycling. ACTA ACUST UNITED AC 1988. [DOI: 10.1080/09593338809384656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
The use of gene probes in the rapid analysis of natural microbial communities. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01569528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Kunze I, Loechel D, Günther E. Broad spectrum and narrow spectrum mercury resistance encoded by different plasmids of aPseudomonas putidastrain. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02934.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Anast N, Smit J. Isolation and Characterization of Marine Caulobacters and Assessment of Their Potential for Genetic Experimentation. Appl Environ Microbiol 1988; 54:809-817. [PMID: 16347590 PMCID: PMC202545 DOI: 10.1128/aem.54.3.809-817.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 25 marine caulobacters were isolated from littoral marine sources. Several aspects of their physiology and morphology were examined, as well as their suitability for genetic manipulation in laboratory cultivation. Caulobacters were readily isolated from all sources, including samples from areas containing pollution-related organic compounds. All isolates grew best in media containing seawater, but eight strains grew if sea salts were replaced with NaCl alone, three strains grew at 1/10 the normal sea salt concentration, and one isolate grew, albeit poorly, in freshwater medium. Of the marine isolates, 12 strains grew under anaerobic conditions, indicating that some caulobacters are not obligately aerobic bacteria, as they are currently categorized. Although some freshwater caulobacters are able to oxidize manganese, this capability was not found in these marine caulobacters. Of the marine isolates, 10 strains were resistant to mercury chloride concentrations 10- to 20-fold greater than that tolerated by sensitive bacteria. However, a mercury reductase gene comparable with that found in R100-type plasmids was not detected by gene hybridization. With respect to the potential for genetic experimentation, most strains grew rapidly (3- to 4-h generation time at 30 degrees C), producing colonies on solid media in 2 to 3 days. The isolates were sensitive to antibiotics commonly used in recombinant DNA experiments, and spontaneous drug-resistant mutants were selectable. Conjugal transfer of plasmids from Escherichia coli to several marine caulobacters was demonstrated for four broad-host-range plasmid incompatibility groups, by using both self-transmissible plasmids and cloning-oriented plasmids that require a helper plasmid. Conjugal transfer of broad-host-range plasmids between freshwater and marine caulobacters was also demonstrated in both directions. Native plasmids of approximately 100- to 150-kilobase sizes were found in 2 of the 25 marine Caulobacter strains. The native plasmids were present in relatively high copy number and appeared stable in laboratory culture. In short, the marine caulobacters appeared appropriate as candidates for genetic manipulation and the expression of selected genes in the marine environment.
Collapse
Affiliation(s)
- Nick Anast
- Naval Biosciences Laboratory, School of Public Health, University of California, Berkeley, California 94720
| | | |
Collapse
|
41
|
Fredrickson JK, Bezdicek DF, Brockman FJ, Li SW. Enumeration of Tn5 mutant bacteria in soil by using a most- probable-number-DNA hybridization procedure and antibiotic resistance. Appl Environ Microbiol 1988; 54:446-53. [PMID: 2833161 PMCID: PMC202471 DOI: 10.1128/aem.54.2.446-453.1988] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Investigations were made into the utility of DNA hybridization in conjunction with a microdilution most-probable-number procedure for the enumeration of Rhizobium spp. and Pseudomonas putida in soil. Isolates of Rhizobium spp. and P. putida carrying the transposon Tn5 were added to sterile and nonsterile Burbank sandy loam soil and enumerated over time. Soil populations of rhizobia were enumerated by colony hybridization, most-probable-number-DNA hybridization procedure, plate counts, plant infectivity most probable number, and fluorescent antibody counts. Population values compared well for all methods at 5 and 30 days after the addition of cells, although the fluorescent antibody method tended to overestimate the viable population. In nonsterile soil, most-probable-number-DNA hybridization procedure enumerated as few as 10 P. putida Tn5 cells g of soil-1 and 100 R. leguminosarum bv. phaseoli Tn5 cells g of soil-1 and should have utility for following the fate of genetically engineered microorganisms released to the environment. Among the Kmr isolates containing Tn5, approximately 5% gave a dark, more intense autoradiograph when probed with 32P-labeled pGS9 DNA, which facilitated their detection in soil. Hybridization with a pCU101 probe (pGS9 without Tn5) indicated that donor plasmid sequences were being maintained in the bacterial chromosome. Transposon-associated antibiotic resistance was also utilized as a phenotypic marker. Tn5 vector-integrate mutants were successfully enumerated at low populations (10 to 100 cells g of soil-1) in soil by both phenotypic (Kmr) and genotypic (DNA probe) analysis. However, determination of the stability of Tn5 or Tn5 and vector sequences in the bacteria is necessary.
Collapse
|
42
|
Abstract
The successful introduction of genetically modified and genetically engineered microorganisms into the environment requires a quantitative evaluation of the survival and dispersion of the microorganisms and specific gene(s) in the environment. The objective of this article is to examine the applicability, suitability, and significance of existing and new methods for detecting and monitoring the recombinant genes or organisms introduced into the environment. Conventional microbiological method(s) involving the selective and differential growth of microorganism(s) adn other quantitative approaches such as the most-probable-number (MPN) method and direct microscopic observation (e.g., acridine orange direct count analysis) have drawbacks and are not specific or universally applicable. Direct enumeration by immunofluorescence by the use of fluorescent dye seems more sensitive although still not perfect. However, the molecular methodologies such as the use of gene probes, plasmid epidemiology, antibiotic resistant marker strains, and protein electrophoresis and bacteriophage sensitivity are receiving more attention. As yet, the technology of DNA:DNA hybridization appears to be very useful, sensitive, and accurate for detecting and monitoring the microorganisms in the environment, although improvements are required. New approaches can be developed which may include biochemical signature compounds as well as gene cassettes to be used in a complementary fashion with conventional and molecular techniques for quantifying specific genotypes and genes in the environment.
Collapse
Affiliation(s)
- R K Jain
- Department of Microbiology, University of Tennessee, Knoxville
| | | | | |
Collapse
|
43
|
Abstract
Proposed intentional releases of GEMs into the environment necessitate the development of appropriate methodologies for tracing organisms and their genes in various environmental samples. Studies have been conducted to determine the sensitivities and limitations of various methods for determining the fate of GEMs and their genes in the environment. Selective viable plate count procedures can be designed to detect the introduced organisms with high sensitivity; but they are restricted by potential mutations affecting the expression of the selective characteristic in the introduced organism, the occurrence of the particular selective characteristic in the indigenous organisms, and the need to culture the organism. The accuracy of this approach is greatly improved by colony hybridization procedures that use a specific gene probe to detect the introduced genes, but this approach is still only as sensitive as the plating procedure. Direct extraction of DNA from environmental samples, coupled with dot blot hybridization with radiolabeled probe DNA or solution hybridization, gives a high degree of both sensitivity and precision. This approach does not require culturing of the organism; and even if an introduced gene moves into a new organism or if the introduced organism is viable but nonculturable, the gene probe methods will detect the persistence of the introduced genes in the environment. Efficient direct DNA extraction methods have been developed and tested following in vitro experimental additions of GEMs to sediment and water samples.
Collapse
Affiliation(s)
- R M Atlas
- Department of Biology, University of Louisville, Kentucky 40292
| | | |
Collapse
|
44
|
Affiliation(s)
- A O Summers
- Department of Microbiology, University of Georgia, Athens 30602
| |
Collapse
|
45
|
Ford S, Olson BH. Methods for Detecting Genetically Engineered Microorganisms in the Environment. ADVANCES IN MICROBIAL ECOLOGY 1988. [DOI: 10.1007/978-1-4684-5409-3_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Abstract
The mechanism of adaptation to Hg
2+
in four aquatic habitats was studied by correlating microbially mediated Hg
2+
volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg
2+
resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg
2+
. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg
2+
was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the
mer
operon among representative colonies of the communities was not related to adaptation to Hg
2+
. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg
2+
-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials.
Collapse
Affiliation(s)
- T Barkay
- Microbial Ecology and Biotechnology Branch, Environmental Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561
| |
Collapse
|
47
|
Wang Y, Mahler I, Levinson HS, Halvorson HO. Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp. J Bacteriol 1987; 169:4848-51. [PMID: 2820946 PMCID: PMC213867 DOI: 10.1128/jb.169.10.4848-4851.1987] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 7.9-kilobase (kb) chromosomal fragment was cloned from a mercury-resistant Bacillus sp. In Escherichia coli, in the presence of a second plasmid carrying functional transport genes, resistance to HgCl2 and to phenylmercury acetate (PMA) was expressed. Shortening the cloned fragment to 3.8 kb abolished resistance to PMA but not to HgCl2. In Bacillus subtilis, the 3.8-kb fragment produced mercuric reductase constitutively but did not produce resistance to HgCl2 or to PMA.
Collapse
Affiliation(s)
- Y Wang
- Rosenstiel Basic Medical Sciences Research Center, Waltham, Massachusetts
| | | | | | | |
Collapse
|
48
|
Laddaga RA, Chu L, Misra TK, Silver S. Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A 1987; 84:5106-10. [PMID: 3037534 PMCID: PMC298802 DOI: 10.1073/pnas.84.15.5106] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons.
Collapse
|
49
|
Bender CL, Cooksey DA. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 1987; 169:470-4. [PMID: 3027030 PMCID: PMC211800 DOI: 10.1128/jb.169.2.470-474.1987] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A cosmid library of copper-resistant (Cur) Pseudomonas syringae pv. tomato PT23 plasmid DNA was constructed and mobilized into the copper-sensitive recipient P. syringae pv. syringae PS61. One resultant cosmid clone, pCOP1 (46 kilobases), conferred copper resistance. The PT23 Cur gene(s) was located on pCOP1 by subcloning PstI restriction endonuclease fragments of pCOP1 in the broad-host-range vector pRK404. A subclone containing a 4.4-kilobase PstI fragment conferred Cur on PS61. The Cur gene(s) was further located by insertional inactivation with Tn5. A subcloned fragment internal to the Cur determinant on pCOP2 was probed to plasmid and chromosomal DNA of four copper-resistant and three copper-sensitive strains of P. syringae pv. tomato. The probe hybridized to plasmids in resistant strains, but showed no detectable homology to copper-sensitive strains.
Collapse
|
50
|
|