1
|
Wang D, Liu N, Qiao M, Xu C. Gallic acid as biofilm inhibitor can improve transformation efficiency of Ruminiclostridium papyrosolvens. Biotechnol Lett 2024; 46:1143-1153. [PMID: 39162860 DOI: 10.1007/s10529-024-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation. Gallic acid was proved to be a potent inhibitor of biofilm synthesis of R. papyrosolvens. Furthermore, the transformation efficiency of R. papyrosolvens was significantly increased when the cells were treated by the gallic acid, and the mutant strain was successfully obtained by the improved transformation method. Thus, inhibition of biofilm formation of R. papyrosolvens by using gallic acid will contribute to its genetic transformation and efficient metabolic engineering.
Collapse
Affiliation(s)
- Duodong Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Chenggang Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
2
|
Minor CM, Takayesu A, Ha SM, Salwinski L, Sawaya MR, Pellegrini M, Clubb RT. A genomic analysis reveals the diversity of cellulosome displaying bacteria. Front Microbiol 2024; 15:1473396. [PMID: 39539715 PMCID: PMC11557425 DOI: 10.3389/fmicb.2024.1473396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Several species of cellulolytic bacteria display cellulosomes, massive multi-cellulase containing complexes that degrade lignocellulosic plant biomass (LCB). A greater understanding of cellulosome structure and enzyme content could facilitate the development of new microbial-based methods to produce renewable chemicals and materials. Methods To identify novel cellulosome-displaying microbes we searched 305,693 sequenced bacterial genomes for genes encoding cellulosome proteins; dockerin-fused glycohydrolases (DocGHs) and cohesin domain containing scaffoldins. Results and discussion This analysis identified 33 bacterial species with the genomic capacity to produce cellulosomes, including 10 species not previously reported to produce these complexes, such as Acetivibrio mesophilus. Cellulosome-producing bacteria primarily originate from the Acetivibrio, Ruminococcus, Ruminiclostridium, and Clostridium genera. A rigorous analysis of their enzyme, scaffoldin, dockerin, and cohesin content reveals phylogenetically conserved features. Based on the presence of a high number of genes encoding both scaffoldins and dockerin-fused GHs, the cellulosomes in Acetivibrio and Ruminococcus bacteria possess complex architectures that are populated with a large number of distinct LCB degrading GH enzymes. Their complex cellulosomes are distinguishable by their mechanism of attachment to the cell wall, the structures of their primary scaffoldins, and by how they are transcriptionally regulated. In contrast, bacteria in the Ruminiclostridium and Clostridium genera produce 'simple' cellulosomes that are constructed from only a few types of scaffoldins that based on their distinct complement of GH enzymes are predicted to exhibit high and low cellulolytic activity, respectively. Collectively, the results of this study reveal conserved and divergent architectural features in bacterial cellulosomes that could be useful in guiding ongoing efforts to harness their cellulolytic activities for bio-based chemical and materials production.
Collapse
Affiliation(s)
- Christine M. Minor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Allen Takayesu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lukasz Salwinski
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Development of an efficient ClosTron system for gene disruption in Ruminiclostridium papyrosolvens. Appl Microbiol Biotechnol 2023; 107:1801-1812. [PMID: 36808278 DOI: 10.1007/s00253-023-12427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its metabolic engineering is limited by lack of genetic tools. Here, we firstly employed the endogenous xylan-inducible promoter to control ClosTron system for gene disruption of R. papyrosolvens. The modified ClosTron can be easily transformed into R. papyrosolvens and specifically disrupt targeting genes. Furthermore, a counter selectable system based on uracil phosphoribosyl-transferase (Upp) was successfully established and introduced into the ClosTron system, which resulted in plasmid curing rapidly. Thus, the combination of xylan-inducible ClosTron and upp-based counter selectable system makes the gene disruption more efficient and convenient for successive gene disruption in R. papyrosolvens. KEY POINTS: • Limiting expression of LtrA enhanced the transformation of ClosTron plasmids in R. papyrosolvens. • DNA targeting specificity can be improved by precise management of the expression of LtrA. • Curing of ClosTron plasmids was achieved by introducing the upp-based counter selectable system.
Collapse
|
4
|
Wang Y, Li L, Xia Y, Zhang T. Reliable and Scalable Identification and Prioritization of Putative Cellulolytic Anaerobes With Large Genome Data. FRONTIERS IN BIOINFORMATICS 2022; 2:813771. [PMID: 36304268 PMCID: PMC9580877 DOI: 10.3389/fbinf.2022.813771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the era of high-throughput sequencing, genetic information that is inherently whispering hints of the microbes’ functional niches is becoming easily accessible; however, properly identifying and characterizing these genetic hints to infer the microbes’ functional niches remains a challenge. Regarding genome-centric interpretation on the specific functional niche of cellulose hydrolysis for anaerobes, often encountered in practice is a lack of confidence in predicting the anaerobes’ real cellulolytic competency based solely on abundances of the varying carbohydrate-active enzyme modules annotated or on their taxonomy affiliation. Recognition of the synergy machineries that include but not limited to the cellulosome gene clusters is equally important as the annotation of individual carbohydrate-active modules or genes. In the interpretation of complete genomes of 2,768 microbe strains whose phenotypes have been well documented, with the incorporation of an automatic recognition of synergy among the carbohydrate active elements annotated, an explicit genotype–phenotype correlation was evidenced to be feasible for cellulolytic anaerobes, and a bioinformatic pipeline was developed accordingly. This genome-centric pipeline would categorize putative cellulolytic anaerobes into six genotype groups based on differential cellulose-hydrolyzing capacity and varying synergy mechanisms. Suggested in this genotype–phenotype correlation analysis was a finer categorization of the cellulosome gene clusters: although cellulosome complexes, by their nature, could enable the assembly of a number of carbohydrate-active units, they do not certainly guarantee the formation of the cellulose–enzyme–microbe complex or the cellulose-hydrolyzing activity of the corresponding anaerobe strains, for example, the well-known Clostridium acetobutylicum strains. Also, recognized in this genotype-phenotype correlation analysis was the genetic foundation of a previously unrecognized machinery that may mediate the microbe–cellulose adhesion, to be specific, enzymes encoded by genes harboring both the surface layer homology and cellulose-binding CBM modules. Applicability of this pipeline on scalable annotation of large genome datasets was further tested with the annotation of 7,902 reference genomes downloaded from NCBI, from which 14 genomes of putative paradigm cellulose-hydrolyzing anaerobes were identified. We believe the pipeline developed in this study would be a good add as a bioinformatic tool for genome-centric interpretation of uncultivated anaerobes, specifically on their functional niche of cellulose hydrolysis.
Collapse
Affiliation(s)
- Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
| | - Yu Xia
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Pokfulam, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Tong Zhang,
| |
Collapse
|
5
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
6
|
Silva Rabelo CAB, Okino CH, Sakamoto IK, Varesche MBA. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136868. [PMID: 32014768 DOI: 10.1016/j.scitotenv.2020.136868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Bioconversion of sugarcane bagasse (SCB) into hydrogen (H2) and organic acids was evaluated using a biomolecular approach to monitor the quantity and expression of the cellulase (Cel) gene. Batch reactors at 37 °C were operated with Paraclostridium sp. (10% v/v) and different substrates (5 g/L): glucose, cellulose and SCB in natura and pre-heat treated and hydrothermally. H2 production from glucose was 162.4 mL via acetic acid (2.9 g/L) and 78.4 mL from cellulose via butyric acid (2.9 g/L). H2 production was higher in hydrothermally pretreated SCB reactors (92.0 mL), heat treated (62.5 mL), when compared to in natura SCB (51.4 mL). Butyric acid (5.8, 4.9 and 4.0 g/L) was the main acid observed in hydrothermally, thermally pretreated, and in natura SCB, respectively. In the reactors with cellulose and reactors with hydrothermally pretreated SCB, the Cel gene copy number 3 and 2 log were higher, respectively, during the stage of maximum H2 production rate, when compared to the initial stage. Differences in Cel gene expression were observed according to the concentration of soluble sugars in the reaction medium. That is, there was no gene expression at the initial phase of the experiment using SCB with 2.6 g/L of sugars and increase of 2.2 log in gene expression during the phases with soluble sugars of <1.4 g/L.
Collapse
Affiliation(s)
- Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil.
| | - Cintia Hiromi Okino
- Embrapa Pecuária Sudeste, Rod Washington Luiz, Km 234, Fazenda Canchim, PO Box 339, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos, University of São Paulo (EESC - USP) Campus II, São Carlos, SP CEP 13563-120, Brazil
| |
Collapse
|
7
|
Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:250. [PMID: 29093754 PMCID: PMC5663094 DOI: 10.1186/s13068-017-0933-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/19/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Like a number of anaerobic and cellulolytic Gram-positive bacteria, the model microorganism Ruminiclostridium cellulolyticum produces extracellular multi-enzymatic complexes called cellulosomes, which efficiently degrade the crystalline cellulose. Action of the complexes on cellulose releases cellobiose and longer cellodextrins but to date, little is known about the transport and utilization of the produced cellodextrins in the bacterium. A better understanding of the uptake systems and fermentation of sugars derived from cellulose could have a major impact in the field of biofuels production. RESULTS We characterized a putative ABC transporter devoted to cellodextrins uptake, and a cellobiose phosphorylase (CbpA) in R. cellulolyticum. The genes encoding the components of the ABC transporter (a binding protein CuaA and two integral membrane proteins) and CbpA are expressed as a polycistronic transcriptional unit induced in the presence of cellobiose. Upstream, another polycistronic transcriptional unit encodes a two-component system (sensor and regulator), and a second binding protein CuaD, and is constitutively expressed. The products might form a three-component system inducing the expression of cuaABC and cbpA since we showed that CuaR is able to recognize the region upstream of cuaA. Biochemical analysis showed that CbpA is a strict cellobiose phosphorylase inactive on longer cellodextrins; CuaA binds to all cellodextrins (G2-G5) tested, whereas CuaD is specific to cellobiose and presents a higher affinity to this sugar. This results are in agreement with their function in transport and signalization, respectively. Characterization of a cuaD mutant, and its derivatives, indicated that the ABC transporter and CbpA are essential for growth on cellobiose and cellulose. CONCLUSIONS For the first time in a Gram-positive strain, we identified a three-component system and a conjugated ABC transporter/cellobiose phosphorylase system which was shown to be essential for the growth of the model cellulolytic bacterium R. cellulolyticum on cellobiose and cellulose. This efficient and energy-saving system of transport and phosphorolysis appears to be the major cellobiose utilization pathway in R. cellulolyticum, and seems well adapted to cellulolytic life-style strain. It represents a new way to enable engineered strains to utilize cellodextrins for the production of biofuels or chemicals of interest from cellulose.
Collapse
Affiliation(s)
| | - Maria Maté
- Aix Marseille Univ, CNRS, AFMB, Marseille, France
| | | | - Nian Liu
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Yann Denis
- Aix Marseille Univ, CNRS, Plateforme Transcriptome, Marseille, France
| | - Romain Borne
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | | | |
Collapse
|
8
|
Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Sci Rep 2016; 6:22770. [PMID: 26946939 PMCID: PMC4780118 DOI: 10.1038/srep22770] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Xyloglucan, a ubiquitous highly branched plant polysaccharide, was found to be rapidly degraded and metabolized by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Our study shows that at least four cellulosomal enzymes displaying either endo- or exoxyloglucanase activities, achieve the extracellular degradation of xyloglucan into 4-glucosyl backbone xyloglucan oligosaccharides. The released oligosaccharides (composed of up to 9 monosaccharides) are subsequently imported by a highly specific ATP-binding cassette transporter (ABC-transporter), the expression of the corresponding genes being strongly induced by xyloglucan. This polysaccharide also triggers the synthesis of cytoplasmic β-galactosidase, α-xylosidase, and β-glucosidase that act sequentially to convert the imported oligosaccharides into galactose, xylose, glucose and unexpectedly cellobiose. Thus R. cellulolyticum has developed an energy-saving strategy to metabolize this hemicellulosic polysaccharide that relies on the action of the extracellular cellulosomes, a highly specialized ABC-transporter, and cytoplasmic enzymes acting in a specific order. This strategy appears to be widespread among cellulosome-producing mesophilic bacteria which display highly similar gene clusters encoding the cytosolic enzymes and the ABC-transporter.
Collapse
|
9
|
Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 2016. [PMID: 26758196 DOI: 10.1186/s12934-12015-10406-12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Sustainable alternatives for the production of fuels and chemicals are needed to reduce our dependency on fossil resources and to avoid the negative impact of their excessive use on the global climate. Lignocellulosic feedstock from agricultural residues, energy crops and municipal solid waste provides an abundant and carbon-neutral alternative, but it is recalcitrant towards microbial degradation and must therefore undergo extensive pretreatment to release the monomeric sugar units used by biofuel-producing microbes. These pretreatment steps can be reduced by using microbes such as Clostridium cellulolyticum that naturally digest lignocellulose, but this limits the range of biofuels that can be produced. We therefore developed a metabolic engineering approach in C. cellulolyticum to expand its natural product spectrum and to fine tune the engineered metabolic pathways. RESULTS Here we report the metabolic engineering of C. cellulolyticum to produce n-butanol, a next-generation biofuel and important chemical feedstock, directly from crystalline cellulose. We introduced the CoA-dependent pathway for n-butanol synthesis from C. acetobutylicum and measured the expression of functional enzymes (using targeted proteomics) and the abundance of metabolic intermediates (by LC-MS/MS) to identify potential bottlenecks in the n-butanol biosynthesis pathway. We achieved yields of 40 and 120 mg/L n-butanol from cellobiose and crystalline cellulose, respectively, after cultivating the bacteria for 6 and 20 days. CONCLUSION The analysis of enzyme activities and key intracellular metabolites provides a robust framework to determine the metabolic flux through heterologous pathways in C. cellulolyticum, allowing further improvements by fine tuning individual steps to improve the yields of n-butanol.
Collapse
Affiliation(s)
- Stefan Marcus Gaida
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Andrea Liedtke
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Andreas Heinz Wilhelm Jentges
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Benedikt Engels
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Stefan Jennewein
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 2016; 15:6. [PMID: 26758196 PMCID: PMC4711022 DOI: 10.1186/s12934-015-0406-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/19/2015] [Indexed: 01/13/2023] Open
Abstract
Background Sustainable alternatives for the production of fuels and chemicals are needed to reduce our dependency on fossil resources and to avoid the negative impact of their excessive use on the global climate. Lignocellulosic feedstock from agricultural residues, energy crops and municipal solid waste provides an abundant and carbon-neutral alternative, but it is recalcitrant towards microbial degradation and must therefore undergo extensive pretreatment to release the monomeric sugar units used by biofuel-producing microbes. These pretreatment steps can be reduced by using microbes such as Clostridium cellulolyticum that naturally digest lignocellulose, but this limits the range of biofuels that can be produced. We therefore developed a metabolic engineering approach in C. cellulolyticum to expand its natural product spectrum and to fine tune the engineered metabolic pathways. Results Here we report the metabolic engineering of C. cellulolyticum to produce n-butanol, a next-generation biofuel and important chemical feedstock, directly from crystalline cellulose. We introduced the CoA-dependent pathway for n-butanol synthesis from C. acetobutylicum and measured the expression of functional enzymes (using targeted proteomics) and the abundance of metabolic intermediates (by LC-MS/MS) to identify potential bottlenecks in the n-butanol biosynthesis pathway. We achieved yields of 40 and 120 mg/L n-butanol from cellobiose and crystalline cellulose, respectively, after cultivating the bacteria for 6 and 20 days. Conclusion The analysis of enzyme activities and key intracellular metabolites provides a robust framework to determine the metabolic flux through heterologous pathways in C. cellulolyticum, allowing further improvements by fine tuning individual steps to improve the yields of n-butanol. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0406-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Marcus Gaida
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Andrea Liedtke
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Andreas Heinz Wilhelm Jentges
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Benedikt Engels
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Stefan Jennewein
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Ravachol J, Borne R, Meynial-Salles I, Soucaille P, Pagès S, Tardif C, Fierobe HP. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:114. [PMID: 26269713 PMCID: PMC4533799 DOI: 10.1186/s13068-015-0301-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans (formerly known as Clostridium cellulolyticum and Clostridium phytofermentans, respectively) are anaerobic bacteria that developed different strategies to depolymerize the cellulose and the related plant cell wall polysaccharides. Thus, R. cellulolyticum produces large extracellular multi-enzyme complexes termed cellulosomes, while L. phytofermentans secretes in the environment some cellulose-degrading enzymes as free enzymes. In the present study, the major cellulase from L. phytofermentans was introduced as a free enzyme or as a cellulosomal component in R. cellulolyticum to improve its cellulolytic capacities. RESULTS The gene at locus Cphy_3367 encoding the major cellulase Cel9A from L. phytofermentans and an engineered gene coding for a modified enzyme harboring a R. cellulolyticum C-terminal dockerin were cloned in an expression vector. After electrotransformation of R. cellulolyticum, both forms of Cel9A were found to be secreted by the corresponding recombinant strains. On minimal medium containing microcrystalline cellulose as the sole source of carbon, the strain secreting the free Cel9A started to grow sooner and consumed cellulose faster than the strain producing the cellulosomal form of Cel9A, or the control strain carrying an empty expression vector. All strains reached the same final cell density but the strain producing the cellulosomal form of Cel9A was unable to completely consume the available cellulose even after an extended cultivation time, conversely to the two other strains. Analyses of their cellulosomes showed that the engineered form of Cel9A bearing a dockerin was successfully incorporated in the complexes, but its integration induced an important release of regular cellulosomal components such as the major cellulase Cel48F, which severely impaired the activity of the complexes on cellulose. In contrast, the cellulosomes synthesized by the control and the free Cel9A-secreting strains displayed similar composition and activity. Finally, the most cellulolytic strain secreting free Cel9A, was also characterized by an early production of lactate, acetate and ethanol as compared to the control strain. CONCLUSIONS Our study shows that the cellulolytic capacity of R. cellulolyticum can be augmented by supplementing the cellulosomes with a free cellulase originating from L. phytofermentans, whereas integration of the heterologous enzyme in the cellulosomes is rather unfavorable.
Collapse
Affiliation(s)
- Julie Ravachol
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Romain Borne
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Isabelle Meynial-Salles
- />Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Philippe Soucaille
- />Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
- />INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France
- />CNRS, UMR5504, 31400 Toulouse, France
| | - Sandrine Pagès
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Chantal Tardif
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| | - Henri-Pierre Fierobe
- />Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
12
|
Gomez-Flores M, Nakhla G, Hafez H. Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production. Biotechnol Lett 2015; 37:1965-71. [PMID: 26093605 DOI: 10.1007/s10529-015-1891-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine Monod kinetics parameters (µmax, Ks, kd and YX/S) of the mesophilic H2 producer Clostridium termitidis grown on glucose and cellobiose by modeling in MATLAB. RESULTS Maximum specific growth rates (µmax) were 0.22 and 0.24 h(-1) for glucose and cellobiose respectively; saturation constants (Ks) were 0.17 and 0.38 g l(-1) respectively and the biomass yields (YX/S) were 0.26 and 0.257 g dry wt g(-1) substrate. H2 yields of 1.99 and 1.11 mol H2 mol(-1) hexose equivalent were also determined for glucose and cellobiose respectively. CONCLUSION The microbial kinetics of this model microorganism will enhance engineering biofuel production applications.
Collapse
Affiliation(s)
- Maritza Gomez-Flores
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada. .,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Hisham Hafez
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
13
|
Simmons CW, Reddy AP, Simmons BA, Singer SW, VanderGheynst JS. Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions. J Appl Microbiol 2014; 117:1025-34. [PMID: 25066414 DOI: 10.1111/jam.12609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/27/2023]
Abstract
AIMS Culturing compost-derived microbial communities on biofuel feedstocks under industrial conditions is a technique to enrich for organisms and lignocellulolytic enzymes for bioenergy feedstock deconstruction. In this study, microbial communities from green waste compost (GWC) and grape pomace compost (GPC) were cultured on switchgrass and eucalyptus to observe the impact of inoculation on feedstock decomposition and microbial community structure. METHODS AND RESULTS Respiration was monitored as a measure of microbial activity, and 16S ribosomal RNA gene sequencing was used to characterize microbial community structure. The enriched community structure and respiration were influenced by the choice of feedstock, compost type, and application of thermophilic, high-solids conditions. However, the effect of compost source was significantly less than the effects of the other culture variables. CONCLUSIONS Although there are subtle differences in potentially lignocellulolytic taxa between GPC- and GWC-derived communities, these differences do not affect the decomposition rates for these communities on switchgrass or eucalyptus. SIGNIFICANCE AND IMPACT OF THE STUDY These results are useful for designing future experiments to discover lignocellulolytic micro-organisms from compost. They suggest that such work may be better served by deemphasizing screening of compost sources and instead focusing on how compost-derived communities adapt to the feedstocks and process conditions relevant to biofuel production.
Collapse
Affiliation(s)
- C W Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Song N, Cai HY, Yan ZS, Jiang HL. Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2013; 131:281-7. [PMID: 23357088 DOI: 10.1016/j.biortech.2013.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 05/10/2023]
Abstract
Caulobacteria are presumed to be responsible for considerable mineralization of organic material in aquatic environments. In this study, a facultative, mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated from sediments which were taken from a shallow freshwater lake and then enriched with amendment of submerged macrophyte for three months. This strain seemed to evolve a capacity to adapt redox-fluctuating environments, and could degrade cellulose both aerobically and anaerobically. Cellulose degradation percentages under aerobic and anaerobic conditions were approximately 27% and 10% after a 240-h incubation in liquid mediums containing 0.5% cellulose, respectively. Either cellulose or cellobiose alone was able to induce activities of endoglucanase, exoglucanase, and β-1,4-glucosidase. Interestingly, ethanol was produced as the main fermentative product under anaerobic incubation on cellulose. These results could improve our understanding about cellulose-degrading process in aquatic environments, and were also useful in optimizing cellulose bioconversion process for bioethanol production.
Collapse
Affiliation(s)
- Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
15
|
A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. PLoS One 2013; 8:e56063. [PMID: 23418511 PMCID: PMC3572039 DOI: 10.1371/journal.pone.0056063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/03/2013] [Indexed: 12/17/2022] Open
Abstract
The composition of the cellulosomes (multi enzymatic complexes involved in the degradation of plant cell wall polysaccharides) produced by Clostridium cellulolyticum differs according to the growth substrate. In particular, the expression of a cluster of 14 hemicellulase-encoding genes (called xyl-doc) seems to be induced by the presence of straw and not of cellulose. Genes encoding a putative two-component regulation system (XydS/R) were found upstream of xyl-doc. First evidence for the involvement of the response regulator, XydR, part of this two-component system, in the expression of xyl-doc genes was given by the analysis of the cellulosomes produced by a regulator overproducing strain when grown on cellulose. Nano-LC MS/MS analysis allowed the detection of the products of all xyl-doc genes and of the product of the gene at locus Ccel_1656 predicted to bear a carbohydrate binding domain targeting hemicellulose. RT-PCR experiments further demonstrated that the regulation occurs at the transcriptional level and that all xyl-doc genes are transcriptionally linked. mRNA quantification in a regulator knock-out strain and in its complemented derivative confirmed the involvement of the regulator in the expression of xyl-doc genes and of the gene at locus Ccel_1656 in response to straw. Electrophoretic mobility shift assays using the purified regulator further demonstrated that the regulator binds to DNA regions located upstream of the first gene of the xyl-doc gene cluster and upstream of the gene at locus Ccel_1656.
Collapse
|
16
|
Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 2012; 89:201-8. [DOI: 10.1016/j.mimet.2012.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/23/2022]
|
17
|
Jeon SD, Yu KO, Kim SW, Han SO. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Appl Microbiol Biotechnol 2011; 90:565-72. [DOI: 10.1007/s00253-011-3108-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/30/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
18
|
Isolation and characterization of Shigella flexneri G3, capable of effective cellulosic saccharification under mesophilic conditions. Appl Environ Microbiol 2010; 77:517-23. [PMID: 21097577 DOI: 10.1128/aem.01230-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel Shigella strain (Shigella flexneri G3) showing high cellulolytic activity under mesophilic, anaerobic conditions was isolated and characterized. The bacterium is Gram negative, short rod shaped, and nonmotile and displays effective production of glucose, cellobiose, and other oligosaccharides from cellulose (Avicel PH-101) under optimal conditions (40°C and pH 6.5). Approximately 75% of the cellulose was hydrolyzed in modified ATCC 1191 medium containing 0.3% cellulose, and the oligosaccharide production yield and specific production rate reached 375 mg g Avicel(-1) and 6.25 mg g Avicel(-1) h(-1), respectively, after a 60-hour incubation. To our knowledge, this represents the highest oligosaccharide yield and specific rate from cellulose for mesophilic bacterial monocultures reported so far. The results demonstrate that S. flexneri G3 is capable of rapid conversion of cellulose to oligosaccharides, with potential biofuel applications under mesophilic conditions.
Collapse
|
19
|
Salimi F, Zhuang K, Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 2010; 5:726-38. [PMID: 20665645 DOI: 10.1002/biot.201000159] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An alternative consolidated bioprocessing approach is the use of a co-culture containing cellulolytic and solventogenic clostridia. It has been demonstrated that the rate of cellulose utilization in the co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum is improved compared to the mono-culture of C. cellulolyticum, suggesting the presence of syntrophy between these two species. However, the metabolic interactions in the co-culture are not well understood. To understand the metabolic interactions in the co-culture, we developed a genome-scale metabolic model of C. cellulolyticum comprising of 431 genes, 621 reactions, and 603 metabolites. The C. cellulolyticum model can successfully predict the chemostat growth and byproduct secretion with cellulose as the substrate. However, a growth arrest phenomenon, which occurs in batch cultures of C. cellulolyticum at cellulose concentrations higher than 6.7 g/L, cannot be predicted by dynamic flux balance analysis due to the lack of understanding of the underlying mechanism. These genome-scale metabolic models of the pure cultures have also been integrated using a community modeling framework to develop a dynamic model of metabolic interactions in the co-culture. Co-culture simulations suggest that cellobiose inhibition cannot be the main factor that is responsible for improved cellulose utilization relative to mono-culture of C. cellulolyticum.
Collapse
Affiliation(s)
- Fahimeh Salimi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
20
|
Abstract
Cellulosomes are intricate multienzyme systems produced by several cellulolytic bacteria, the first example of which was discovered in the anaerobic thermophilic bacterium, Clostridium thermocellum. Cellulosomes are designed for efficient degradation of plant cell wall polysaccharides, notably cellulose--the most abundant renewable polymer on earth. The component parts of the multicomponent complex are integrated by virtue of a unique family of integrating modules, the cohesins and the dockerins, whose distribution and specificity dictate the overall cellulosome architecture. A full generation of research has elapsed since the original publications that documented the cellulosome concept. In this review, we provide a personal account on the discovery process, while describing how divergent cellulosome systems were identified and investigated, culminating in the collaboration of several labs worldwide to tackle together the challenging field of cellulosome genomics and metagenomics.
Collapse
Affiliation(s)
- Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
21
|
Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 2008; 291:1-16. [PMID: 19025568 DOI: 10.1111/j.1574-6968.2008.01420.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The high-affinity cohesin-dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.
Collapse
Affiliation(s)
- Ayelet Peer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
22
|
Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2008; 82:141-8. [PMID: 18998122 DOI: 10.1007/s00253-008-1763-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/16/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
The objective of this research was to understand how carbon loading influences hydrogen (H(2)) synthesis and metabolic flow patterns in the thermophilic, cellulolytic bacterium, Clostridium thermocellum. C. thermocellum was cultivated in batch cultures with high (5 g L(-1)) and low (1 g L(-1)) initial concentrations of alpha-cellulose at 60 degrees C. The growth rate of C. thermocellum was 22% lower (0.15 h(-1)) in cultures with low-cellulose concentration compared with cultures with high-cellulose concentrations. Although substrate depletion coincided with the end of log-growth in low-cellulose cultures, the prime reason for growth arrest in high-cellulose cultures was not identified. Ethanol, acetate, and formate were the major soluble end-products with concomitant release of H(2) and CO(2) under both conditions. Lactate appeared during the late log phase in high-carbon cultures when pH dropped below 6.4 and became the major end-product in stationary phase. During the exponential phase of cell growth, significantly higher yields for H(2) and acetate (1.90 +/- 0.14 and 1.11 +/- 0.04 mol/mol glucose equivalent, respectively) were obtained from low-cellulose cultures compared to those from high-cellulose cultures. The maximum specific rate of H(2) production, 6.41 +/- 0.13 mmol H(2)/g dry cell/h, obtained during the exponential phase from low-carbon cultures was about 37% higher than that obtained from high-carbon cultures.
Collapse
|
23
|
Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 2007; 190:1499-506. [PMID: 18156277 DOI: 10.1128/jb.01160-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cip-cel cluster of genes plays an important role in the catabolism of the substrate cellulose by Clostridium cellulolyticum. It encodes several key components of the cellulosomes, including the scaffolding protein CipC and the major cellulase Cel48F. All the genes of this cluster display linked transcription, focusing attention on the promoter upstream from the first gene, cipC. We analyzed the regulation of the cipC promoter using a transcriptional fusion approach. A single promoter is located between nucleotides -671 and -643 with respect to the ATG start codon, and the large mRNA leader sequence is processed at position -194. A catabolite-responsive element (CRE) 414 nucleotides downstream from the transcriptional start site has been shown to be involved in regulating this operon by a carbon catabolite repression mechanism. This CRE is thought to bind a CcpA-like regulator complexed with a P-Ser-Crh-like protein. Sequences surrounding the promoter sequence may also be involved in direct (sequence-dependent DNA curvature) or indirect (unknown regulator binding) regulation.
Collapse
|
24
|
Abstract
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to consider. Among anaerobic cellulolytic bacteria, C. cellulolyticum has been investigated metabolically the most in the past few years. Summarizing metabolic flux analyses in continuous culture using either cellobiose (a soluble cellodextrin resulting from cellulose hydrolysis) or cellulose (an insoluble biopolymer), this review aims to stress the importance of the insoluble nature of a carbon source on bacterial metabolism. Furthermore, some general and specific traits of anaerobic cellulolytic bacteria trends, namely, the importance and benefits of (i) cellodextrins with degree of polymerization higher than 2, (ii) intracellular phosphorolytic cleavage, (iii) glycogen cycling on cell bioenergetics, and (iv) carbon overflows in regulation of carbon metabolism, as well as detrimental effects of (i) soluble sugars and (ii) acidic environment on bacterial growth. Future directions for improving bacterial cellulose degradation are discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- INRA (Institut National de la Recherche Agronomique), Centre de Clermont-Ferrand, UR454 Unité de Microbiologie, Site de Theix, Saint-Genès Champanelle, F-63122 France.
| |
Collapse
|
25
|
Maamar H, Abdou L, Boileau C, Valette O, Tardif C. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol 2006; 188:2614-24. [PMID: 16547049 PMCID: PMC1428388 DOI: 10.1128/jb.188.7.2614-2624.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twelve genes encoding key components of Clostridium cellulolyticum cellulosomes are clustered. Among them, the first, second, and fifth genes encode the assembly factor CipC and the two major cellulases Cel48F and Cel9E, respectively. Cellulolytic clones were selected from the noncellulolytic cipC insertional mutant trans-complemented with a cipC expression vector, in which one homologous recombination event between the 3' end of the chromosomal cipC gene and the plasmidic cipC gene has restored the cluster continuity. The absence of the enzymes encoded by the cluster in the cipC mutant was thus only due to a strong polar effect, indicating that all genes were transcriptionally linked. Two large transcripts were detected in cellulose-grown cells by Northern hybridization: a 14-kb messenger which carries the cipC-cel48F-cel8C-cel9G-cel9E coding sequences and, in a smaller amount, a 12-kb messenger which carries the genes located in the 3' part of the cluster. Four smaller transcripts were found in large amounts: a cipC-cel48F bicistronic one and three monocistronic ones, cipC, cel48F, and cel9E. The cipC-cel48F and cel48F messengers were shown to be stable. Analysis by reverse transcription-PCR suggested transcriptional linkage of all of the open reading frames. The production of a primary very large transcript covering the entire cluster was hypothesized. Primer extension analysis has identified two putative transcriptional start sites located 638/637 and 194 nucleotides upstream of the cipC translational start. The processing of the primary transcript would lead to the production of several secondary messengers displaying different stabilities, contributing to fine tuning of expression of individual genes of the operon.
Collapse
Affiliation(s)
- Hédia Maamar
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Niessen J, Schröder U, Harnisch F, Scholz F. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 2005; 41:286-90. [PMID: 16108922 DOI: 10.1111/j.1472-765x.2005.01742.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. METHODS AND RESULTS Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. CONCLUSIONS The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.
Collapse
Affiliation(s)
- J Niessen
- Institut für Chemie und Biochemie, Universität Greifswald, Greifswald, Germany
| | | | | | | |
Collapse
|
28
|
Maamar H, Valette O, Fierobe HP, Bélaich A, Bélaich JP, Tardif C. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 2004; 51:589-98. [PMID: 14756796 DOI: 10.1046/j.1365-2958.2003.03859.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progress towards understanding the molecular basis of cellulolysis by Clostridium cellulolyticm was obtained through the study of the first cellulolysis defective mutant strain, namely cipCMut1. In this mutant, a 2 659 bp insertion element, disrupts the cipC gene at the sequence encoding the seventh cohesin of the scaffoldin CipC. cipC is the first gene in a large 'cel' gene cluster, encoding several enzymatic subunits of the cellulosomes, including the processive cellulase Cel48F, which is the major component. Physiological and biochemical studies showed that the mutant strain was affected in cellulosome synthesis and severely impaired in its ability to degrade crystalline cellulose. It produced small amounts of a truncated CipC protein (P120), which had functional cohesin domains and assembled complexes which did not contain any of the enzymes encoded by genes of the 'cel' cluster. The mutant cellulolytic system was mainly composed of three proteins designated P98, P105 and P125. Their N-termini did not match any of the known cellulase sequences from C. cellulolyticum. A large amount of entire CipC produced in the cipCMut1 strain by trans-complementation with plasmid pSOScipC did not restore the cellulolytic phenotype, in spite of the assembly of a larger amount of complexes. The complexes produced in the mutant and complemented strains contained at least 12 different dockerin-containing proteins encoded by genes located outside of the 'cel' cluster. The disturbances observed in the mutant and trans-complemented strains were the result of a strong polar effect resulting from the cipC gene disruption. In conclusion, this study provided genetic evidence that the cellulases encoded by the genes located in the 'cel' cluster are essential for the building of cellulosomes efficient in crystalline cellulose degradation.
Collapse
Affiliation(s)
- Hédia Maamar
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-IBSM, CNRS, 13402 Marseille 20, France
| | | | | | | | | | | |
Collapse
|
29
|
Perret S, Maamar H, Bélaich JP, Tardif C. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol 2004; 51:599-607. [PMID: 14756797 DOI: 10.1046/j.1365-2958.2003.03860.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzymatic composition of the cellulosomes produced by Clostridium cellulolyticum was modified by inhibiting the synthesis of Cel48F that is the major cellulase of the cellulosomes. The strain ATCC 35319 (pSOSasrF) was developed to over-produce a 469 nucleotide-long antisense-RNA (asRNA) directed against the ribosome-binding site region and the beginning of the coding region of the cel48F mRNAs. The cellulolytic system secreted by the asRNA-producing strain showed a markedly lower amount of Cel48F, compared to the control strain transformed with the empty plasmid (pSOSzero). This was correlated with a 30% decrease of the specific activity of the cellulolytic system on Avicel cellulose, indicating that Cel48F plays an important role in the recalcitrant cellulose degradation. However, only minor effects were observed on the growth parameters on cellulose. In both transformant strains, cellulosome production was found to be reduced and two unknown proteins (P105 and P98) appeared as major components of their cellulolytic systems. These proteins did not contain any dockerin domain and were shown to be not included into the cellulosomes; they are expected to participate to the non-cellulosomal cellulolytic system of C. cellulolyticum.
Collapse
Affiliation(s)
- Stéphanie Perret
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 13402 Marseille 20, France
| | | | | | | |
Collapse
|
30
|
Desvaux M, Petitdemange H. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol 2001; 67:3846-51. [PMID: 11525976 PMCID: PMC93100 DOI: 10.1128/aem.67.9.3846-3851.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Accepted: 05/31/2001] [Indexed: 11/20/2022] Open
Abstract
An investigation of cellulose degradation by the nonruminal, cellulolytic, mesophilic bacterium Clostridium cellulolyticum was performed in cellulose-fed chemostat cultures with ammonium as the growth-limiting nutrient. At any dilution rate (D), acetate was always the main product of the catabolism, with a yield of product from substrate ranging between 37.7 and 51.5 g per mol of hexose equivalent fermented and an acetate/ethanol ratio always higher than 1. As D rose, the acetyl coenzyme A was rerouted in favor of ethanol pathways, and ethanol production could represent up to 17.7% of the carbon consumed. Lactate was significantly produced, but with increasing D, the specific lactate production rate declined, as did the specific rate of production of extracellular pyruvate. The proportion of the original carbon directed towards phosphoglucomutase remained constant, and the carbon surplus was balanced mainly by exopolysaccharide and glycogen biosyntheses at high D values, while cellodextrin excretion occurred mainly at lower ones. With increasing D, the specific rate of carbon flowing down catabolites increased as well, but when expressed as a percentage of carbon it declined, while the percentage of carbon directed through biosynthesis pathways was enhanced. The maximum growth and energetic yields were lower than those obtained in cellulose-limited chemostats and were related to an uncoupling between catabolism and anabolism leading to an excess of energy. Compared to growth on cellobiose in ammonium-limited chemostats (E. Guedon, M. Desvaux, and H. Petitdemange, J. Bacteriol. 182:2010-2017, 2000), (i) a specific consumption rate of carbon of as high as 26.72 mmol of hexose equivalent g of cells(-1) x h(-1) could not be reached and (ii) the proportions of carbon directed towards cellodextrin, glycogen, and exopolysaccharide pathways were not as high as first determined on cellobiose. While the use of cellobiose allows highlighting of metabolic limitation and regulation of C. cellulolyticum under ammonium-limited conditions, some of these events should then rather be interpreted as distortions of the metabolism. Growth of cellulolytic bacteria on easily available carbon and nitrogen sources represents conditions far different from those of the natural lignocellulosic compounds.
Collapse
Affiliation(s)
- M Desvaux
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, 54506 Vandouvre-lès-Nancy Cédex, France
| | | |
Collapse
|
31
|
Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 2001; 74:280-7. [PMID: 11410852 DOI: 10.1002/bit.1118] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sixteen batch experiments were performed to evaluate the stability, kinetics, and metabolic paths of heat-shocked digester (HSD) sludge that transforms microcrystalline cellulose into hydrogen. Highly reproducible kinetic and metabolic data confirmed that HSD sludge could stably convert microcrystalline cellulose to hydrogen and volatile fatty acids (VFA) and induce metabolic shift to produce alcohols. We concluded that clostridia predominated the hydrogen-producing bacteria in the HSD sludge. Throughout this study the hydrogen percentage in the headspace of the digesters was greater than 50% and no methanogenesis was observed. The results emphasize that hydrogen significantly inhibited the hydrogen-producing activity of sludge when initial microcrystalline cellulose concentrations exceeded 25.0 g/L. A further 25 batch experiments performed with full factorial design incorporating multivariate analysis suggested that the ability of the sludge to convert cellulose into hydrogen was influenced mainly by the ratio of initial cellulose concentration (So) to initial sludge density (Xo), but not by interaction between the variables. The hydrogen-producing activity depended highly on interaction of So x (So/Xo). Through response surface analysis it was found that a maximum hydrogen yield of 3.2 mmol/g cellulose occurred at So = 40 g/L and So/Xo = 8 g cellulose/g VSS. A high specific rate of 18 mmol/(g VSS-d) occurred at So = 28 g/L and So/Xo = 9 g cellulose/g VSS. These experimental results suggest that high hydrogen generation from cellulose was accompanied by low So/Xo.
Collapse
Affiliation(s)
- J J Lay
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung First University of Science and Technology, 1, University Road, Yanchau, Kaohsiung, Taiwan, R.O.C.
| |
Collapse
|
32
|
Desvaux M, Guedon E, Petitdemange H. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1461-1471. [PMID: 11390677 DOI: 10.1099/00221287-147-6-1461] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clostridium cellulolyticum, a nonruminal cellulolytic mesophilic bacterium, was grown in batch and continuous cultures on cellulose using a chemically defined medium. In batch culture with unregulated pH, less cellulose degradation and higher accumulation of soluble glucides were obtained compared to a culture with the pH controlled at 7.2. The gain in cellulose degradation achieved with pH control was offset by catabolite production rather than soluble sugar accumulation. The pH-controlled condition improved biomass, ethanol and acetate production, whereas maximum lactate and extracellular pyruvate concentrations were lower than in the non-pH-controlled condition. In a cellulose-fed chemostat at constant dilution rate and pH values ranging from 7.4 to 6.2, maximum cell density was obtained at pH 7.0. Environmental acidification chiefly influenced biomass formation, since at pH 6.4 the dry weight of cells was more than fourfold lower compared to that at pH 7.0, whereas the specific rate of cellulose assimilation decreased only from 11.74 to 10.13 milliequivalents of carbon (g cells)(-1) h(-1). The molar growth yield and the energetic growth yield did not decline as pH was lowered, and an abrupt transition to washout was observed. Decreasing the pH induced a shift from an acetate-ethanol fermentation to a lactate-ethanol fermentation. The acetate/ethanol ratio decreased as the pH declined, reaching close to 1 at pH 6.4. Whatever the pH conditions, lactate dehydrogenase was always greatly in excess. As pH decreased, both the biosynthesis and the catabolic efficiency of the pyruvate-ferredoxin oxidoreductase declined, as indicated by the ratio of the specific enzyme activity to the specific metabolic rate, which fell from 9.8 to 1.8. Thus a change of only 1 pH unit induced considerable metabolic change and ended by washout at around pH 6.2. C. cellulolyticum appeared to be similar to rumen cellulolytic bacteria in its sensitivity to acidic conditions. Apparently, the cellulolytic anaerobes studied thus far do not thrive when the pH drops below 6.0, suggesting that they evolved in environments where acid tolerance was not required for successful competition with other microbes.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France1
| | - Emmanuel Guedon
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France1
| | - Henri Petitdemange
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandœuvre-lès-Nancy Cédex, France1
| |
Collapse
|
33
|
Desvaux M, Guedon E, Petitdemange H. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J Bacteriol 2001; 183:119-30. [PMID: 11114908 PMCID: PMC94857 DOI: 10.1128/jb.183.1.119-130.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Accepted: 10/06/2000] [Indexed: 11/20/2022] Open
Abstract
The metabolic characteristics of Clostridium cellulolyticum, a mesophilic cellulolytic nonruminal bacterium, were investigated and characterized kinetically for the fermentation of cellulose by using chemostat culture analysis. Since with C. cellulolyticum (i) the ATP/ADP ratio is lower than 1, (ii) the production of lactate at low specific growth rate (mu) is low, and (iii) there is a decrease of the NADH/NAD(+) ratio and q(NADH produced)/ q(NADH used) ratio as the dilution rate (D) increases in carbon-limited conditions, the chemostats used were cellulose-limited continuously fed cultures. Under all conditions, ethanol and acetate were the main end products of catabolism. There was no shift from an acetate-ethanol fermentation to a lactate-ethanol fermentation as previously observed on cellobiose as mu increased (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, J. Bacteriol. 181:3262-3269, 1999). The acetate/ethanol ratio was always higher than 1 but decreased with D. On cellulose, glucose 6-phosphate and glucose 1-phosphate are important branch points since the longer the soluble beta-glucan uptake is, the more glucose 1-phosphate will be generated. The proportion of carbon flowing toward phosphoglucomutase remained constant (around 59.0%), while the carbon surplus was dissipated through exopolysaccharide and glycogen synthesis. The percentage of carbon metabolized via pyruvate-ferredoxin oxidoreductase decreased with D. Acetyl coenzyme A was mainly directed toward the acetate formation pathway, which represented a minimum of 27.1% of the carbon substrate. Yet the proportion of carbon directed through biosynthesis (i.e., biomass, extracellular proteins, and free amino acids) and ethanol increased with D, reaching 27.3 and 16.8%, respectively, at 0.083 h(-1). Lactate and extracellular pyruvate remained low, representing up to 1.5 and 0.2%, respectively, of the original carbon uptake. The true growth yield obtained on cellulose was higher, [50.5 g of cells (mol of hexose eq)(-1)] than on cellobiose, a soluble cellodextrin [36.2 g of cells (mol of hexose eq)(-1)]. The rate of cellulose utilization depended on the solid retention time and was first order, with a rate constant of 0.05 h(-1). Compared to cellobiose, substrate hydrolysis by cellulosome when bacteria are grown on cellulose fibers introduces an extra means for regulation of the entering carbon flow. This led to a lower mu, and so metabolism was not as distorted as previously observed with a soluble substrate. From these results, C. cellulolyticum appeared well adapted and even restricted to a cellulolytic lifestyle.
Collapse
Affiliation(s)
- M Desvaux
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Faculté des Sciences, Université Henri Poincaré, 54506 Vandouvre-lès-Nancy Cédex, France
| | | | | |
Collapse
|
34
|
Jennert KCB, Tardif C, Young DI, Young M. Gene transfer to Clostridium cellulolyticum ATCC 35319. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3071-3080. [PMID: 11101665 DOI: 10.1099/00221287-146-12-3071] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although much is known about the bacterial cellulosome and its various protein components, their contributions to bacterial growth on cellulose and the process of cellulolysis in vivo cannot currently be assessed. To remedy this, the authors have developed gene transfer techniques for Clostridium cellulolyticum ATCC 35319. Firstly, transfer of Tn1545 has been obtained using an Enterococcus faecalis donor. Secondly, IncP-mediated conjugative mobilization of plasmids from Escherichia coli donors has also been achieved. The yield of transconjugants in both cases was low and was probably limited by the suboptimal growth conditions that must of necessity be employed for the co-culture of oligotrophic C. cellulolyticum with copiotrophic donors. A restriction endonuclease was detected in crude extracts of C. cellulolyticum. This enzyme, named CCE:I, is an isoschizomer of MSP:I (HPA:II). Electro-transformation was employed to establish plasmids containing the replication functions of pAMss1 (En. faecalis), pIM13 (Bacillus subtilis), pCB102 (Clostridium butyricum), pIP404 (Clostridium perfringens) and pWV01 (Lactococcus lactis subsp. cremoris) in C. cellulolyticum. Transformants were only obtained if the DNA was appropriately methylated on the external C of the sequence 5'-CCGG-3' using either BSU:FI methylase in vivo or MSP:I methylase in vitro. Plasmids based on the pAMss1 and pIM13 replicons were more stably maintained than one based on the pCB102 replicon. Selection of transformants on solid medium led to low apparent transformation efficiencies (approx. 10(2) transformants per microg DNA) which might, in part, reflect the low plating efficiency of the organism. Selection of transformants in liquid medium led to a higher apparent yield of transformants (between 10(5) and 10(7) transformants per microg DNA). The methods developed here will pave the way for functional analysis of the various cellulosome components in vivo.
Collapse
Affiliation(s)
- Katrin C B Jennert
- Institute of Biological Sciences, Cledwyn Building, University of Wales, Aberystwyth, Penglais SY23 3DD, UK1
| | - Chantal Tardif
- Université de Provence, Marseille, France3
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France2
| | - Danielle I Young
- Institute of Biological Sciences, Cledwyn Building, University of Wales, Aberystwyth, Penglais SY23 3DD, UK1
| | - Michael Young
- Institute of Biological Sciences, Cledwyn Building, University of Wales, Aberystwyth, Penglais SY23 3DD, UK1
| |
Collapse
|
35
|
Desvaux M, Guedon E, Petitdemange H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 2000; 66:2461-70. [PMID: 10831425 PMCID: PMC110559 DOI: 10.1128/aem.66.6.2461-2470.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Accepted: 03/27/2000] [Indexed: 11/20/2022] Open
Abstract
A reinvestigation of cellulose degradation by Clostridium cellulolyticum in a bioreactor with pH control of the batch culture and using a defined medium was performed. Depending on cellulose concentration, the carbon flow distribution was affected, showing the high flexibility of the metabolism. With less than 6.7 g of cellulose liter(-1), acetate, ethanol, H(2), and CO(2) were the main end products of the fermentation and cellulose degradation reached more than 85% in 5 days. The electron flow from the glycolysis was balanced by the production of H(2) and ethanol, the latter increasing with increasing initial cellulose concentration. From 6.7 to 29.1 g of cellulose liter(-1), the percentage of cellulose degradation declined; most of the cellulase activity remained on the cellulose fibers, the maximum cell density leveled off, and the carbon flow was reoriented from ethanol to acetate. In addition to that of previously indicated end products, lactate production rose, and, surprisingly enough, pyruvate overflow occurred. Concomitantly the molar growth yield and the energetic yield of the biomass decreased. Growth arrest may be linked to sufficiently high carbon flow, leading to the accumulation of an intracellular inhibitory compound(s), as observed on cellobiose (E. Guedon, M. Desvaux, S. Payot, and H. Petitdemange, Microbiology 145:1831-1838, 1999). These results indicated that bacterial metabolism exhibited on cellobiose was distorted compared to that exhibited on a substrate more closely related to the natural ecosystem of C. cellulolyticum. To overcome growth arrest and to improve degradation at high cellulose concentrations (29.1 g liter(-1)), a reinoculation mode was evaluated. This procedure resulted in an increase in the maximum dry weight of cells (2,175 mg liter(-1)), cellulose solubilization (95%), and end product concentrations compared to a classical batch fermentation with a final dry weight of cells of 580 mg liter(-1) and 45% cellulose degradation within 18 days.
Collapse
Affiliation(s)
- M Desvaux
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Faculté des Sciences, Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy Cédex, France
| | | | | |
Collapse
|
36
|
Guedon E, Payot S, Desvaux M, Petitdemange H. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Biotechnol Bioeng 2000; 67:327-35. [PMID: 10620263 DOI: 10.1002/(sici)1097-0290(20000205)67:3<327::aid-bit9>3.0.co;2-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Continuous cultures, under cellobiose sufficient concentrations (14. 62 mM) using a chemically defined medium, were examined to determine the carbon regulation selected by Clostridium cellulolyticum. Using a synthetic medium, a q(cellobiose) of 2.57 mmol g cells(-1) h(-1) was attained whereas the highest value obtained on complex media was 0.68 mmol g cells(-1) h(-1) (Payot et al. 1998. Microbiology 144:375-384). On a synthetic medium at D = 0.035 h(-1) under cellobiose excess, lactate and ethanol biosynthesis were able to use the reducing equivalents supplied by acetic acid formation and the H(2)/CO(2) ratio was found equal to 1. At a higher dilution rate (D = 0.115 h(-1)), there was no lactate production and the pathways toward ethanol and NADH-ferredoxin-hydrogenase contributed to balance the reducing equivalents; in this case a H(2)/CO(2) ratio of 1.54 was found. With increasing D, there was a progressive increase (i) in the steady-state concentration of NADH and NAD(+) pools from 11.8 to 22.1 micromol (g cells) (-1), (ii) in the intracellular NADH/NAD(+) ratios from 0.43 to 1.51. On synthetic media, under cellobiose excess the carbon flow was also equilibrated by three overflows: exopolysaccharide, extracellular protein, and amino acid excretions. At D = 0.115 h(-1), 34% of the cellobiose consumed was converted into exopolysaccharides; this deviation of the carbon flow and the increase of the phosphoroclastic activity decreased dramatically the pyruvate excretion and explained the break in lactate production. Whatever the dilution rate, C. cellulolyticum, using ammonium and cellobiose excess, always spilled usual amino acids accompanied by other amino compounds. In vitro, GAPDH, phosphoroclastic reaction, alcohol dehydrogenase, and acetate kinase activities were high under conditions giving high in vivo specific production rates. There were also correlations between the in vitro lactate dehydrogenase activity and in vivo lactate production, but in contrast with the preceding activities, these two parameters decreased with D. All the results demonstrate that C. cellulolyticum was able to optimize carbon catabolism from cellulosic substrates in a synthetic medium.
Collapse
Affiliation(s)
- E Guedon
- Laboratoire de Biochimie des Bactéries Gram +, Domaine Scientifique Victor Grignard, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
| | | | | | | |
Collapse
|
37
|
LAY JJ, NOIKE T. HYDROGEN PRODUCTION AND DEGRADATION OF CELLULOSE BY ANAEROBIC DIGESTED SLUDGE. ACTA ACUST UNITED AC 1999. [DOI: 10.2208/jscej.1999.636_97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jiunn-Jyi LAY
- JSCE
- Dept. of Safty, Health, and Environ. Eng., National Kaohsiung First University of Science and Technology
| | | |
Collapse
|
38
|
Payot S, Guedon E, Gelhaye E, Petitdemange H. Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Res Microbiol 1999; 150:465-73. [PMID: 10540910 DOI: 10.1016/s0923-2508(99)00110-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When grown in batch cultures in fermentors with 23.4 mM cellobiose, Clostridium cellulolyticum displayed biphasic growth kinetics not associated with sequential substrate consumption and which led to a twofold higher production of biomass than previously reported. In the first growth phase, acetate was the major product of cellobiose metabolism, since lactate and ethanol productions remained low. Furthermore, an accumulation of intracellular NADH was observed. The transition towards the second growth phase was accompanied by an induction of lactate production, in such a way that lactate became the major product of C. cellulolyticum metabolism. In addition, a decrease in NADH concentration was measured, concomitant with this induction of lactate production and with the growth resumption. During both growth phases, the NADH-ferredoxin reductase-hydrogenase system played a major function in NADH regeneration, since H2 production was 1.4- to 1.5-fold higher than that of CO2. Thus, we found that lactate production serves as an additional catabolic pathway enabling C. cellulolyticum to cope with excesses of carbon and NADH produced. Growth experiments on C. cellulolyticum under an atmosphere of carbon monoxide mimicked this phenomenon and confirmed that a high intracellular level of NADH can provide a barrier to bacterial growth.
Collapse
Affiliation(s)
- S Payot
- Laboratoire de biochimie des bactéries Gram+, université Henri Poincaré, faculté des sciences, Vandoeuvre-Lès-Nancy, France
| | | | | | | |
Collapse
|
39
|
Guedon E, Payot S, Desvaux M, Petitdemange H. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 1999; 181:3262-9. [PMID: 10322031 PMCID: PMC93785 DOI: 10.1128/jb.181.10.3262-3269.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 03/19/1999] [Indexed: 11/20/2022] Open
Abstract
Previous results indicated poor sugar consumption and early inhibition of metabolism and growth when Clostridium cellulolyticum was cultured on medium containing cellobiose and yeast extract. Changing from complex medium to a synthetic medium had a strong effect on (i) the specific cellobiose consumption, which was increased threefold; and (ii) the electron flow, since the NADH/NAD+ ratios ranged from 0.29 to 2.08 on synthetic medium whereas ratios as high as 42 to 57 on complex medium were observed. These data indicate a better control of the carbon flow on mineral salts medium than on complex medium. By continuous culture, it was shown that the electron flow from glycolysis was balanced by the production of hydrogen gas, ethanol, and lactate. At low levels of carbon flow, pyruvate was preferentially cleaved to acetate and ethanol, enabling the bacteria to maximize ATP formation. A high catabolic rate led to pyruvate overflow and to increased ethanol and lactate production. In vitro, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and ethanol dehydrogenase levels were higher under conditions giving higher in vivo specific production rates. Redox balance is essentially maintained by NADH-ferredoxin reductase-hydrogenase at low levels of carbon flow and by ethanol dehydrogenase and lactate dehydrogenase at high levels of carbon flow. The same maximum growth rate (0.150 h-1) was found in both mineral salts and complex media, proving that the uptake of nutrients or the generation of biosynthetic precursors occurred faster than their utilization. On synthetic medium, cellobiose carbon was converted into cell mass and catabolized to produce ATP, while on complex medium, it served mainly as an energy supply and, if present in excess, led to an accumulation of intracellular metabolites as demonstrated for NADH. Cells grown on synthetic medium and at high levels of carbon flow were able to induce regulatory responses such as the production of ethanol and lactate dehydrogenase.
Collapse
Affiliation(s)
- E Guedon
- Laboratoire de Biochimie des Bact¿eries Gram +, Domaine Scientifique Victor Grignard, Universit¿e Henri Poincar¿e, Facult¿e des Sciences, 54506 Vanduvre-l¿es-Nancy C¿edex, France
| | | | | | | |
Collapse
|
40
|
Pagès S, Bélaïch A, Fierobe HP, Tardif C, Gaudin C, Bélaïch JP. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 1999; 181:1801-10. [PMID: 10074072 PMCID: PMC93578 DOI: 10.1128/jb.181.6.1801-1810.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the scaffolding protein of the cellulosome from Clostridium cellulolyticum, whose partial sequence was published earlier (S. Pagès, A. Bélaïch, C. Tardif, C. Reverbel-Leroy, C. Gaudin, and J.-P. Bélaïch, J. Bacteriol. 178:2279-2286, 1996; C. Reverbel-Leroy, A. Bélaïch, A. Bernadac, C. Gaudin, J. P. Bélaïch, and C. Tardif, Microbiology 142:1013-1023, 1996), was completely sequenced. The corresponding protein, CipC, is composed of a cellulose binding domain at the N terminus followed by one hydrophilic domain (HD1), seven highly homologous cohesin domains (cohesin domains 1 to 7), a second hydrophilic domain, and a final cohesin domain (cohesin domain 8) which is only 57 to 60% identical to the seven other cohesin domains. In addition, a second gene located 8.89 kb downstream of cipC was found to encode a three-domain protein, called ORFXp, which includes a cohesin domain. By using antiserum raised against the latter, it was observed that ORFXp is associated with the membrane of C. cellulolyticum and is not detected in the cellulosome fraction. Western blot and BIAcore experiments indicate that cohesin domains 1 and 8 from CipC recognize the same dockerins and have similar affinity for CelA (Ka = 4.8 x 10(9) M-1) whereas the cohesin from ORFXp, although it is also able to bind all cellulosome components containing a dockerin, has a 19-fold lower Ka for CelA (2.6 x 10(8) M-1). Taken together, these data suggest that ORFXp may play a role in cellulosome assembly.
Collapse
Affiliation(s)
- S Pagès
- Bioénergétique et Ingéniérie des Protéines, Centre National de la Recherche Scientifique, Marseilles, France
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Recent findings on the cellulolytic system of the mesophilic Clostridium cellulolyticum are reviewed. Six cellulases and the scaffolding protein, which are, at the present time, the known components of the cellulosome have been cloned. The catalytic and structural properties of the cloned enzymes CelA, CelC, CelD and CelF are described. It was shown that the grafting of the cellulases onto the scaffolding protein was performed using the dockerin-cohesin attachment device and was strictly dependent on the integrity of both components of the complex. The amino-acid sequences of dockerin and cohesin domains of C. cellulolyticum were compared to that of C. cellulovorans and C. thermocellum. This sequence analysis shows that domains belonging to the thermophilic or the mesophilic bacteria can be placed into two well defined groups. The genetic organization of the gene cluster of C. cellulolyticum is discussed.
Collapse
Affiliation(s)
- J P Bélaich
- Bioénergétique et Ingénierie des Proteines, IBSM, Centre National de la Recherche Scientifique, Marseille, France.
| | | | | | | |
Collapse
|
42
|
Margolles-clark E, Ihnen M, Penttilä M. Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 1997. [DOI: 10.1016/s0168-1656(97)00097-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Pagès S, Gal L, Bélaïch A, Gaudin C, Tardif C, Bélaïch JP. Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol 1997; 179:2810-6. [PMID: 9139893 PMCID: PMC179039 DOI: 10.1128/jb.179.9.2810-2816.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of a miniscaffolding protein, miniCipC1, forming part of Clostridium cellulolyticum scaffolding protein CipC in insoluble cellulose degradation was investigated. The parameters of the binding of miniCipC1, which contains a family III cellulose-binding domain (CBD), a hydrophilic domain, and a cohesin domain, to four insoluble celluloses were determined. At saturating concentrations, about 8.2 micromol of protein was bound per g of bacterial microcrystalline cellulose, while Avicel, colloidal Avicel, and phosphoric acid-swollen cellulose bound 0.28, 0.38, and 0.55 micromol of miniCipC1 per g, respectively. The dissociation constants measured varied between 1.3 x 10(-7) and 1.5 x 10(-8) M. These results are discussed with regard to the properties of the various substrates. The synergistic action of miniCipC1 and two forms of endoglucanase CelA (with and without the dockerin domain [CelA2 and CelA3, respectively]) in cellulose degradation was also studied. Although only CelA2 interacted with miniCipC1 (K(d), 7 x 10(-9) M), nonhydrolytic miniCipC1 enhanced the activities of endoglucanases CelA2 and CelA3 with all of the insoluble substrates tested. This finding shows that miniCipC1 plays two roles: it increases the enzyme concentration on the cellulose surface and enhances the accessibility of the enzyme to the substrate by modifying the structure of the cellulose, leading to an increased available cellulose surface area. In addition, the data obtained with a hybrid protein, CelA3-CBD(CipC), which was more active towards all of the insoluble substrates tested confirm that the CBD of the scaffolding protein plays an essential role in cellulose degradation.
Collapse
Affiliation(s)
- S Pagès
- Bioénérgetique et Ingéniérie des Protéines, Centre National de la Recherche Scientifique, IBSM-IFR1, Marseille, France
| | | | | | | | | | | |
Collapse
|
44
|
Gal L, Pages S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C, Belaich JP. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 1997; 63:903-9. [PMID: 9055408 PMCID: PMC168382 DOI: 10.1128/aem.63.3.903-909.1997] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cellulolytic complex was isolated from Clostridium cellulolyticum grown on cellulose. Upon gel filtration, the complex was found to consist mainly of 600-kDa units, along with a 16-MDa aggregate. Its ability to degrade various substrates and its capacity to bind to the crystalline cellulose were measured. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal sequencing, and blotting analysis showed that all of the known cellulases of this organism are present in this complex. Three major components were observed: the first component, a noncatalytic, large (160-kDa) protein, was identified based on its ability to bind to the dockerin-containing cellulases as scaffolding protein CipC. The other two components, which had molecular masses of 94 and 80.6 kDa, were identified as CelE and CelF, respectively. The identified cellulases and some other components of the cellulosome were able to bind to a miniCipC1 construct. In addition to providing an extensive description of the system, the results of the present study confirm that the dockerin-cohesin domain interaction plays an essential role in the constitution of the cellulosome.
Collapse
Affiliation(s)
- L Gal
- Laboratoire de Bioénergétique et Ingéniérie des Protéines, IFR C1, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Reverbel-Leroy C, Belaich A, Bernadac A, Gaudin C, Belaich JP, Tardif C. Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):1013-1023. [PMID: 8936327 DOI: 10.1099/00221287-142-4-1013] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The CelF-encoding sequence was isolated from Clostridium cellulolyticum genomic DNA using the inverse PCR technique. The gene lies between cipC (the gene encoding the cellulosome scaffolding protein) and celC (coding for the endoglucanase C) in the large cel cluster of this mesophilic cellulolytic Clostridium species. Comparisons between the deduced amino acid sequence of the mature CelF (693 amino acids, molecular mass 77626) and those of other beta-glycanases showed that this enzyme belongs to the recently proposed family L of cellulases (family 48 of glycosyl hydrolases). The protein was overproduced in Escherichia coli using the T7 expression system. It formed both cytoplasmic and periplasmic inclusion bodies when induction was performed at 37 degrees C. Surprisingly, the protein synthesized from the cytoplasmic production vector was degraded in the Ion protease-deficient strain BL21(DE3). The induction conditions were optimized with regard to the concentration of inductor, cell density, and temperature and time of induction in order to overproduce an active periplasmic protein (CelFp) which was both soluble and stable. It was collected using the osmotic shock method. The enzymic degradation of various cellulosic substrates by CelFp was studied. CelFp degraded swollen Avicel more efficiently than substituted soluble CM-cellulose or crystalline Avicel and was not active on xylan. Its activity is therefore quite different from that of endoglucanases, which are most active on CM-cellulose.
Collapse
Affiliation(s)
- Corinne Reverbel-Leroy
- Bioénergétique et Ingéniérie des protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| | - Anne Belaich
- Bioénergétique et Ingéniérie des protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| | - Alain Bernadac
- Laboratoire d'lngéniérie et Dynamique des Systèmes Membranaires, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| | - Christian Gaudin
- Bioénergétique et Ingéniérie des protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| | - Jean-Pierre Belaich
- Université de Provence, Marseille, France 3
- Bioénergétique et Ingéniérie des protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| | - Chantal Tardif
- Université de Provence, Marseille, France 3
- Bioénergétique et Ingéniérie des protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP71, 13402 Marseille Cedex 20, France
| |
Collapse
|
46
|
Pagès S, Belaich A, Tardif C, Reverbel-Leroy C, Gaudin C, Belaich JP. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J Bacteriol 1996; 178:2279-86. [PMID: 8636029 PMCID: PMC177936 DOI: 10.1128/jb.178.8.2279-2286.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 5' end of the cipC gene, coding for the N-terminal part of CipC, the scaffolding protein of Clostridium cellulolyticum ATCC 35319, was cloned and sequenced. It encodes a 586-amino-acid peptide, including several domains: a cellulose-binding domain, a hydrophilic domain, and two hydrophobic domains (cohesin domains). Sequence alignments showed that the N terminus of CipC and CbpA of C. cellulovorans ATCC 35296 have the same organization. The mini-CipC polypeptide, containing a cellulose-binding domain, hydrophilic domain 1, and cohesin domain 1, was overexpressed in Escherichia coli and purified. The interaction between endoglucanase CelA, with (CelA2) and without (CelA3) the characteristic clostridial C-terminal domain called the duplicated-segment or dockerin domain, and the mini-CipC polypeptide was monitored by two different methods: the interaction Western blotting (immunoblotting) method and binding assays with biotin-labeled protein. Among the various forms of CelA (CelA2, CelA3, and an intermediary form containing only part of the duplicated segment), only CelA2 was found to interact with cohesin domain 1 of CipC. The apparent equilibrium dissociation constant of the CelA2-mini-CipC complex was 7 x 10(-9)M, which indicates that there exists a high affinity between these two proteins.
Collapse
Affiliation(s)
- S Pagès
- Bioénergétique et Ingéniéri des protéines, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | |
Collapse
|
47
|
Saxena S, Fierobe HP, Gaudin C, Guerlesquin F, Belaich JP. Biochemical properties of a beta-xylosidase from Clostridium cellulolyticum. Appl Environ Microbiol 1995; 61:3509-12. [PMID: 7574661 PMCID: PMC167631 DOI: 10.1128/aem.61.9.3509-3512.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 43-kDa beta-xylosidase from Clostridium cellulolyticum was purified to homogeneity. The enzyme releases xylose from p-nitrophenylxylose and xylodextrins with a degree of polymerization ranging between 2 and 5. The N-terminal amino acid sequence of the enzyme showed homologies with three other bacterial beta-xylosidases. By proton nuclear magnetic resonance spectroscopy, the enzyme was found to act by inverting the beta-anomeric configuration.
Collapse
Affiliation(s)
- S Saxena
- Laboratoire de Biochimie et Génétique Moléculaire des Anaérobies, IFRC1, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | |
Collapse
|
48
|
Gehin A, Petitdemange H. The effects of tunicamycin on secretion, adhesion and activities of the cellulase complex of Clostridium cellulolyticum, ATCC 35319. Res Microbiol 1995; 146:251-62. [PMID: 7569320 DOI: 10.1016/0923-2508(96)80281-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of tunicamycin, an inhibitor of N-asparagine-linked glycosylation, on the secretion, adhesion and activities of the cellulase complex produced by Clostridium cellulolyticum have been studied. Tunicamycin at 0.1 micrograms/ml slightly inhibited growth on cellobiose. Endoglucanase, p-nitrophenylcellobiosidase and avicelase activities of the "Avicel"-adsorbed fraction from a culture grown with this drug were decreased 4.4-, 1.4- and 12.2-fold, respectively. During growth on cellulose, tunicamycin considerably inhibited growth and adhesion of cells on their substrate (only 28% of the cells were bound to cellulose). SDS-PAGE mobilities of some proteins excreted during growth with the drug were different from those of proteins from control cultures; the native Avicel-adsorbed fraction (PH2O) consisted of three major components of molecular weights about 135, 90 and 68 kDa, whereas in the presence of tunicamycin (0.1 micrograms/ml), the Avicel-adsorbed fraction (PH2OT) contained only a major band of 105 kDa, and the proteins of 135 and 68 kDa appeared weakly. By using the "Dig Glycan Detection" kit, some proteins appeared to be glycosylated, such as the 135-, 95-, 47- and 40-kDa proteins. Moreover, the affinity for Avicel and the avicelase activity decreased dramatically for the Avicel-adsorbed fraction from a culture grown with the drug. The remaining avicelase activity of the PH2O fraction in the presence of specific P135 antiserum was 50% of the initial activity, whereas CMCase and pNPCbase were not affected. The glycosylated protein of 135 kDa played a prominent role in the adhesion and avicelase activity of C. cellulolyticum. Moreover, the endoglucanase activity in a culture broth from tunicamycin-grown cells was more thermolabile and protease-sensitive than that from control cultures.
Collapse
Affiliation(s)
- A Gehin
- Université de Nancy I, Laboratoire de Chimie biologique I, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
49
|
Gelhaye E, Petitdemange H, Gay R. Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J Bacteriol 1993; 175:3452-8. [PMID: 8501049 PMCID: PMC204744 DOI: 10.1128/jb.175.11.3452-3458.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rate of tritiated-thymidine incorporation into DNA was used to estimate Clostridium cellulolyticum H10 growth rates on Avicel cellulose, taking into consideration both the unattached cells and the cells adhered to the substrate. The generation time on cellobiose calculated from the data on cell density (4.5 h) agreed well with the generation time calculated by tritiated-thymidine incorporation (3.8 h). Growth on Avicel cellulose occurred when bacteria were adhered to their substrate; 80% of the biomass was detected on the cellulose. Taking into consideration attached and free bacteria, the generation time as determined by thymidine incorporation was about 8 h, whereas by bacterial-protein estimation it was about 13 h. In addition to the growth rate of the bacteria on the cellulose, the release of adhered cells constituted an important factor in the efficiency of the cellulolysis. The stage of growth influenced adhesion of C. cellulolyticum; maximum adhesion was found during the exponential phase. Under the conditions used, the end of growth was characterized by an acute release of biomass and cellulase activity from the cellulose. An exhaustion of the accessible cellulose could be responsible for this release.
Collapse
Affiliation(s)
- E Gelhaye
- Laboratoire de Chimie Biologique I, Université de Nancy, France
| | | | | |
Collapse
|
50
|
Shima S, Igarashi Y, Kodama T. Purification and properties of two truncated endoglucanases produced in Escherichia coli harbouring Clostridium cellulolyticum endoglucanase gene celCCD. Appl Microbiol Biotechnol 1993; 38:750-4. [PMID: 7763533 DOI: 10.1007/bf00167140] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endoglucanase gene, celCCD, of Clostridium cellulolyticum has been expressed in Escherichia coli. Multiple active polypeptides were detected in the E. coli cells. The relative molecular mass (M(r)) of two major active polypeptides were 56,000 (D56) and 38,000 (D38), which were smaller than the deduced M(r) of the mature protein (63,401). D56 and D38 were purified from the periplasmic fraction. The N-terminal sequences of the two purified polypeptides were identical to that of the mature endoglucanase (Ala-Ile-Asn-Ser-Gln-Asp-Met-Val---) deduced from the nucleotide sequence. These data indicated that these polypeptides were produced by processing the original mature protein in the C-terminal region. The enzymatic properties of these two polypeptides were very similar, except that the specific activity of D38 was 2-3.5-fold higher than that of D56, and D38 was more heat stable than D56.
Collapse
Affiliation(s)
- S Shima
- Abiko Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | | | | |
Collapse
|