1
|
Carbone V, Reilly K, Sang C, Schofield LR, Ronimus RS, Kelly WJ, Attwood GT, Palevich N. Crystal Structures of Bacterial Pectin Methylesterases Pme8A and PmeC2 from Rumen Butyrivibrio. Int J Mol Sci 2023; 24:13738. [PMID: 37762041 PMCID: PMC10530356 DOI: 10.3390/ijms241813738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed β-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (V.C.); (K.R.); (C.S.); (L.R.S.); (R.S.R.); (W.J.K.); (G.T.A.)
| |
Collapse
|
2
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
3
|
Lashkari S, Bonefeld Petersen M, Krogh Jensen S. Rumen biohydrogenation of linoleic and linolenic acids is reduced when esterified to phospholipids or steroids. Food Sci Nutr 2020; 8:79-87. [PMID: 31993134 PMCID: PMC6977432 DOI: 10.1002/fsn3.1252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023] Open
Abstract
Manipulation of rumen biohydrogenation (BH) is of great importance, since decreased BH of linolenic acid (LNA) and linoleic acid (LA) is linked to increased content of the beneficial polyunsaturated fatty acids (PUFA) in dairy products and decreased content of trans fatty acids (FAs). We hypothesized that PUFA esterified to the complex lipid fractions are less prone to BH compared with PUFA esterified to the simple lipid fractions due to reduced lipolysis. In vitro rumen BH of different single lipid fractions was investigated, including free fatty acids (FFA), and esterified FA to triglycerides (TG), cholesterol esters (CE), and phospholipids (PL). A mixture of a buffer solution and rumen fluid was incubated with different lipid fractions, and C18 FAs were quantified by gas chromatography. In vitro BH kinetic parameters were quantified according to Michaelis-Menten equation and the maximum BH (Vmax) and time to achieve 50% of maximum amount (KM) estimated. Regardless of fatty acids, BH in CE and PL was lower than FFA and TG. The highest amount of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-10, cis-12 CLA was observed in lipid fractions containing LA and LNA, respectively, regardless of lipid fractions. The present study demonstrates the importance of lipid fractions on BH of LNA and LA and formation of CLA isomers. The results show that BH of FAs depends on the lipid fractions.
Collapse
Affiliation(s)
- Saman Lashkari
- Department of Animal ScienceAU FoulumAarhus UniversityTjeleDenmark
| | | | | |
Collapse
|
4
|
Watabe Y, Suzuki Y, Koike S, Shimamoto S, Kobayashi Y. Cellulose acetate, a new candidate feed supplement for ruminant animals: In vitro evaluations. J Dairy Sci 2018; 101:10929-10938. [DOI: 10.3168/jds.2018-14969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022]
|
5
|
Abstract
Colorimetric detection of reaction products is typically preferred for initial surveys of acetyl xylan esterase (AcXE) activity. This chapter will describe common colorimetric methods, and variations thereof, for measuring AcXE activities on commercial, synthesized, and natural substrates. Whereas assays using pNP-acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate (4MUA) are emphasized, common methods used to measure AcXE activity towards carbohydrate analogs (e.g., acetylated p-nitrophenyl β-D-xylopyranosides) and various acetylated xylans are also described. Strengths and limitations of the colorimetric assays are highlighted.
Collapse
Affiliation(s)
- Galina Mai-Gisondi
- Department of Bioproducts and Biosystems, Aalto University, 00076, Kemistintie 1, Espoo, Aalto, Finland
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
6
|
Metagenomic Assembly and Draft Genome Sequence of an Uncharacterized Prevotella sp. from Nelore Rumen. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00723-15. [PMID: 26159527 PMCID: PMC4498113 DOI: 10.1128/genomea.00723-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prevotella is one of the most abundant genera in bovine rumen, although no genome has yet been assembled by a metagenomics approach applied to Brazilian Nelore. We report the draft genome sequence of Prevotella sp., comprising 2,971,040 bp, obtained using the Illumina sequencing platform. This genome includes 127 contigs and presents a low 48% GC.
Collapse
|
7
|
Barr CJ, Mertens JA, Schall CA. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass. BIORESOURCE TECHNOLOGY 2012; 104:480-5. [PMID: 22154300 DOI: 10.1016/j.biortech.2011.10.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 05/10/2023]
Abstract
Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with largely amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH), an endoxylanase (EX) and an acetylxylan esterase (AXE). β-Xylosidase (βX) from Selenomonas ruminantium and a commercial β-glucosidase (βG) from Novozyme 188 were admixed with the A. nidulans enzymes. Statistical analysis indicates that βG and βX activities are significant for both glucose and xylose yields for the two substrates. EG is a significant factor for glucan hydrolysis while EX is significant for xylan hydrolysis of the substrates. The CBH, which has activity on crystalline cellulose and negligible activity on amorphous cellulose, was not a significant factor in glucan hydrolysis. EX is significant in glucan hydrolysis for poplar. The addition of AXE significantly improves xylan hydrolysis for poplar but not switchgrass.
Collapse
Affiliation(s)
- Christopher J Barr
- Department of Chemical & Environmental Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | | | | |
Collapse
|
8
|
Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate. Appl Environ Microbiol 2011; 77:5671-81. [PMID: 21742923 DOI: 10.1128/aem.05321-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOS(FA,Ac)) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOS(FA,Ac), a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose.
Collapse
|
9
|
Molecular cloning and characterization of a novel SGNH arylesterase from the goat rumen contents. Appl Microbiol Biotechnol 2011; 91:1561-70. [PMID: 21533577 DOI: 10.1007/s00253-011-3289-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/26/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
An esterase-encoding gene, estR5, was directly obtained from the genomic DNA of goat rumen contents. The 555-bp full-length gene encodes a 184-residue polypeptide (EstR5) without putative signal peptide. Deduced EstR5 shared the highest identity (50%) to a putative arylesterase from Ruminococcaceae bacterium D16. Phylogenetic analysis indicated that EstR5 was closely related with microbial esterases of gastrointestinal source. A comparison of the conserved motifs shared with GDSL proteins revealed that EstR5 could be grouped into the GDSL family and was further classified into the subfamily of SGNH hydrolases. The gene estR5 was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. Recombinant EstR5 exhibited highest catalytic efficiency towards α-naphthyl acetate followed by phenyl acetate and p-nitrophenyl acetate and had no activity towards PNP esters with acyl chains longer than C8. The enzyme exhibited optimal activity at around 60°C and pH 8.0, was stable at pH ranging from 6.0 to 11.0 and was slightly activated by detergent Tween, Nonidet P-40, and Triton X-100. These properties suggest that EstR5 has great potential for basic research and industrial applications. To our knowledge, this is the first arylesterase obtained from rumen microenvironment.
Collapse
|
10
|
McDermid KP, Mackenzie CR, Forsberg CW. Esterase Activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol 2010; 56:127-32. [PMID: 16348084 PMCID: PMC183260 DOI: 10.1128/aem.56.1.127-132.1990] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the anaerobic ruminal bacterium Fibrobacter succinogenes subsp. succinogenes S85 (formerly Bacteroides succinogenes) exhibit arylesterase activity. When cells were grown on cellulose, it was found that 69% of the total esterase activity was extracellular while 65% was nonsedimentable upon centrifugation of the culture supernatant at 100,000 x g. Disruption of the cells by various different methods failed to increase the esterase activity, indicating that the substrate was fully accessible to esterase enzymes in intact cells. During growth of cells with either glucose or cellulose as the sole carbon source, the increase in acetylesterase activity corresponded to an increase in cell density, suggesting constitutive production. The enzyme(s) hydrolyzed alpha-naphthyl, p-nitrophenyl, and 4-methylumbelliferyl derivatives of acetic acid; xylose tetraacetate; glucose pentaacetate; acetylxylan; and a polymer composed of ferulic acid, arabinose, and xylose in molar proportions of 1:1.1:2.2 (FAX). These data demonstrate the presence of an acetylxylan esterase and a ferulic acid esterase. The cleavage of FAX also documents the presence of an alpha-l-arabinofuranosidase.
Collapse
Affiliation(s)
- K P McDermid
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada NIG 2W1, and Division of Biological Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0K6
| | | | | |
Collapse
|
11
|
Lambrechts C, Escudero J, Galzy P. Purification and properties of three esterases fromBrevibacteriumsp. R312. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb02840.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. BOARD-INVITED REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1. J Anim Sci 2008; 86:397-412. [DOI: 10.2527/jas.2007-0588] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Motta O, Proto A, De Carlo F, De Caro F, Santoro E, Brunetti L, Capunzo M. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. Int J Hyg Environ Health 2008; 212:61-6. [PMID: 18222723 DOI: 10.1016/j.ijheh.2007.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/31/2007] [Accepted: 09/25/2007] [Indexed: 11/30/2022]
Abstract
Atactic polystyrene, one of the most widely used chemical products, was subjected to novel chemically oxidative treatments able to trigger a great variety of physical and chemical changes in the polymer's chains. The oxidized polystyrene samples, when analyzed with Fourier transform infrared spectroscopy (FTIR) clearly showed the formation of carbonyl groups and hydroxyl groups, which increased with the increase in the strength of chemically oxidative treatments. In fungal degradation tests deploying Curvularia species, the fungus colonized the oxidized samples within 9 weeks. Colonization was confirmed by microscopic examination, which showed that the hyphae had adhered to and penetrated the polymer's structure in all the treated samples. Such colonization and adhesion by microorganisms are a fundamental prerequisite for biodegradation of polymers.
Collapse
Affiliation(s)
- Oriana Motta
- Department of Educational Science, Chair of Hygiene, University of Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci U S A 2006; 103:11417-22. [PMID: 16844780 PMCID: PMC1544100 DOI: 10.1073/pnas.0604632103] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To facilitate analysis of plant cell wall polysaccharide structure and composition, we cloned 74 genes encoding polysaccharide-degrading enzymes from Aspergillus nidulans, Aspergillus fumigatus, and Neurospora crassa and expressed the genes as secreted proteins with C-terminal Myc and 6x His tags. Most of the recombinant enzymes were active in enzyme assays, and optima for pH and temperature were established. A subset of the enzymes was used to fragment polysaccharides from the irregular xylem 9 (irx9) mutant of Arabidopsis. The analysis revealed a decrease in the abundance of xylan in the mutant, indicating that the IRX9 gene, which encodes a putative family 43 glycosyltransferase, is required for xylan synthesis.
Collapse
Affiliation(s)
| | - Prasanna Vasu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | | | - Andrew J. Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Chris R. Somerville
- *Carnegie Institution, Stanford, CA 94305; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Rakov D, Doronina N, Trotsenko Y, Alieva R. Pathways of methylacetate metabolism in methylotrophic bacteria. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1990.tb13838.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Kam DK, Jun HS, Ha JK, Inglis GD, Forsberg CW. Characteristics of adjacent family 6 acetylxylan esterases fromFibrobacter succinogenesand the interaction with the Xyn10E xylanase in hydrolysis of acetylated xylan. Can J Microbiol 2005; 51:821-32. [PMID: 16333341 DOI: 10.1139/w05-074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetylxylan esterase genes axe6A and axe6B located adjacent to one another on a Fibrobacter succinogenes chromosome have been separately cloned and their properties characterized. The corresponding esterases contained an N-terminal carbohydrate esterase family 6 catalytic domain (CD) and a C-terminal family 6 carbohydrate-binding module (CBM). The amino acid sequences of the CDs and CBMs were found to exhibit 52% and 40% amino acid similarity, respectively. The CDs of the two esterases exhibited the highest similarity to CDs of acetylxylan esterases: AxeA from the ruminal fungi Orpinomyces sp. and BnaA from Neocallimastix patriciarum. Axe6A and Axe6B were optimally active at neutral pH and had low Kmvalues of 0.084 and 0.056 mmol·L–1, respectively. Axe6A and Axe6B were shown to bind to insoluble cellulose and xylan and to soluble arabinoxylan. Axe6A deacetylated acetylated xylan at the same initial rate in the presence and absence of added Xyn10E xylanase from F. succinogenes, but the action of the xylanase on acetylated xylan was dependent upon the initial activity of Axe6A. The capacity of acetylxylan esterases to bind to plant cell wall polymers and to independently deacetylate xylan enabling xylanase to release xylooligo saccharides, documents the central role these enzymes have to improve access of F. succinogenes to cellulose.Key words: Fibrobacter succinogenes S85, acetylxylan esterase, xylanase, synergy.
Collapse
Affiliation(s)
- Dong Keun Kam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
17
|
Krastanova I, Guarnaccia C, Zahariev S, Degrassi G, Lamba D. Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:222-30. [PMID: 15769599 DOI: 10.1016/j.bbapap.2005.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/14/2005] [Accepted: 01/19/2005] [Indexed: 11/17/2022]
Abstract
Bacillus pumilus PS213 acetyl xylan esterase (AXE) acts as an accessory enzyme in the plant cell wall hemicellulose biodegradation pathway. It belongs to the carbohydrate esterase family 7 and hydrolyses the ester linkages of the acetyl groups in position 2 and/or 3 of the xylose moieties of the acetylated xylan fragments from hardwood. The enzyme displays activity towards a broad range of acetylated compounds including the antibiotic cephalosporin-C. In this study we report the heterologous expression, purification, physicochemical characterization and crystallization of the recombinant B. pumilus AXE. Remarkable improvement of the crystal quality was achieved by setting up crystallization conditions, at first established using the hanging drop vapor diffusion method, in a micro-batch experiment. Rod-like diffraction quality crystals were obtained using 10% PEG 6000, 0.1 M MES pH 6.0 and a wide range of LiCl concentrations (0.2-1.0 M) as precipitant agent. Two different crystal forms, both belonging to space group P2(1), were characterized, diffracting X-rays to 2.5 and 1.9 angstrom resolution. Successful molecular replacement showed 12 molecules in the asymmetric unit of either crystal forms that are arranged as two doughnut-like hexamers, each one encompassing a local 32 symmetry. A catalytic inactive mutant Ser181Ala of B. pumilus AXE was also engineered, expressed, purified and crystallized for functional and structural studies.
Collapse
Affiliation(s)
- Ivet Krastanova
- International School for Advanced Studies, Via Beirut 2/4, I-34014 Trieste, Italy.
| | | | | | | | | |
Collapse
|
18
|
Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R. A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 2002; 283:107-15. [PMID: 11867217 DOI: 10.1016/s0378-1119(01)00879-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genomic library of the hyperthermophilic archaeon Sulfolobus solfataricus strain MT4 was constructed in Escherichia coli using a cloning vector not designed for heterologous gene expression. One positive clone exhibiting acquired thermophilic acetylesterase activity was directly detected by an in situ plate assay using a colony staining procedure with the chromogenic substrate beta-naphthyl acetate. The plasmid isolated from the clone contained a 3.3 kb genomic fragment from S. solfataricus and a full-length esterase coding sequence could be identified. Expression of the active thermostable esterase in E. coli was independent of isopropyl-beta-D-thiogalactopyranoside and of the kind of vector, suggesting that the archaeal esterase gene was controlled by fortuitous bacterial-like sequences present in its own 5' flanking region, not by the bacterial lac promoter or other serendipitous vector-located sequences. The protein, partially purified by thermoprecipitation of the host proteins at high temperature and gel exclusion chromatography, showed a homo-tetrameric structure with a subunit of molecular mass of 32 kDa which was in perfect agreement with that deduced from the cloned gene. The same protein was revealed in S. solfataricus cell extracts, thus demonstrating its functional occurrence in vivo under the cell culture conditions tested. The recombinant enzyme exhibited high thermal activity and thermostability with optimal activity between pH 6.5 and 7.0. The hydrolysis of p-nitrophenyl esters of fatty acids (from C(2) to C(8)) allowed the enzyme to be classified as a short length acyl esterase.
Collapse
Affiliation(s)
- Alessandra Morana
- Istituto di Biochimica delle Proteine ed Enzimologia, CNR, Via P. Castellino, 111, 80131, Naples, Italy
| | | | | | | | | |
Collapse
|
19
|
Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 6):1391-1397. [PMID: 10846217 DOI: 10.1099/00221287-146-6-1391] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three enzymes carrying esterase domains have been identified in the rumen cellulolytic anaerobe Ruminococcus flavefaciens 17. The newly characterized CesA gene product (768 amino acids) includes an N-terminal acetylesterase domain and an unidentified C-terminal domain, while the previously characterized XynB enzyme (781 amino acids) includes an internal acetylesterase domain in addition to its N-terminal xylanase catalytic domain. A third gene, xynE, is predicted to encode a multidomain enzyme of 792 amino acids including a family 11 xylanase domain and a C-terminal esterase domain. The esterase domains from CesA and XynB share significant sequence identity (44%) and belong to carbohydrate esterase family 3; both domains are shown here to be capable of deacetylating acetylated xylans, but no evidence was found for ferulic acid esterase activity. The esterase domain of XynE, however, shares 42% amino acid identity with a family 1 phenolic acid esterase domain identified from Clostridum thermocellum XynZ. XynB, XynE and CesA all contain dockerin-like regions in addition to their catalytic domains, suggesting that these enzymes form part of a cellulosome-like multienzyme complex. The dockerin sequences of CesA and XynE differ significantly from those previously described in R. flavefaciens polysaccharidases, including XynB, suggesting that they might represent distinct dockerin specificities.
Collapse
Affiliation(s)
- Vincenzo Aurilia
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Jennifer C Martin
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Sheila I McCrae
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Karen P Scott
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Marco T Rincon
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| | - Harry J Flint
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK1
| |
Collapse
|
20
|
Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J 1999; 343 Pt 1:215-24. [PMID: 10493932 PMCID: PMC1220544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A collection of clones, isolated from a Piromyces equi cDNA expression library by immunoscreening with antibodies raised against affinity purified multienzyme fungal cellulase-hemicellulase complex, included one which expressed cinnamoyl ester hydrolase activity. The P. equi cinnamoyl ester hydrolase gene (estA) comprised an open reading frame of 1608 nt encoding a protein (EstA) of 536 amino acids and 55540 Da. EstA was modular in structure and comprised three distinct domains. The N-terminal domain was closely similar to a highly conserved non-catalytic 40-residue docking domain which is prevalent in cellulases and hemicellulases from three species of anaerobic fungi and binds to a putative scaffolding protein during assembly of the fungal cellulase complex. The second domain was also not required for esterase activity and appeared to be an atypically large linker comprising multiple tandem repeats of a 13-residue motif. The C-terminal 270 residues of EstA contained an esterase catalytic domain that exhibited overall homology with a small family of esterases, including acetylxylan esterase D (XYLD) from Pseudomonas fluorescens subsp. cellulosa and acetylxylan esterase from Aspergillus niger. This region also contained several smaller blocks of residues that displayed homology with domains tentatively identified as containing the essential catalytic residues of a larger group of serine hydrolases. A truncated variant of EstA, comprising the catalytic domain alone (EstA'), was expressed in Escherichia coli as a thioredoxin fusion protein and was purified to homogeneity. EstA' was active against synthetic and plant cell-wall-derived substrates, showed a marked preference for cleaving 1-->5 ester linkages between ferulic acid and arabinose in feruloylated arabino-xylo-oligosaccharides and was inhibited by the serine-specific protease inhibitor aminoethylbenzene-sulphonylfluoride. EstA' acted synergistically with xylanase to release more than 60% of the esterified ferulic acid from the arabinoxylan component of plant cell walls. Western analysis confirmed that EstA is produced by P. equi and is a component of the aggregated multienzyme cellulase-hemicellulase complex. Hybrid proteins, harbouring one, two or three iterations of the conserved 40-residue fungal docking domain fused to the reporter protein glutathione S-transferase, were produced. Western blot analysis of immobilized P. equi cellulase-hemicellulase complex demonstrated that each of the hybrid proteins bound to a 97 kDa polypeptide in the extracellular complex.
Collapse
Affiliation(s)
- I J Fillingham
- Laboratory of Molecular Enzymology, The Babraham Institute, Babraham, Cambridge CB2 4AT, U.K
| | | | | | | | | |
Collapse
|
21
|
A thermostable esterase activity from newly isolated moderate thermophilic bacterial strains. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00127-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
McSweeney CS, Dulieu A, Bunch R. Butyrivibriospp. and Other Xylanolytic Microorganisms From the Rumen have Cinnamoyl Esterase Activity. Anaerobe 1998; 4:57-65. [PMID: 16887624 DOI: 10.1006/anae.1997.0130] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1996] [Accepted: 10/20/1997] [Indexed: 11/22/2022]
Abstract
High concentrations of hydroxycinnamic acids in the hemicellulosic fraction of dry season tropical grasses may influence the rate of microbial degradation of arabinoxylans by ruminant animals. The ability of 22 strains of Butyrivibrio fibrisolvens, other ruminal bacteria (Ruminococcus albus SY3, Ruminococcus flavefaciens RF1,Prevotella ruminicola AR20) and the ruminal phycomycete Neocallimastix patriciarum CX to digest the tropical grass Heteropogon contortus(spear grass) and hydrolyse esterified ferulic and p-coumaric acid was examined. Significant digestion (8-36%) of spear grass occurred with the B. fibrisolvens strains H17c, A38, LP92-1-1, 49,R. albus SY3 and N. patriciarum. Hydrolysis of ester-linked ferulic and p-coumaric acid occurred with all organisms except B. fibrisolvens strains GS113, OB156 and LP1028 and P. ruminicola AR20. The ratio of ferulic to p-coumaric acid hydrolysed by different strains of Butyrivibrio spp. varied markedly from 0.96 for AR 51 to 0.16 for A38. Butyrivibrios which were fibrolytic (H17c and A38) had higher extracellular cinnamoyl esterase activity than bacteria that did not digest spear grass fibre (LP 91-4-1 and AR 20) which had low activities or only produced cell associated enzyme. Cell associated and extracellular esterase activity were induced when Butyrivibrio spp. strains H17c, A38 and E14 and the Ruminococcus spp. were grown on birchwood xylan but induction did not occur to the same extent with N. patriciarum. This is the first reported observation of cinnamoyl esterase activity in the genus Ruminococcus. The fungus N. patriciarum had significantly higher digestibility of spear grass and solubilisation of phenolic acids than the bacteria. The study shows that high levels of extracellular cinnamoyl esterases are characteristic of a selection of fibre-degrading ruminal bacteria and fungi which probably indicates that these enzymes are common amongst xylanolytic ruminal microorganisms.
Collapse
Affiliation(s)
- C S McSweeney
- CSIRO Division of Tropical Agriculture, Long Pocket Laboratories, Indooroopilly, Queensland, Australia
| | | | | |
Collapse
|
23
|
Jarvis GN, Thiele JH, Strömpl C, Moore ERB. Isolation and characterization of glycerol-fermenting bacteria from the rumen of red deer. Can J Microbiol 1997. [DOI: 10.1139/m97-158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rumen contents of juvenile red deer (Cervus elaphus) were used as a source for the enrichment of obligately anaerobic glycerol-fermenting bacteria. Three bacterial strains were isolated from the 10−4 dilution (isolates DR6A and DR6B) and 10−9 dilution (isolate DR7) of the deer rumen contents. The isolates DR6A, DR6B, and DR7 produced ethanol (42 mM) and acetate (5 mM), propionate (31 mM) and acetate (42 mM), and formate (25 mM) and ethanol (38 mM), respectively, as the major glycerol fermentation products. Interestingly, acetate, propionate, and formate were observed to be the major glycerol fermentation products in mixed cultures obtained from the deer rumen. The three isolates were all shown to be related phylogenetically to the ruminal species Clostridium clostridiiforme, Clostridium celerecrescens, and Clostridium aerotolerans within the clostridial taxonomic cluster XIVa, on the basis of 16S rRNA gene sequence comparisons. But, because of phenotypic differences, each isolate is considered to be a new species within the genus Clostridium, which has not been previously described or isolated from the rumen ecosystem.Key words: red deer, ecology, glycerol fermentation, Clostridium, rumen, 16S rRNA.
Collapse
|
24
|
Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H. An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 1997; 326 ( Pt 2):485-90. [PMID: 9291122 PMCID: PMC1218695 DOI: 10.1042/bj3260485] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An inducible acetylesterase was purified from the culture medium of Aspergillus awamori strain IFO4033 growing on wheat-bran culture by ion-exchange, gel-filtration and hydrophobic-interaction chromatographies. The purified enzyme had an Mr of 31000 and contained Asn-linked oligosaccharides. The enzyme liberated acetic acid from wheat bran, hydrolysed only alpha-naphthyl acetate and propionate when aromatic esters were used for the substrate, and was tentatively classified as a carboxylic esterase (EC 3.1.1.1). The gene encoding acetylesterase was cloned and sequenced. The deduced amino acid sequence showed that acetylesterase was produced as a 304-amino-acid-residue precursor, which was converted post-translationally into a 275-amino-acid-residue mature protein. Part of the sequence of acetylesterase was similar to the region near the active-site serine of lipases of Geotrichum candidum and Candida cylindracea. A unique site of putative Asn-linked oligosaccharides was presented.
Collapse
Affiliation(s)
- T Koseki
- National Research Institute of Brewing, Higashihiroshima, Japan
| | | | | | | | | |
Collapse
|
25
|
Hespell RB, Cotta MA. Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl Environ Microbiol 1995; 61:3042-50. [PMID: 7487036 PMCID: PMC167580 DOI: 10.1128/aem.61.8.3042-3050.1995] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemicelluloses, mainly xylans, can be a major component of diets consumed by ruminants and undergo various degrees of microbial digestion in the rumen. The ability of Butyrivibrio fibrisolvens, a major xylanolytic ruminal species, to degrade and utilize nine chemically and physically different xylans for growth was examined. The arabinoxylans used included two isolated from corncobs (CCX-A and CCX-B), a native xylan excreted by corn cell tissue cultures (CX), an oxalic acid-treated, arabinose-depleted CX, and oat spelt xylan. Except for CCX-A, these xylans were extensively converted within 3 h of growth to acid-alcohol-soluble forms that remained at high levels for the duration of culture growth. These xylans contain mainly xylose and arabinose with small amounts of uronic acids. For a given xylan, all three components were used at about the same rate and extent. During the early stages of growth B. fibrisolvens also rapidly solubilized glucuronoxylans from birchwood, larchwood, 4-O-methylglucuronoxylan, and the xylose homopolymer xylan isolated from beechwood (BEWX). In contrast to the findings for the arabinoxylans, little acid-alcohol-soluble carbohydrate remained in these cultures after 9 h of growth, except for BEWX. Initially, with birchwood, larchwood, and 4-O-methylglucuronoxylan the uronic acid components were preferentially used over the xylose. Final xylan utilization measured at 72 h for all xylans varied from 57% for CCX-A to 92% for BEWX and was correlated with the initial 12-h utilization rate for a given xylan. Since CCX-A and BEWX are both highly water insoluble, this aspect did not appear to influence overall utilization.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R B Hespell
- Fermentation Biochemistry Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | | |
Collapse
|
26
|
Shao W, Wiegel J. Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 1995; 61:729-33. [PMID: 7574610 PMCID: PMC167333 DOI: 10.1128/aem.61.2.729-733.1995] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two acetyl esterases (EC 3.1.1.6) were purified to gel electrophoretic homogeneity from Thermoanaerobacterium sp. strain JW/SL-YS485, an anaerobic, thermophilic endospore former which is able to utilize various substituted xylans for growth. Both enzymes released acetic acid from chemically acetylated larch xylan. Acetyl xylan esterases I and II had molecular masses of 195 and 106 kDa, respectively, with subunits of 32 kDa (esterase I) and 26 kDa (esterase II). The isoelectric points were 4.2 and 4.3, respectively. As determined by a 2-min assay with 4-methylumbelliferyl acetate as the substrate, the optimal activity of acetyl xylan esterases I and II occurred at pH 7.0 and 80 degrees C and at pH 7.5 and 84 degrees C, respectively. Km values of 0.45 and 0.52 mM 4-methylumbelliferyl acetate were observed for acetyl xylan esterases I and II, respectively. At pH 7.0, the temperatures for the 1-h half-lives for acetyl xylan esterases I and II were 75 degrees and slightly above 100 degrees C, respectively.
Collapse
Affiliation(s)
- W Shao
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
27
|
Besle JM, Jouany JP, Cornu A. Transformations of structural phenylpropanoids during cell wall digestion. FEMS Microbiol Rev 1995. [DOI: 10.1111/j.1574-6976.1995.tb00154.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
|
29
|
Miron J, Duncan SH, Stewart CS. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. THE JOURNAL OF APPLIED BACTERIOLOGY 1994; 76:282-7. [PMID: 8157547 DOI: 10.1111/j.1365-2672.1994.tb01629.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pure cultures and pair-combinations of strains representative of the rumen cellulolytic species Ruminococcus flavefaciens, Fibrobacter succinogenes and Butyrivibrio fibrisolvens were grown on cell-wall materials from barley straw. Of the pure cultures, R. flavefaciens solubilized straw most rapidly. The presence of B. fibrisolvens, which was unable to degrade straw extensively in pure culture, increased the solubilization of dry matter by R. flavefaciens and the solubilization of cell-wall carbohydrates by both R. flavefaciens and F. succinogenes. During fermentation, both R. flavefaciens and F. succinogenes released bound glucose and free and bound arabinose and xylose into solution. The accumulation of these sugars, especially arabinose and xylose, was greatly reduced in co-cultures containing B. fibrisolvens, suggesting that significant interspecies cross feeding of the products of hemicellulose hydrolysis (particularly soluble bound xylose released by F. succinogenes) occurs during straw degradation by mixed cultures containing this species.
Collapse
Affiliation(s)
- J Miron
- Metabolic Unit, Institute of Animal Science, ARO, Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
30
|
Abstract
Recent advances in ruminal lipid metabolism have focused primarily on manipulation of physicochemical events in the rumen aimed at two practical outcomes: 1) control of antimicrobial effects of fatty acids so that additional fat can be fed to ruminants without disruption of ruminal fermentation and digestion and 2) regulation of microbial biohydrogenation to alter the absorption of selected fatty acids that might enhance performance or reduce saturation of meat and milk. Properties of lipids that determine their antimicrobial effects in the rumen include type of functional group, degree of unsaturation, formation of carboxylate salts, and physical association of lipids with surfaces of feed particles and microbes. The mechanism of how lipids interfere with ruminal fermentation is a complex model involving partitioning of lipid into the microbial cell membrane, potency of the lipid to disrupt membrane and cellular function, physical attachment of microbial cells to plant surfaces, and expression and activity of microbial hydrolytic enzymes. Lipolytic and hydrogenation rates vary with forage quality (stage of maturity and N content), surface area of feed particles in the rumen, and structural modifications of the lipid molecule that inhibit attack by bacterial isomerases.
Collapse
Affiliation(s)
- T C Jenkins
- Animal, Dairy, and Veterinary Sciences Department, Clemson University, SC 29634
| |
Collapse
|
31
|
Ferreira LM, Wood TM, Williamson G, Faulds C, Hazlewood GP, Black GW, Gilbert HJ. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J 1993; 294 ( Pt 2):349-55. [PMID: 8373350 PMCID: PMC1134461 DOI: 10.1042/bj2940349] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 5' regions of genes xynB and xynC, coding for a xylanase and arabinofuranosidase respectively, are identical and are reiterated four times within the Pseudomonas fluorescens subsp. cellulosa genome. To isolate further copies of the reiterated xynB/C 5' region, a genomic library of Ps. fluorescens subsp. cellulosa DNA was screened with a probe constructed from the conserved region of xynB. DNA from one phage which hybridized to the probe, but not to sequences upstream or downstream of the reiterated xynB/C locus, was subcloned into pMTL22p to construct pFG1. The recombinant plasmid expressed a protein in Escherichia coli, designated esterase XYLD, of M(r) 58,500 which bound to cellulose but not to xylan. XYLD hydrolysed aryl esters, released acetate groups from acetylxylan and liberated 4-hydroxy-3-methoxycinnamic acid from destarched wheat bran. The nucleotide sequence of the XYLD-encoding gene, xynD, revealed an open reading frame of 1752 bp which directed the synthesis of a protein of M(r) 60,589. The 5' 817 bp of xynD and the amino acid sequence between residues 37 and 311 of XYLD were almost identical with the corresponding regions of xynB and xynC and their encoded proteins XYLB and XYLC. Truncated derivatives of XYLD lacking the N-terminal conserved sequence retained the capacity to hydrolyse ester linkages, but did not bind cellulose. Expression of truncated derivatives of xynD, comprising the 5' 817 bp sequence, encoded a non-catalytic polypeptide that bound cellulose. These data indicate that XYLD has a modular structure comprising of a N-terminal cellulose-binding domain and a C-terminal catalytic domain.
Collapse
Affiliation(s)
- L M Ferreira
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | | | |
Collapse
|
32
|
Christov LP, Prior BA. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 1993; 15:460-75. [PMID: 7763680 DOI: 10.1016/0141-0229(93)90078-g] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review focuses on the description of recently discovered esterase enzymes involved in xylan degradation (acetyl xylan, feruloyl, and p-coumaroyl esterases). The occurrence of these enzymes in various microorganisms, assays used for determination of their activity, induction and production on different substrates, interaction with other xylanolytic enzymes, mode of action, substrate specificity, and biochemical characteristics are presented. The nature of substrates on which acetyl xylan esterase, feruloyl, and p-coumaroyl esterase are active and their role in xylan hydrolysis is emphasized. The potential applications of xylan-debranching esterases are outlined and their significance to applied microbiology is discussed.
Collapse
Affiliation(s)
- L P Christov
- Department of Microbiology and Biochemistry, University of the Orange Free State, Bloemfontein, Republic of South Africa
| | | |
Collapse
|
33
|
Gu JD, Eberiel DT, McCarthy SP, Gross RA. Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf01418207] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
|
35
|
Williams A, Withers SE. The regulation of xylanolytic enzyme formation by Butyrivibrio fibrisolvens NCFB 2249. Lett Appl Microbiol 1992. [DOI: 10.1111/j.1472-765x.1992.tb00683.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Matte A, Forsberg CW. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microbiol 1992; 58:157-68. [PMID: 1539970 PMCID: PMC195186 DOI: 10.1128/aem.58.1.157-168.1992] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two different endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8), designated 1 and 2, have been purified by column chromatography to apparent homogeneity from the nonsedimentable extracellular culture fluid of the strictly anaerobic, ruminal bacterium Fibrobacter succinogenes S85 grown on crystalline cellulose. Endoxylanases 1 and 2 were shown to be basic proteins of 53.7 and 66.0 kDa, respectively, with different pH and temperature optima, as well as different substrate hydrolysis characteristics. The Km and Vmax values with water-soluble oat spelts xylan as substrate were 2.6 mg ml-1 and 33.6 mumol min-1 mg-1 for endoxylanase 1 and 1.3 mg ml-1 and 118 mumol min-1 mg-1 for endoxylanase 2. Endoxylanase 1, but not endoxylanase 2, released arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, but not from arabinan, arabinogalactan, or aryl-alpha-L-arabinofuranosides. With an extended hydrolysis time, endoxylanase 1 released 62.5 and 50% of the available arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, respectively. Endoxylanase 1 released arabinose directly from the xylan backbone, and this preceded hydrolysis of the xylan to xylooligosaccharides. Endoxylanase 2 showed significant activity against carboxymethyl cellulose but was unable to substantially hydrolyze acid-swollen cellulose. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on water-soluble xylan and xylooligosaccharides. Because of their unique hydrolytic properties, endoxylanases 1 and 2 appear to have strategic roles in plant cell wall digestion by F. succinogenes in vivo.
Collapse
Affiliation(s)
- A Matte
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
37
|
Ha YW, Stack RJ, Hespell RB, Gordon SH, Bothast RJ. Some chemical and physical properties of extracellular polysaccharides produced by Butyrivibrio fibrisolvens strains. Appl Environ Microbiol 1991; 57:2016-20. [PMID: 1892390 PMCID: PMC183514 DOI: 10.1128/aem.57.7.2016-2020.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Most strains of Butyrivibrio fibrisolvens are known to produce extracellular polysaccharides (EPs). However, the rheological and functional properties of these EPs have not been determined. Initially, 26 strains of Butyrivibrio were screened for EP yield and apparent viscosities of cell-free supernatants. Yields ranged from less than 1.0 to 16.3 mg per 100 mg of glucose added to the culture. Viscosities ranged from 0.71 to 5.44 mPa.s. Five strains (CF2d, CF3, CF3a, CE51, and H10b) were chosen for further screening. The apparent viscosity of the EP from each of these strains decreased by only 50 to 60% when the shear rate was increased from 20 to 1,000 s-1. Strain CE51 produced the EP having the highest solution viscosity. A detailed comparison of shear dependency of the EP from strain CF3 with xanthan gum showed that this EP was less shear sensitive than xanthan gum and, at a shear rate of 1,000 s-1, more viscous. EPs from strains CF3 and H10b were soluble over a wide range of pH (1 to 13) in 80% (vol/vol) ethanol-water or in 1% (wt/vol) salt solutions. The pH of 1% EP solutions was between 4.5 and 5.5. Addition of acid increased solution viscosities, whereas addition of base decreased viscosity. EPs from strains CF3, CE51, and H10b displayed qualitatively similar infrared spectra. Calcium and sodium were the most abundant minerals in the three EPs. The amounts of magnesium, calcium, and iron varied considerably among the EPs, but the potassium contents remained relatively constant.
Collapse
Affiliation(s)
- Y W Ha
- Fermentation Biochemistry Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | | | | | |
Collapse
|
38
|
Utt EA, Eddy CK, Keshav KF, Ingram LO. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. Appl Environ Microbiol 1991; 57:1227-34. [PMID: 1905520 PMCID: PMC182873 DOI: 10.1128/aem.57.4.1227-1234.1991] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A single gene (xylB) encoding both beta-D-xylosidase (EC 3.2.1.37) and alpha-L-arabinofuranosidase (EC 3.2.1.55) activities was identified and sequenced from the ruminal bacterium Butyrivibrio fibrisolvens. The xylB gene consists of a 1.551-bp open reading frame (ORF) encoding 517 amino acids. A subclone containing a 1.843-bp DNA fragment retained both enzymatic activities. Insertion of a 10-bp NotI linker into the EcoRV site within the central region of this ORF abolished both activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cytoplasmic proteins from recombinant Escherichia coli confirmed the presence of a 60,000-molecular-weight protein in active subclones and the absence of this protein in subclones lacking activity. With p-nitrophenyl-beta-D-xylopyranoside and p-nitrophenyl-alpha-L-arabinofuranoside as substrates, the specific activity of arabinosidase was found to be approximately 1.6-fold higher than that of xylosidase. The deduced amino acid sequence of the xylB gene product did not exhibit a high degree of identity with other xylan-degrading enzymes or glycosidases. The xylB gene was located between two incomplete ORFs within the 4,200-bp region which was sequenced. No sequences resembling terminators were found within this region, and these three genes are proposed to be part of a single operon. Based on comparison with other glycosidases, a conserved region was identified in the carboxyl end of the translated xylB gene which is similar to that of glucoamylase from Aspergillus niger.
Collapse
Affiliation(s)
- E A Utt
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | |
Collapse
|
39
|
McDermid KP, Forsberg CW, MacKenzie CR. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 1990; 56:3805-10. [PMID: 2082827 PMCID: PMC185071 DOI: 10.1128/aem.56.12.3805-3810.1990] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.
Collapse
Affiliation(s)
- K P McDermid
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
40
|
Hespell RB, Whitehead TR. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 1990; 73:3013-22. [PMID: 2283426 DOI: 10.3168/jds.s0022-0302(90)78988-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemicelluloses or xylans are major components (35%) of plant materials. For ruminant animals, about 50% of the dietary xylans are degraded, but only small amounts of xylans are degraded in the lower gut of nonruminant animals and humans. In the rumen, the major xylanolytic species are Butyrivibrio fibrisolvens and Bacteroides ruminicola. In the human colon, Bacteroides ovatus and Bacteroides fragilis subspecies "a" are major xylanolytic bacteria. Xylans are chemically complex, and their degradation requires multiple enzymes. Expression of these enzymes by gut bacteria varies greatly among species. Butyrivibrio fibrisolvens makes extracellular xylanases but Bacteroides species have cell-bound xylanase activity. Biochemical characterization of xylanolytic enzymes from gut bacteria has not been done. A xylosidase gene has been cloned from B. fibrosolvens 113. The data from DNA hybridizations using a xylanase gene cloned from B. fibrisolvens 49 indicate this gene may be present in other B. fibrisolvens strains. A cloned xylanase from Bact. ruminicola was transferred to and highly expressed in Bact. fragilis and Bact. uniformis. Arabinosidase and xylosidase genes from Bact. ovatus have been cloned and both activities appear to be catalyzed by a single, bifunctional, novel enzyme. Continued research in genetic and biochemical areas will provide knowledge and insights for manipulation of digestion at the gut level and improved understanding of colonic fiber digestion.
Collapse
Affiliation(s)
- R B Hespell
- Northern Regional Research Center, Peoria, IL 61604
| | | |
Collapse
|
41
|
Nieder M, Sunarko B, Meyer O. Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2. Appl Environ Microbiol 1990; 56:3023-8. [PMID: 2285314 PMCID: PMC184893 DOI: 10.1128/aem.56.10.3023-3028.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively.
Collapse
Affiliation(s)
- M Nieder
- Lehrstuhl für Mikrobiologie, Universität Bayreuth, Bayreuth, Federal Republic of Germany
| | | | | |
Collapse
|
42
|
Doré J, Bryant MP. Lipid growth requirement and influence of lipid supplement on fatty acid and aldehyde composition of Syntrophococcus sucromutans. Appl Environ Microbiol 1989; 55:927-33. [PMID: 2729991 PMCID: PMC184226 DOI: 10.1128/aem.55.4.927-933.1989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Results concerning the ruminal fluid growth requirement of the ruminal acetogen, Syntrophococcus sucromutans, indicate that octadecenoic acid isomers satisfy this essential requirement. Complex lipids, such as triglycerides and phospholipids, can also support growth. The cellular fatty acid and aldehyde composition closely reflects that of the lipid supplement provided to the cells. Up to 98% of the fatty acids and 80% of the fatty aldehydes are identical in chain length and degree of unsaturation to the octadecenoic acid supplement provided in the medium. S. sucromutans shows a tendency to have a greater proportion of the aldehyde form among its 18 carbon chains than it does with the shorter-chain simple lipids, which may be interpreted as a strategy to maintain membrane fluidity. 14C labeling showed that most of the oleic acid taken up from the medium was incorporated into the membrane fraction of the cells.
Collapse
Affiliation(s)
- J Doré
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | |
Collapse
|