1
|
Chettri D, Verma AK, Verma AK. Bioaugmentation: an approach to biological treatment of pollutants. Biodegradation 2024; 35:117-135. [PMID: 37684525 DOI: 10.1007/s10532-023-10050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
Industrial development and the associated generation of waste requires attention for their management, treatment, and reduction without further degrading the quality of life. Microbes and plant-based bioremediation approaches are some of the sustainable strategies for the biodegradation of harmful pollutants instead of chemical-based treatment. Bioaugmentation is one such approach where microbial strains with the ability to degrade the targeted pollutant are introduced in a polluted environment. Harnessing of microbes from various locations, especially from the site of contamination (indigenous microbes), followed by optimization of the strains, inoculum size, media, and genetic engineering of the microbes along with a combination of strategies such as bio stimulation, phytoremediation is being applied to increase the efficiency of bioaugmentation. Further, bioaugmentation is influenced by various factors such as temperature, the composition of the pollutant, and microbial inoculum which needs to be considered for maximum efficiency of the treatment process. It has numerous advantages such as low cost, sustainability, and easy handling of the contaminants however, the major limitation of bioaugmentation is to increase the survival rate of the microbes involved in remediation for a longer duration in such a highly toxic environment. The review discusses these various aspects of bioaugmentation in brief for its large-scale implementation to address the global issue of pollution and environment management.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Ashwani Kumar Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
2
|
Kuhn T, Mamin M, Bindschedler S, Bshary R, Estoppey A, Gonzalez D, Palmieri F, Junier P, Richter XYL. Spatial scales of competition and a growth-motility trade-off interact to determine bacterial coexistence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211592. [PMID: 36483758 PMCID: PMC9727664 DOI: 10.1098/rsos.211592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility trade-off. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility trade-off promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.
Collapse
Affiliation(s)
- Thierry Kuhn
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Marine Mamin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Redouan Bshary
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
Ng CK, Putra SL, Kennerley J, Habgood R, Roy RA, Raymond JL, Thompson IP, Huang WE. Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery. Microb Biotechnol 2021; 14:1580-1593. [PMID: 33993638 PMCID: PMC8313276 DOI: 10.1111/1751-7915.13823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/27/2022] Open
Abstract
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm-2 ) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm-2 ). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3 , respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Oxford Suzhou Centre for Advanced Research388 Ruoshui Road, Suzhou Industrial ParkJiangsu215123P.R. China
| | - Samuel L. Putra
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Joseph Kennerley
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Robert Habgood
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Ronald A. Roy
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Oxford Suzhou Centre for Advanced Research388 Ruoshui Road, Suzhou Industrial ParkJiangsu215123P.R. China
| | - Jason L. Raymond
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Oxford Suzhou Centre for Advanced Research388 Ruoshui Road, Suzhou Industrial ParkJiangsu215123P.R. China
| | - Ian P. Thompson
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Oxford Suzhou Centre for Advanced Research388 Ruoshui Road, Suzhou Industrial ParkJiangsu215123P.R. China
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Oxford Suzhou Centre for Advanced Research388 Ruoshui Road, Suzhou Industrial ParkJiangsu215123P.R. China
| |
Collapse
|
4
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
5
|
Carraro N, Richard X, Sulser S, Delavat F, Mazza C, van der Meer JR. An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. eLife 2020; 9:57915. [PMID: 32720896 PMCID: PMC7423338 DOI: 10.7554/elife.57915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non-active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation-specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic strains, highlighting its evolutionary conservation and prime importance to control the behaviour of this wide family of conjugative elements. Mobile DNA elements are pieces of genetic material that can jump from one bacterium to another, and even across species. They are often useful to their host, for example carrying genes that allow bacteria to resist antibiotics. One example of bacterial mobile DNA is the ICEclc element. Usually, ICEclc sits passively within the bacterium’s own DNA, but in a small number of cells, it takes over, hijacking its host to multiply and to get transferred to other bacteria. Cells that can pass on the elements cannot divide, and so this ability is ultimately harmful to individual bacteria. Carrying ICEclc can therefore be positive for a bacterium but passing it on is not in the cell’s best interest. On the other hand, mobile DNAs like ICEclc have evolved to be disseminated as efficiently as possible. To shed more light on this tense relationship, Carraro et al. set out to identify the molecular mechanisms ICEclc deploys to control its host. Experiments using mutant bacteria revealed that for ICEclc to successfully take over the cell, a number of proteins needed to be produced in the correct order. In particular, a protein called BisDC triggers a mechanism to make more of itself, creating a self-reinforcing ‘feedback loop’. Mathematical simulations of the feedback loop showed that it could result in two potential outcomes for the cell. In most of the ‘virtual cells’, ICEclc ultimately remained passive; however, in a few, ICEclc managed to take over its hosts. In this case, the feedback loop ensured that there was always enough BisDC to maintain ICEclc’s control over the cell. Further analyses suggested that this feedback mechanism is also common in many other mobile DNA elements, including some that help bacteria to resist drugs. These results are an important contribution to understand how mobile DNAs manipulate their bacterial host in order to propagate and disperse. In the future, this knowledge could help develop new strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Richard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
6
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
7
|
Xu J, Zhu D, Ibrahim AD, Allen CCR, Gibson CM, Fowler PW, Song Y, Huang WE. Raman Deuterium Isotope Probing Reveals Microbial Metabolism at the Single-Cell Level. Anal Chem 2017; 89:13305-13312. [DOI: 10.1021/acs.analchem.7b03461] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jiabao Xu
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Di Zhu
- Kroto
Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Aliyu D. Ibrahim
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, United Kingdom
| | - Christopher C. R. Allen
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, United Kingdom
| | | | - Patrick W. Fowler
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Yizhi Song
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
- Kroto
Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
8
|
Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090846. [PMID: 27571089 PMCID: PMC5036679 DOI: 10.3390/ijerph13090846] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 11/17/2022]
Abstract
A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.
Collapse
|
9
|
Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci U S A 2016; 113:E3375-83. [PMID: 27247406 DOI: 10.1073/pnas.1604479113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer.
Collapse
|
10
|
Hall JPJ, Harrison E, Lilley AK, Paterson S, Spiers AJ, Brockhurst MA. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects. Environ Microbiol 2015; 17:5008-22. [PMID: 25969927 PMCID: PMC4989453 DOI: 10.1111/1462-2920.12901] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/26/2023]
Abstract
Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens
SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity.
Collapse
Affiliation(s)
- James P J Hall
- Department of Biology, Wentworth Way, University of York, York, UK
| | - Ellie Harrison
- Department of Biology, Wentworth Way, University of York, York, UK
| | - Andrew K Lilley
- Pharmaceutical Science Research Division, King's College London, London, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew J Spiers
- The SIMBIOS Centre, School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | |
Collapse
|
11
|
Loftie-Eaton W, Tucker A, Norton A, Top EM. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence. Appl Environ Microbiol 2014; 80:5439-46. [PMID: 24973062 PMCID: PMC4136099 DOI: 10.1128/aem.00793-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/18/2014] [Indexed: 11/20/2022] Open
Abstract
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Allison Tucker
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA Departments of Mathematics and Statistics, University of Idaho, Moscow, Idaho, USA
| | - Ann Norton
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
12
|
Orruño M, Garaizabal I, Bravo Z, Parada C, Barcina I, Arana I. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment. Microbiologyopen 2014; 3:657-67. [PMID: 25044599 PMCID: PMC4234258 DOI: 10.1002/mbo3.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022] Open
Abstract
Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.
Collapse
Affiliation(s)
- Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country UPV/EHU, Barrio Sarriena s/n, E-48940, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Pradervand N, Sulser S, Delavat F, Miyazaki R, Lamas I, van der Meer JR. An operon of three transcriptional regulators controls horizontal gene transfer of the integrative and conjugative element ICEclc in Pseudomonas knackmussii B13. PLoS Genet 2014; 10:e1004441. [PMID: 24945944 PMCID: PMC4063739 DOI: 10.1371/journal.pgen.1004441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria. Integrative and conjugative elements (ICEs) are a relatively newly recognized class of mobile elements in bacteria, which integrate at one or more positions in a host chromosome, can be excised, circularized, and transfer by conjugation to a new recipient cell. Genome sequencing indicated that ICEs often carry genes with potential adaptive functions for the host. Various ICE-types have been described and ICEclc is a useful model for a wide class of elements found in Beta- and Gammaproteobacteria. Because ICEs normally remain “silent” in the host chromosome and often lack selectable markers, their lifestyle is difficult to study. One of the characteristics of ICEclc is that transfer is initiated in only 3-5% of donor cells in a population during stationary phase. Here, we describe an operon of three regulatory genes, two of which control the transfer initiation of ICEclc. Our findings suggest that the low transfer rate results from the repression of an activator and that this is essential to minimize the deleterious effect of hyper-activation of transfer initiation. While the individual regulatory genes are quite common on ICEs, they rarely occur in this configuration.
Collapse
Affiliation(s)
- Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ryo Miyazaki
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Streptomyces griseusEnhances Denitrification byRalstonia pickettiiK50, Which Is Possibly Mediated by Histidine Produced during Co-Culture. Biosci Biotechnol Biochem 2014; 72:163-70. [DOI: 10.1271/bbb.70528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Norberg P, Bergström M, Hermansson M. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm. PLoS One 2014; 9:e92321. [PMID: 24647540 PMCID: PMC3960245 DOI: 10.1371/journal.pone.0092321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp) and pMCBF6 (66 729 bp) have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are “res-site hunters” that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA) and the vegetative replication origin (oriV). One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb) has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND) system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Infectious Diseases, University of Gothenburg, Göteborg, Sweden
| | - Maria Bergström
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
16
|
Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet 2012; 8:e1002818. [PMID: 22807690 PMCID: PMC3395598 DOI: 10.1371/journal.pgen.1002818] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/23/2012] [Indexed: 01/12/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (Pint and PinR) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on PinR, whereas one of the gene products from the PinR-controlled operon (InrR) transmits activation to Pint and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the Pint and PinR promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated Pint and PinR, whereas a double-copy rpoS-mcherry–containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate PinR and thus ICEclc transfer. Double promoter–reporter fusions confirmed that expression of PinR is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from Pint is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation. Horizontal gene transfer is one of the amazing phenomena in the prokaryotic world, by which DNA can be moved between species with means of a variety of specialized “elements” and/or specific host cell mechanisms. In particular the molecular decisions that have to be made in order to transfer DNA from one cell to another are fascinating, but very little is known about this at a cellular basis. Here we study a member of a widely distributed type of mobile DNA called “integrative and conjugative elements” or ICE. ICEclc normally resides in the chromosome of its bacterial host, but can excise from the chromosome and prepare for conjugation. Interestingly, the decision to excise ICEclc is made in only 3%–5% of cells in a clonal population in stationary phase. We focus specifically on the question of which mechanism may be responsible for setting this threshold level of ICEclc activation. We find that ICEclc activation is dependent on the individual cell level of the stationary phase sigma factor RpoS. The noise in RpoS expression across a population of cells thus sets the “threshold” for ICEclc to excise and prepare transfer.
Collapse
|
17
|
Miyazaki R, van der Meer JR. A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Mol Microbiol 2010; 79:743-58. [DOI: 10.1111/j.1365-2958.2010.07484.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell raman-fluorescence in situ hybridization. Appl Environ Microbiol 2008; 75:234-41. [PMID: 18997025 DOI: 10.1128/aem.01861-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope ((13)C)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 muM. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.
Collapse
|
19
|
Liu C, Huang X. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11783-008-0050-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 2008; 178:2179-90. [PMID: 18430943 DOI: 10.1534/genetics.107.084475] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this "long-term host range" can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained in strain P21, strain H2, and alternatingly in P21 and H2. Plasmids that evolved in P21 and in both hosts showed increased stability and decreased cost in ancestral host P21. However, the latter group showed higher variability in stability patterns, suggesting that regular switching between distinct hosts hampered adaptive plasmid evolution. The plasmids evolved in P21 were also equally or more stable in other hosts compared to pB10, which suggested true host-range expansion. The complete genome sequences of four evolved plasmids with improved stability showed only one or two genetic changes. The stability of plasmids evolved in H2 improved only in their coevolved hosts, not in the ancestral host. Thus a BHR plasmid can adapt to an unfavorable host and thereby expand its long-term host range.
Collapse
|
21
|
Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM, Li G, Paniwnyk L, Huang WE. Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 2007; 35:e129. [PMID: 17890732 PMCID: PMC2095817 DOI: 10.1093/nar/gkm710] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In environmental microbiology, the most commonly used methods of bacterial DNA transfer are conjugation and electroporation. However, conjugation requires physical contact and cell–pilus–cell interactions; electroporation requires low-ionic strength medium and high voltage. These limitations have hampered broad applications of bacterial DNA delivery. We have employed a standard low frequency 40 kHz ultrasound bath to successfully transfer plasmid pBBR1MCS2 into Pseudomonas putida UWC1, Escherichia coli DH5α and Pseudomonas fluorescens SBW25 with high efficiency. Under optimal conditions: ultrasound exposure time of 10 s, 50 mM CaCl2, temperature of 22°C, plasmid concentration of 0.8 ng/µl, P. putida UWC1 cell concentration of 2.5 × 109 CFU (colony forming unit)/ml and reaction volume of 500 µl, the efficiency of ultrasound DNA delivery (UDD) was 9.8 ± 2.3 × 10−6 transformants per cell, which was nine times more efficient than conjugation, and even four times greater than electroporation. We have also transferred pBBR1MCS2 into E. coli DH5α and P. fluorescens SBW25 with efficiencies of 1.16 ± 0.13 × 10−6 and 4.33 ± 0.78 × 10−6 transformants per cell, respectively. Low frequency UDD can be readily scaled up, allowing for the application of UDD not only in laboratory conditions but also on an industrial scale.
Collapse
Affiliation(s)
- Yizhi Song
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Thomas Hahn
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Ian P. Thompson
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Timothy J. Mason
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Gail M. Preston
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Guanghe Li
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Larysa Paniwnyk
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Wei E. Huang
- Centre for Ecology & Hydrology, Oxford, OX1 3SR, UK, Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China, Begbroke Directorate, University of Oxford Science Park, Yarnton, Oxford, OX5 1PF, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB and Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- *To whom correspondence should be addressed. +44 (0)114 2225796+44 (0)114 2225701,
| |
Collapse
|
22
|
De Gelder L, Ponciano JM, Joyce P, Top EM. Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. MICROBIOLOGY-SGM 2007; 153:452-463. [PMID: 17259616 DOI: 10.1099/mic.0.2006/001784-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Broad-host-range (BHR) IncP-1 plasmids have the ability to transfer between and replicate in nearly all species of the Alpha-, Beta- and Gammaproteobacteria, but surprisingly few data are available on the stability of these plasmids in strains within their host range. Moreover, even though molecular interactions between the bacterial host and its plasmid(s) exist, no systematic study to date has compared the stability of the same plasmid among different hosts. The goal of this study was to examine whether the stability characteristics of an IncP-1 plasmid can be variable between strains within the host range of the plasmid. Therefore, 19 strains within the Alpha-, Beta- or Gammaproteobacteria carrying the IncP-1beta plasmid pB10 were serially propagated in non-selective medium and the fraction of segregants was monitored through replica-picking. Remarkably, a large variation in the stability of pB10 in different strains was found, even between strains within the same genus or species. Ten strains showed no detectable plasmid loss over about 200 generations, and in two strains plasmid-free clones were only sporadically observed. In contrast, three strains, Pseudomonas koreensis R28, Pseudomonas putida H2 and Stenotrophomonas maltophilia P21, exhibited rapid plasmid loss within 80 generations. Parameter estimation after mathematical modelling of these stability data suggested high frequencies of segregation (about 0.04 per generation) or high plasmid cost (i.e. a relative fitness decrease in plasmid-bearing cells of about 15 and 40 %), which was confirmed experimentally. The models also suggested that plasmid reuptake by conjugation only played a significant role in plasmid stability in one of the three strains. Four of the 19 strains lost the plasmid very slowly over about 600 generations. The erratic decrease of the plasmid-containing fraction and simulation of the data with a new mathematical model suggested that plasmid cost was variable over time due to compensatory mutations. The findings of this study demonstrate that the ability of a so-called 'BHR' plasmid to persist in a bacterial population is influenced by strain-specific traits, and therefore observations made for one strain should not be generalized for the entire species or genus.
Collapse
Affiliation(s)
- Leen De Gelder
- Department of Biological Sciences (PO Box 443051), 252 Life Sciences South, University of Idaho, Moscow, ID 83844-3051, USA
| | - José M Ponciano
- Department of Mathematics (PO Box 441103), University of Idaho, Moscow, ID 83844-1103, USA
| | - Paul Joyce
- Department of Mathematics (PO Box 441103), University of Idaho, Moscow, ID 83844-1103, USA
| | - Eva M Top
- Department of Biological Sciences (PO Box 443051), 252 Life Sciences South, University of Idaho, Moscow, ID 83844-3051, USA
| |
Collapse
|
23
|
Haines AS, Akhtar P, Stephens ER, Jones K, Thomas CM, Perkins CD, Williams JR, Day MJ, Fry JC. Plasmids from freshwater environments capable of IncQ retrotransfer are diverse and include pQKH54, a new IncP-1 subgroup archetype. MICROBIOLOGY-SGM 2006; 152:2689-2701. [PMID: 16946264 DOI: 10.1099/mic.0.28941-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nine mercury-resistance plasmids isolated from river epilithon were assessed for their ability to retrotransfer the non-conjugative IncQ plasmid, R300B, derivatives of which have commercial uses that may result in accidental or deliberate release into the environment. Retrotransfer frequencies ranging from 2.1 x 10(-4) to 1.75 x 10(-5) were obtained for five of the nine plasmids--the remaining plasmids showed low or undetectable retrotransfer ability. The majority of the retrotransfer-proficient plasmids could not be classified by the tests used. Classical incompatibility testing with RP4 identified pQKH6, pQKH54 and pQM719 as IncP-1. Hybridization to replicon probes confirmed this for pQKH6 and pQM719 and added pQKH33. PCR with primers designed to amplify trfA and korA regions of IncP-1 plasmids did not identify any other plasmids. Plasmids pQKH6 and pQM719 but not pQKH54 produced similar SphI restriction profiles to the IncP-1beta subgroup. The complete nucleotide sequence of pQKH54 was determined, revealing it to have a complete IncP-1 backbone but belonging to a new distinct subgroup which was designated IncP-1gamma. The results emphasize the ubiquity and diversity of IncP-1 plasmids in the environment but demonstrate that plasmids of as yet unknown groups are also able to retrotransfer IncQ plasmids efficiently.
Collapse
Affiliation(s)
- Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Parveen Akhtar
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karen Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Caroline D Perkins
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF1 3TL, UK
| | | | - Martin J Day
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF1 3TL, UK
| | - John C Fry
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF1 3TL, UK
| |
Collapse
|
24
|
Heuer H, Fox RE, Top EM. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. FEMS Microbiol Ecol 2006; 59:738-48. [PMID: 17059480 DOI: 10.1111/j.1574-6941.2006.00223.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.
Collapse
Affiliation(s)
- Holger Heuer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | |
Collapse
|
25
|
Ashelford KE, Fry JC, Day MJ, Hill KE, Learner MA, Marchesi JR, Perkins CD, Weightman AJ. Using microcosms to study gene transfer in aquatic habitats. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00393.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Ashelford KE, Fry JC, Learner MA. Plasmid transfer between strains of Pseudomonas putida, and their survival, within a pilot scale percolating-filter sewage treatment system. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1995.tb00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R. Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10311.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
McLaughlin H, Farrell A, Quilty B. Bioaugmentation of activated sludge with two Pseudomonas putida strains for the degradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2006; 41:763-77. [PMID: 16702057 DOI: 10.1080/10934520600614348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The augmentation of activated sludge with two strains of Pseudomonas putida, CP1 and A(a) was investigated. Both strains of bacteria degraded 1.56 mM 4-chlorophenol. P. putida CP1 degraded the chemical using a modified ortho-cleavage pathway while P. putida A(a) used the meta-cleavage pathway. When activated sludge incapable of 4-chlorophenol degradation was augmented with either strain, substrate degradation occurred and followed the same biochemical pathways as when the bacteria were grown in pure culture. Insertion, in tandem, of the genes for gentamycin resistance and green fluorescent protein into the chromosomes of the two strains, enabled the survival and spatial location of the bacteria in the mixed microbial population to be monitored. Labelling the bacteria did not alter their degradative capabilities. P. putida CP1::Tn7-gfp survived in higher numbers than P. putida A(a)::Tn7-gfp following addition to the activated sludge. This was attributed to the ability of this strain to flocculate and become integrated in the activated sludge floc. Addition of P. putida CP1::Tn7-gfp or A(a)::Tn7-gfp to activated sludge resulted in smaller decreases in total cell numbers indicating a protective effect of the introduced P. putida strains on the overall microbial population from the harmful effects of 4-chlorophenol. The non-flocculant strain A(a) did not survive as well as CP1 in the activated sludge system and required a higher inoculum size to effect substrate degradation.
Collapse
Affiliation(s)
- Henry McLaughlin
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
29
|
Inoue D, Sei K, Soda S, Ike M, Fujita M. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer. J Biosci Bioeng 2005; 100:600-5. [PMID: 16473767 DOI: 10.1263/jbb.100.600] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 08/16/2005] [Indexed: 11/17/2022]
Abstract
We investigated the possibility of conjugative plasmid transfer to the predominant bacteria in activated sludge and the factors influencing the transfer frequency in the activated sludge process. We performed conjugative transfers of a self-transmissible, broad-host-range plasmid RP4 from Escherichia coli C600 to activated sludge bacteria by broth mating. Most of the activated sludge bacteria tested could acquire plasmid RP4, although the transfer frequencies varied from 8.8 x 10(-7) to 1.3 x 10(-2) transconjugants per recipient. The transfer frequencies in several strains were similar to, or higher than, that in intraspecific transfer to E. coli HB101. Matings under various environmental conditions showed that factors relevant to physiological activity, such as temperature and nutrient conditions, seemed to affect the transfer frequency. In addition, conjugative transfer was detected even in filtered raw and treated wastewaters. Thus, the predominant activated sludge bacteria seem to have sufficient potential as recipients in conjugative plasmid transfer under the conditions likely to occur in the activated sludge process. Transfer frequency was reduced by agitation in the presence of suspended solid. This may suggest that conjugative plasmid transfer is physically inhibited in aeration tanks.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, Japan.
| | | | | | | | | |
Collapse
|
30
|
De Gelder L, Vandecasteele FPJ, Brown CJ, Forney LJ, Top EM. Plasmid donor affects host range of promiscuous IncP-1beta plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol 2005; 71:5309-17. [PMID: 16151119 PMCID: PMC1214629 DOI: 10.1128/aem.71.9.5309-5317.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal transfer of multiresistance plasmids in the environment contributes to the growing problem of drug-resistant pathogens. Even though the plasmid host cell is the primary environment in which the plasmid functions, possible effects of the plasmid donor on the range of bacteria to which plasmids spread in microbial communities have not been investigated. In this study we show that the host range of a broad-host-range plasmid within an activated-sludge microbial community was influenced by the donor strain and that various mating conditions and isolation strategies increased the diversity of transconjugants detected. To detect transconjugants, the plasmid pB10 was marked with lacp-rfp, while rfp expression was repressed in the donors by chromosomal lacI(q). The phylogeny of 306 transconjugants obtained was determined by analysis of partial 16S rRNA gene sequences. The transconjugants belonged to 15 genera of the alpha- and gamma-Proteobacteria. The phylogenetic diversity of transconjugants obtained in separate matings with donors Pseudomonas putida SM1443, Ralstonia eutropha JMP228, and Sinorhizobium meliloti RM1021 was significantly different. For example, the transconjugants obtained after matings in sludge with S. meliloti RM1021 included eight genera that were not represented among the transconjugants obtained with the other two donors. Our results indicate that the spectrum of hosts to which a promiscuous plasmid transfers in a microbial community can be strongly influenced by the donor from which it transfers.
Collapse
Affiliation(s)
- Leen De Gelder
- Department of Biological Sciences, 252 Life Sciences South, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | | | |
Collapse
|
31
|
Goris J, Boon N, Lebbe L, Verstraete W, Vos P. Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1gfp. FEMS Microbiol Ecol 2003; 46:221-30. [DOI: 10.1016/s0168-6496(03)00231-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Sentchilo V, Ravatn R, Werlen C, Zehnder AJB, van der Meer JR. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J Bacteriol 2003; 185:4530-8. [PMID: 12867462 PMCID: PMC165761 DOI: 10.1128/jb.185.15.4530-4538.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unusual type of gene expression from an integrase promoter was found in cultures of the bacterium Pseudomonas sp. strain B13. The promoter controls expression of the intB13 integrase gene, which is present near the right end of a 105-kb conjugative genomic island (the clc element) encoding catabolism of aromatic compounds. The enzymatic activity of integrase IntB13 is essential for site-specific integration of the clc element into the bacterial host's chromosome. By creating transcription fusions between the intB13 promoter and the gfp gene, we showed that integrase expression in strain B13 was inducible under stationary-phase conditions but, strangely, occurred in only a small proportion of individual bacterial cells rather than equally in the whole population. Integrase expression was significantly stimulated by growing cultures on 3-chlorobenzoate. High cell density, heat shock, osmotic shock, UV irradiation, and treatment with alcohol did not result in measurable integrase expression. The occurrence of the excised form of the clc element and an increase in the rates of clc element transfer in conjugation experiments correlated with the observed induction of the intB13'-gfp fusion in stationary phase and in the presence of 3-chlorobenzoate. This suggested that activation of the intB13 promoter is the first step in stimulation of clc transfer. To our knowledge, this is the first report of a chlorinated compound's stimulating horizontal transfer of the genes encoding its very metabolism.
Collapse
Affiliation(s)
- V Sentchilo
- Process of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Hendrickx L, Hausner M, Wuertz S. Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Appl Environ Microbiol 2003; 69:1721-7. [PMID: 12620864 PMCID: PMC150042 DOI: 10.1128/aem.69.3.1721-1727.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Accepted: 08/22/2002] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer by natural genetic transformation in Acinetobacter sp. strain BD413 was investigated by using gfp carried by the autonomously replicating plasmid pGAR1 in a model monoculture biofilm. Biofilm age, DNA concentration, and biofilm mode of growth were evaluated to determine their effects on natural genetic transformation. The highest transfer frequencies were obtained in young and actively growing biofilms when high DNA concentrations were used and when the biofilm developed during continuous exposure to fresh medium without the presence of a significant amount of cells in the suspended fraction. Biofilms were highly amenable to natural transformation. They did not need to advance to an optimal growth phase which ensured the presence of optimally competent biofilm cells. An exposure time of only 15 min was adequate for transformation, and the addition of minute amounts of DNA (2.4 fg of pGAR1 per h) was enough to obtain detectable transfer frequencies. The transformability of biofilms lacking competent cells due to growth in the presence of cells in the bulk phase could be reestablished by starving the noncompetent biofilm prior to DNA exposure. Overall, the evidence suggests that biofilms offer no barrier against effective natural genetic transformation of Acinetobacter sp. strain BD413.
Collapse
Affiliation(s)
- Larissa Hendrickx
- Department of Civil and Environmental Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Weightman AJ, Topping AW, Hill KE, Lee LL, Sakai K, Slater JH, Thomas AW. Transposition of DEH, a broad-host-range transposon flanked by ISPpu12, in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. J Bacteriol 2002; 184:6581-91. [PMID: 12426347 PMCID: PMC135415 DOI: 10.1128/jb.184.23.6581-6591.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain PP3 produces two hydrolytic dehalogenases encoded by dehI and dehII, which are members of different deh gene families. The 9.74-kb DEH transposon containing dehI and its cognate regulatory gene, dehR(I), was isolated from strain PP3 by using the TOL plasmid pWW0. DEH was fully sequenced and shown to have a composite transposon structure, within which dehI and dehR(I) were divergently transcribed and were flanked on either side by 3.73-kb identical direct repeats. The flanking repeat unit, designated ISPpu12, had the structure of an insertion sequence in that it was bordered by 24-bp near-perfect inverted repeats and contained four open reading frames (ORFs), one of which was identified as tnpA, putatively encoding an ISL3 family transposase. A putative lipoprotein signal peptidase was encoded by an adjacent ORF, lspA, and the others, ISPpu12 orf1 and orf2, were tentatively identified as a truncated cation efflux transporter gene and a PbrR family regulator gene, respectively. The orf1-orf2 intergenic region contained an exact match with a previously described active, outward-orientated promoter, Pout. Transposition of DEH-ISPpu12 was investigated by cloning the whole transposon into a suicide plasmid donor, pAWT34, and transferring the construct to various recipients. In this way DEH-ISPpu12 was shown to transpose in a broad range of Proteobacteria. Transposition of ISPpu12 independently from DEH, and inverse transposition, whereby the vector DNA and ISPpu12 inserted into the target genome without the deh genes, were also observed to occur at high frequencies in P. putida PaW340. Transposition of a second DEH-ISPpu12 derivative introduced exogenously into P. putida PP3 via the suicide donor pAWT50 resulted in silencing of resident dehI and dehII genes in about 10% of transposition transconjugants and provided a genetic link between transposition of ISPpu12 and dehalogenase gene silencing. Database searches identified ISPpu12-related sequences in several bacterial species, predominantly associated with plasmids and xenobiotic degradative genes. The potential role of ISPpu12 in gene silencing and activation, as well as the adaptation of bacteria to degrade xenobiotic compounds, is discussed.
Collapse
Affiliation(s)
- Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3TL, Wales, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
35
|
Boon N, De Gelder L, Lievens H, Siciliano SD, Top EM, Verstraete W. Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:4698-4704. [PMID: 12433184 DOI: 10.1021/es020076q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The survival and activity of microbial degradative inoculants in bioreactors is critical to obtain successful biodegradation of non- or slowly degradable pollutants. Achieving this in industrial wastewater reactors is technically challenging. We evaluated a strategy to obtain complete and stable bioaugmentation of activated sludge, which is used to treat a 3-chloroaniline (3-CA) contaminated wastewater in a lab-scale semi-continuous activated sludge system. A 3-CA metabolizing bacterium, Comamonas testosteroni strain I2, was mixed with molten agar and encapsulated in 4 mm diameter open-ended silicone tubes of 3 cm long. The tubes containing the immobilized bacteria represented about 1% of the volume of the mixed liquor. The bioaugmentation activity of a reactor containing the immobilized cells was compared with a reactor with suspended I2gfp cells. From day 25-30 after inoculation, the reactor with only suspended cells failed to completely degrade 3-CA because of a decrease in metabolic activity. In the reactors with immobilized cells, however, 3-CA continued to be removed. A mass balance indicated that ca. 10% of the degradation activity was due to the immobilized cells. Slow release of the growing embedded cells from the agar into the activated sludge medium, resulting in a higher number of active 3-CA-degrading I2 cells, was responsible for ca. 90% of the degradation. Our results demonstrate that this simple immobilization procedure was effective to maintain a 3-CA-degrading population within the activated sludge community.
Collapse
|
36
|
Top EM, Springael D, Boon N. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 2002; 42:199-208. [DOI: 10.1111/j.1574-6941.2002.tb01009.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Lawlor K, Chaudri AM, McGrath SP, Hirsch PR. Gene transfer in bacteria from soils contaminated with heavy metals. Lett Appl Microbiol 2002. [DOI: 10.1046/j.1365-2672.1999.00520.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K. Lawlor
- Soil Science Department, IACR‐Rothamsted, Harpenden, UK
| | - A. M. Chaudri
- Soil Science Department, IACR‐Rothamsted, Harpenden, UK
| | - S. P. McGrath
- Soil Science Department, IACR‐Rothamsted, Harpenden, UK
| | - P. R. Hirsch
- Soil Science Department, IACR‐Rothamsted, Harpenden, UK
| |
Collapse
|
38
|
|
39
|
Watanabe K, Miyashita M, Harayama S. Starvation improves survival of bacteria introduced into activated sludge. Appl Environ Microbiol 2000; 66:3905-10. [PMID: 10966407 PMCID: PMC92237 DOI: 10.1128/aem.66.9.3905-3910.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A phenol-degrading bacterium, Ralstonia eutropha E2, was grown in Luria-Bertani (LB) medium or in an inorganic medium (called MP) supplemented with phenol and harvested at the late-exponential-growth phase. Phenol-acclimated activated sludge was inoculated with the E2 cells immediately after harvest or after starvation in MP for 2 or 7 days. The densities of the E2 populations in the activated sludge were then monitored by quantitative PCR. The E2 cells grown on phenol and starved for 2 days (P-2 cells) survived in the activated sludge better than those treated differently: the population density of the P-2 cells 7 days after their inoculation was 50 to 100 times higher than the population density of E2 cells without starvation or that with 7-day starvation. LB medium-grown cells either starved or nonstarved were rapidly eliminated from the sludge. The P-2 cells showed a high cell surface hydrophobicity and retained metabolic activities. Cells otherwise prepared did not have one of these two features. From these observations, it is assumed that hydrophobic cell surface and metabolic activities higher than certain levels were required for the inoculated bacteria to survive in the activated sludge. Reverse transcriptase PCR analyses showed that the P-2 cells initiated the expression of phenol hydroxylase within 1 day of their inoculation into the sludge. These results suggest the utility of a short starvation treatment for improving the efficacy of bioaugumentation.
Collapse
Affiliation(s)
- K Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, Heita, Kamaishi City, Iwate 026-0001, Japan.
| | | | | |
Collapse
|
40
|
Boon N, Goris J, De Vos P, Verstraete W, Top EM. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 2000; 66:2906-13. [PMID: 10877785 PMCID: PMC92090 DOI: 10.1128/aem.66.7.2906-2913.2000] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1999] [Accepted: 04/17/2000] [Indexed: 11/20/2022] Open
Abstract
A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distal meta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.
Collapse
Affiliation(s)
- N Boon
- Laboratory of Microbial Ecology and Technology, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
41
|
Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner M. Ecological study of a bioaugmentation failure. Environ Microbiol 2000; 2:179-90. [PMID: 11220304 DOI: 10.1046/j.1462-2920.2000.00091.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A nitrifying sequencing batch reactor was inoculated twice with the aerobic denitrifying bacterium Microvirgula aerodenitrificans and fed with acetate. No improvement was obtained on nitrogen removal. The second more massive inoculation was even followed by a nitrification breakdown, while at the same time, nitrification remained stable in a second reactor operated under the same conditions without bioaugmentation. Fluorescent in situ hybridization with rRNA-targeted probes revealed that the added bacteria almost disappeared from the reactor within 2 days, and that digestive vacuoles of protozoa gave strong hybridization signals with the M. aerodenitrificans-specific probe. An overgrowth of protozoa, coincident with the disappearance of free-living bacteria, was monitored by radioactive dot-blot hybridization only in the bioaugmented reactor. Population dynamics were analysed with a newly developed in situ quantification procedure of the probe-targeted bacteria. The nitrifying groups of bacteria decreased in a similar way in the bioaugmented and non-bioaugmented reactors. Other bacterial groups evolved differently. The involvement of different ecological parameters are discussed separately for each reactor. These results underline the importance of predator-prey interaction and illustrate the undesirable effects of massive bioaugmentation.
Collapse
Affiliation(s)
- T Bouchez
- Institut National de la Recherche Agronomique, Laboratoire de Biotechnologie de l'Environnement, Narbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Nucleotide sequence analysis, and more recently whole genome analysis, shows that bacterial evolution has often proceeded by horizontal gene flow between different species and genera. In bacteria, gene transfer takes place by transformation, transduction, or conjugation and this review examines the roles of these gene transfer processes, between different bacteria, in a wide variety of ecological niches in the natural environment. This knowledge is necessary for our understanding of plasmid evolution and ecology, as well as for risk assessment. The rise and spread of multiple antibiotic resistance plasmids in medically important bacteria are consequences of intergeneric gene transfer coupled to the selective pressures posed by the increasing use and misuse of antibiotics in medicine and animal feedstuffs. Similarly, the evolution of degradative plasmids is a response to the increasing presence of xenobiotic pollutants in soil and water. Finally, our understanding of the role of horizontal gene transfer in the environment is essential for the evaluation of the possible consequences of the deliberate environmental release of natural or recombinant bacteria for agricultural and bioremediation purposes.
Collapse
Affiliation(s)
- J Davison
- Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, F-78026, France.
| |
Collapse
|
43
|
Dr�nen AK, Torsvik V, Top EM. Comparison of the plasmid types obtained by two distantly related recipients in biparental exogenous plasmid isolations from soil. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13649.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Geisenberger O, Ammendola A, Christensen BB, Molin S, Schleifer KH, Eberl L. Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett 1999; 174:9-17. [PMID: 10234817 DOI: 10.1111/j.1574-6968.1999.tb13543.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A GFPmut3b-tagged derivative of broad host-range plasmid RP4 was used to monitor the conjugative transfer of the plasmid from a Pseudomonas putida donor strain to indigenous bacteria in activated sludge. Transfer frequencies were determined to be in the range of 4 x 10(-6) to 1 x 10(-5) transconjugants per recipient. In situ hybridisation with fluorescently labeled, rRNA-targeted oligonucleotides was used to phylogenetically affiliate the bacteria that had received the plasmid.
Collapse
Affiliation(s)
- O Geisenberger
- Lehrstuhl für Mikrobiologie, Technische Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Soda S, Ike M, Fujita M. Adsorption of bacterial cells onto activated sludge flocs. J Biosci Bioeng 1999; 87:513-8. [PMID: 16232507 DOI: 10.1016/s1389-1723(99)80102-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Accepted: 12/21/1998] [Indexed: 10/18/2022]
Abstract
The adsorption of 9 species of bacteria onto laboratory-activated sludge flocs were investigated and a kinetic model describing the adsorption process was proposed in order to design an effective bioaugmentation strategy. The typical time course of bacterial adsorption, which is a triphasic process, consisted of lag, rapid adsorption, and stationary phases. The equilibrium of the cells in the stationary phase obeyed the Freundlich isotherm. The reversible and nonlinear model could describe the process to a certain degree and the Freundlich parameters and specific sorption rates were estimated for each bacterial strain. There was no apparent relationship between the estimated parameters and characteristics of the bacterial strains, such as specific growth rate, hydrophobicity of the cells, and flocculation activity against kaolin clays. However, the high floc formation ability of the bacterial strains was observed to be related to high cell concentrations although a longer lag time was required.
Collapse
Affiliation(s)
- S Soda
- Department of Environmental Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
46
|
Drønen AK, Torsvik V, Goksøyr J, Top EM. Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00553.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Christensen BB, Sternberg C, Andersen JB, Eberl L, Moller S, Givskov M, Molin S. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 1998; 64:2247-55. [PMID: 9603843 PMCID: PMC106307 DOI: 10.1128/aem.64.6.2247-2255.1998] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacIq gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration of donors and transconjugants. Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid. Our data suggest that the frequency of horizontal plasmid transfer was low, and growth (vertical transfer) of the recipient strain was the major cause of plasmid establishment in the biofilm community. Employment of scanning confocal laser microscopy on fixed biofilms, combined with simultaneous identification of P. putida cells and transconjugants by 16S rRNA hybridization and expression of green fluorescence, showed that transconjugants were always associated with noninfected P. putida RI recipient microcolonies. Pure colonies of transconjugants were never observed, indicating that proliferation of transconjugant cells preferentially took place on preexisting P. putida RI microcolonies in the biofilm.
Collapse
Affiliation(s)
- B B Christensen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
48
|
Watanabe K, Yamamoto S, Hino S, Harayama S. Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 1998; 64:1203-9. [PMID: 9546154 PMCID: PMC106130 DOI: 10.1128/aem.64.4.1203-1209.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A method for quantifying bacterial populations introduced into an activated-sludge microbial community is described. The method involves extraction of DNA from activated sludge, appropriate dilution of the extracted DNA with DNA extracted from nonintroduced activated sludge, PCR amplification of a gyrB gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. The adequacy of the method was examined by analyzing the population dynamics of two phenol-degrading bacteria, Pseudomonas putida BH and Comamonas sp. strain E6, that had been introduced into phenol-digesting activated sludge. The density of each of the two populations determined by the PCR method immediately after the introduction was consistent with the density estimated from a plate count of the inoculum. This quantitative PCR method revealed different population dynamics for the two strains in the activated sludge under different phenol-loading conditions. The behavior of both of these strains in the activated sludge reflected the growth kinetics of the strains determined in laboratory axenic cultures.
Collapse
Affiliation(s)
- K Watanabe
- Corporate Research and Development Laboratories, Tonen Corporation, Saitama, Japan.
| | | | | | | |
Collapse
|
49
|
Dahlberg C, Linberg C, Torsvik VL, Hermansson M. Conjugative plasmids isolated from bacteria in marine environments show various degrees of homology to each other and are not closely related to well-characterized plasmids. Appl Environ Microbiol 1997; 63:4692-7. [PMID: 9406388 PMCID: PMC168791 DOI: 10.1128/aem.63.12.4692-4697.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mercury resistance plasmids were exogenously isolated, i.e., recovered after transfer to a model recipient bacterium, from marine air-water interface, bulk water, and biofilm communities during incubation in artificial seawater without added nutrients. Ninety-five plasmids from different environments were classified by restriction endonuclease digestion, and 12 different structural plasmid groups were revealed. The plasmid types isolated from different habitats and from different sampling occasions showed little similarity to each other based on their restriction endonuclease patterns, indicating high variation and possibly a low transfer between microhabitats and/or a different composition of the microbial communities at different sites and times. With another approach in which probes derived from one of the isolated plasmids and a mercury resistance (mer) probe from Tn501 were used, similarities between plasmids from several different groups were found. The plasmids were further tested for their incompatibility by use of the collection of inc/rep probes (B/O, com9, FI, FII, HI1, HI2, I1, L/M, N, P, Q, U, W, Y) described by Couturier et al. (M. F. Couturier, P. Bex, L. Bergquist, and W. K. Maas, Microbiol. Rev. 52:375-395, 1988). Hybridizations did not reveal any identity between the 12 plasmid groups and any of the inc/rep probes tested. The results indicate that plasmids isolated from different marine habitats have replication and/or incompatibility systems that are different from the well-characterized plasmids that are commonly used in plasmid biology. This shows the need for the use of more relevant plasmids in studies of plasmid activity in the environment and development of new inc/rep probes for their characterization.
Collapse
Affiliation(s)
- C Dahlberg
- Lundberg Laboratory, Göteborg University, Sweden
| | | | | | | |
Collapse
|
50
|
Zita A, Hermansson M. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol Lett 1997; 152:299-306. [PMID: 9273312 DOI: 10.1111/j.1574-6968.1997.tb10443.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial cell surface hydrophobicity is one of the most important factors that influence bacterial adhesion. A new method microsphere adhesion to cells, for measuring bacterial cell surface hydrophobicity was developed. Microsphere adhesion to cells is based on microscopic enumeration of hydrophobic, fluorescent microspheres attaching to the bacterial surface. Cell surface hydrophobicity estimated by microsphere adhesion to cells correlates well with adhesion of bacteria to hydrocarbons or hydrophobic interaction chromatography for a set of hydrophilic and hydrophobic bacteria (linear correlation coefficients, R2, were 0.845 and 0.981 respectively). We also used microsphere adhesion to cells to investigate the in situ properties of individual free-living bacteria directly in activated sludge. Results showed that the majority of the bacteria were hydrophilic, indicating the importance of cell surface hydrophobicity for bacterial adhesion in sludge, and for the overall success of the wastewater treatment process.
Collapse
Affiliation(s)
- A Zita
- Department of General and Marine Microbiology, Göteberg University, Sweden
| | | |
Collapse
|