1
|
Danovaro R, Levin LA, Fanelli G, Scenna L, Corinaldesi C. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol 2024; 8:1407-1419. [PMID: 38844822 DOI: 10.1038/s41559-024-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
- National Biodiversity Future Center, Palermo, Italy.
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Ginevra Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lorenzo Scenna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Center, Palermo, Italy.
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
2
|
Secaira-Morocho H, Chede A, Gonzalez-de-Salceda L, Garcia-Pichel F, Zhu Q. An evolutionary optimum amid moderate heritability in prokaryotic cell size. Cell Rep 2024; 43:114268. [PMID: 38776226 DOI: 10.1016/j.celrep.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
We investigate the distribution and evolution of prokaryotic cell size based on a compilation of 5,380 species. Size spans four orders of magnitude, from 100 nm (Mycoplasma) to more than 1 cm (Thiomargarita); however, most species congregate heavily around the mean. The distribution approximates but is distinct from log normality. Comparative phylogenetics suggests that size is heritable, yet the phylogenetic signal is moderate, and the degree of heritability is independent of taxonomic scale (i.e., fractal). Evolutionary modeling indicates the presence of an optimal cell size to which most species gravitate. The size is equivalent to a coccus of 0.70 μm in diameter. Analyses of 1,361 species with sequenced genomes show that genomic traits contribute to size evolution moderately and synergistically. Given our results, scaling theory, and empirical evidence, we discuss potential drivers that may expand or shrink cells around the optimum and propose a stability landscape model for prokaryotic cell size.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Abhinav Chede
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Luis Gonzalez-de-Salceda
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
3
|
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. SCIENCE ADVANCES 2024; 10:eadk3208. [PMID: 38266082 PMCID: PMC10807817 DOI: 10.1126/sciadv.adk3208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Multicellularity is key to the functional and ecological success of the Eukarya, underpinning much of their modern diversity in both terrestrial and marine ecosystems. Despite the widespread occurrence of simple multicellular organisms among eukaryotes, when this innovation arose remains an open question. Here, we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells. In combination with spectroscopic characteristics, the large size and morphological complexity of these fossils support their interpretation as eukaryotes, likely photosynthetic, based on comparisons with extant organisms. The occurrence of multicellular eukaryotes in Paleoproterozoic rocks not much younger than those containing the oldest unambiguous evidence of eukaryotes as a whole supports the hypothesis that simple multicellularity arose early in eukaryotic history, as much as a billion years before complex multicellular organisms diversified in the oceans.
Collapse
Affiliation(s)
- Lanyun Miao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yuangao Qu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Volland JM, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR, Guidi-Rontani C, Bolte-Kluge S, Davies KM, Jean MR, Mansot JL, Mouncey NJ, Angert ER, Woyke T, Date SV. A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 2022; 376:1453-1458. [PMID: 35737788 DOI: 10.1126/science.abb3634] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.
Collapse
Affiliation(s)
- Jean-Marie Volland
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Silvina Gonzalez-Rizzo
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France.,Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nathalie H Elisabeth
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nandita Nath
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chantal Guidi-Rontani
- Institut de Systématique, Evolution, Biodiversité CNRS UMR 7205, Museum National d'Histoire Naturelle, Paris, France
| | - Susanne Bolte-Kluge
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS FRE3631, Institut de Biologie Paris Seine, Paris, France
| | - Karen M Davies
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Maïtena R Jean
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Jean-Louis Mansot
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Nigel J Mouncey
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Esther R Angert
- Cornell University, College of Agriculture and Life Sciences, Department of Microbiology, Ithaca, NY, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California Merced, School of Natural Sciences, Merced, CA, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California San Francisco, San Francisco, CA, USA.,San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
5
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Ramírez GA, Mara P, Sehein T, Wegener G, Chambers CR, Joye SB, Peterson RN, Philippe A, Burgaud G, Edgcomb VP, Teske AP. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 2021; 16:e0256321. [PMID: 34495995 PMCID: PMC8425543 DOI: 10.1371/journal.pone.0256321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
- * E-mail:
| | - Paraskevi Mara
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Taylor Sehein
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Germany
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Christopher R. Chambers
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Richard N. Peterson
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Aurélie Philippe
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Gaëtan Burgaud
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Virginia P. Edgcomb
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Andreas P. Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| |
Collapse
|
7
|
Development of an Easy-to-Operate Underwater Raman System for Deep-Sea Cold Seep and Hydrothermal Vent In Situ Detection. SENSORS 2021; 21:s21155090. [PMID: 34372326 PMCID: PMC8347312 DOI: 10.3390/s21155090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.
Collapse
|
8
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
9
|
Buckley A, MacGregor B, Teske A. Identification, Expression and Activity of Candidate Nitrite Reductases From Orange Beggiatoaceae, Guaymas Basin. Front Microbiol 2019; 10:644. [PMID: 30984153 PMCID: PMC6449678 DOI: 10.3389/fmicb.2019.00644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Orange filamentous Beggiatoaceae form massive microbial mats on hydrothermal sediments in Guaymas Basin; these bacteria are considered to oxidize sulfide with nitrate and nitrite as electron acceptors. From a previously analyzed genome of an orange Beggiatoaceae filament, three candidate genes for enzymes with nitrite-reducing function - an orange octaheme cytochrome, a nirS nitrite reductase, and a nitrite/tetrathionate-reducing octaheme cytochrome - were cloned and expressed in Escherichia coli. The expressed and purified orange cytochrome showed reduced nitrite-reducing activity compared to the multifunctional native protein obtained from microbial mats. The nirS gene product showed in vitro but no in-gel nitrite-reducing activity; and the nitrite/tetrathionate-reducing octaheme cytochrome was capable of reducing both nitrite and tetrathionate in vitro. Phylogenetic analysis shows that the orange Beggiatoaceae nirS, in contrast to the other candidate nitrite reductases, does not form monophyletic lineages with its counterparts in other large sulfur-oxidizing bacteria, and most likely represents a recent acquisition by lateral gene transfer. The nitrite/tetrathionate-reducing enzyme of the orange Beggiatoaceae is related to nitrite- and tetrathionate reductases harbored predominantly by Gammaproteobacteria, including obligate endosymbionts of hydrothermal vent tubeworms. Thus, the orange Guaymas Basin Beggiatoaceae have a repertoire of at least three different functional enzymes for nitrite reduction. By demonstrating the unusual diversity of enzymes with a potential role in nitrite reduction, we show that bacteria in highly dynamic, sulfide-rich hydrothermal vent habitats adapt to these conditions that usually prohibit nitrate and nitrite reduction. In the case of the orange Guaymas Beggiatoaceae, classical denitrification appears to be replaced by different multifunctional enzymes for nitrite and tetrathionate reduction; the resulting ecophysiological flexibility provides a new key to the dominance of these Beggiatoaceae in hydrothermal hot spots.
Collapse
Affiliation(s)
- Andrew Buckley
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barbara MacGregor
- Department of Earth Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Pasulka A, Hu SK, Countway PD, Coyne KJ, Cary SC, Heidelberg KB, Caron DA. SSU-rRNA Gene Sequencing Survey of Benthic Microbial Eukaryotes from Guaymas Basin Hydrothermal Vent. J Eukaryot Microbiol 2019; 66:637-653. [PMID: 30620427 DOI: 10.1111/jeu.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
Abstract
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep-sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high-throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full-length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.
Collapse
Affiliation(s)
- Alexis Pasulka
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, USA
| | - Sarah K Hu
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 301 Los Angeles, Los Angeles, California, USA
| | - Peter D Countway
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine, USA
| | - Kathryn J Coyne
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, Delaware, USA
| | - Stephen C Cary
- Department of Biological Sciences, The University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 301 Los Angeles, Los Angeles, California, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 301 Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Filamentous Giant Beggiatoaceae from the Guaymas Basin Are Capable of both Denitrification and Dissimilatory Nitrate Reduction to Ammonium. Appl Environ Microbiol 2018; 84:AEM.02860-17. [PMID: 29802192 PMCID: PMC6052272 DOI: 10.1128/aem.02860-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/14/2018] [Indexed: 01/31/2023] Open
Abstract
Whether large sulfur bacteria of the family Beggiatoaceae reduce NO3− to N2 via denitrification or to NH4+ via DNRA has been debated in the literature for more than 25 years. We resolve this debate by showing that certain members of the Beggiatoaceae use both metabolic pathways. This is important for the ecological role of these bacteria, as N2 production removes bioavailable nitrogen from the ecosystem, whereas NH4+ production retains it. For this reason, the topic of environmental controls on the competition for NO3− between N2-producing and NH4+-producing bacteria is of great scientific interest. Recent experiments on the competition between these two types of microorganisms have demonstrated that the balance between electron donor and electron acceptor availability strongly influences the end product of NO3− reduction. Our results suggest that this is also the case at the even more fundamental level of enzyme system regulation within a single organism. Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a “fried-egg” appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat. IMPORTANCE Whether large sulfur bacteria of the family Beggiatoaceae reduce NO3− to N2 via denitrification or to NH4+ via DNRA has been debated in the literature for more than 25 years. We resolve this debate by showing that certain members of the Beggiatoaceae use both metabolic pathways. This is important for the ecological role of these bacteria, as N2 production removes bioavailable nitrogen from the ecosystem, whereas NH4+ production retains it. For this reason, the topic of environmental controls on the competition for NO3− between N2-producing and NH4+-producing bacteria is of great scientific interest. Recent experiments on the competition between these two types of microorganisms have demonstrated that the balance between electron donor and electron acceptor availability strongly influences the end product of NO3− reduction. Our results suggest that this is also the case at the even more fundamental level of enzyme system regulation within a single organism.
Collapse
|
12
|
Abstract
The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.
Collapse
|
13
|
Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 2017; 15:e2000735. [PMID: 28291791 PMCID: PMC5349422 DOI: 10.1371/journal.pbio.2000735] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years. The last common ancestor of modern eukaryotes is generally believed to have lived during the Mesoproterozoic era, about 1.6 to 1 billion years ago, or possibly somewhat earlier. We studied exquisitely preserved fossil communities from ~1.6 billion-year-old sedimentary rocks in central India representing a shallow-water marine environment characterized by photosynthetic biomats. We discovered amidst extensive cyanobacterial mats a biota of filamentous and lobate organisms that share significant features with modern eukaryotic algae, more specifically red algae. The rocks mainly consist of calcium and magnesium carbonates, but the microbial mats and the fossils are preserved in calcium phosphate, letting us view the cellular and subcellular structures in three dimensions with the use of synchrotron-radiation X-ray tomographic microscopy. The most conspicuous internal objects in the cells of the filamentous forms are rhomboidal platelets that we interpret to be part of the photosynthetic machinery of red algae. The lobate forms grew as radiating globular or finger-like protrusions from a common centre. These fossils predate the previously earliest accepted red algae by about 400 million years, suggesting that eukaryotes may have a longer history than commonly assumed.
Collapse
|
14
|
Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL. Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep. Front Microbiol 2017; 8:186. [PMID: 28289403 PMCID: PMC5326789 DOI: 10.3389/fmicb.2017.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO2. We further used stable isotope probing (SIP) to track methane incorporation into mat biomass. We found evidence that multiple allochthonous substrates supported the rich growth of these mats, with notable contributions from bacterial methanotrophs and sulfur-oxidizers as well as eukaryotic phototrophs. Fatty acids characteristic of methanotrophs were shown to be abundant and 13C-enriched in SIP samples, and DNA-SIP identified members of the methanotrophic family Methylococcaceae as major 13CH4 consumers. Members of Sulfuricurvaceae, Sulfurospirillaceae, and Sulfurovumaceae are implicated in fixation of seep CO2. The mats’ autotrophs support a diverse assemblage of co-occurring bacteria and protozoa, with Methylophaga as key consumers of methane-derived organic matter. This study identifies the taxa contributing to the flow of seep-derived carbon through microbial mat biomass, revealing the bacterial and eukaryotic diversity of these remarkable ecosystems.
Collapse
Affiliation(s)
- Blair G Paul
- Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA
| | - Haibing Ding
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Sarah C Bagby
- Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA
| | - Matthias Y Kellermann
- Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA
| | - Molly C Redmond
- Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA
| | - Gary L Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - David L Valentine
- Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA
| |
Collapse
|
15
|
Salman-Carvalho V, Fadeev E, Joye SB, Teske A. How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a "Candidatus Marithrix sp." Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico. Front Microbiol 2016; 7:1173. [PMID: 27536274 PMCID: PMC4971068 DOI: 10.3389/fmicb.2016.01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
“Candidatus Marithrix” is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria). This genus of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 μm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, “Candidatus Marithrix” was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the “Candidatus Marithrix” genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98 and 100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes—the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs) between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or “intrasegmental sequence heterogeneity” (ISH) events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament.
Collapse
Affiliation(s)
- Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Eduard Fadeev
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
16
|
Teske A, de Beer D, McKay LJ, Tivey MK, Biddle JF, Hoer D, Lloyd KG, Lever MA, Røy H, Albert DB, Mendlovitz HP, MacGregor BJ. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation. Front Microbiol 2016; 7:75. [PMID: 26925032 PMCID: PMC4757712 DOI: 10.3389/fmicb.2016.00075] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.
Collapse
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Luke J McKay
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, USA; Center for Biofilm Engineering and Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Margaret K Tivey
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| | - Daniel Hoer
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Karen G Lloyd
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Microbiology, University of Tennessee at KnoxvilleKnoxville, TN, USA
| | - Mark A Lever
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Environmental Sciences, Eidgenössische Technische HochschuleZurich, Switzerland
| | - Hans Røy
- Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | - Daniel B Albert
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Howard P Mendlovitz
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
17
|
Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microbiol 2016; 81:1426-41. [PMID: 25527539 DOI: 10.1128/aem.03588-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primerpairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs indetection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm(2 to 40 °C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40 °C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (>60 °C). While mcrAbased and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.
Collapse
|
18
|
Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. THE ISME JOURNAL 2015; 9:2503-14. [PMID: 25909974 PMCID: PMC4611513 DOI: 10.1038/ismej.2015.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.
Collapse
Affiliation(s)
- Verena Salman
- Department of Microbiology, Cornell University, Ithaca, NY, USA
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tingting Yang
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tom Berben
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Esther Angert
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
El-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Front Microbiol 2015; 6:309. [PMID: 25954251 PMCID: PMC4404868 DOI: 10.3389/fmicb.2015.00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/29/2015] [Indexed: 11/20/2022] Open
Abstract
Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. Escherichia coli cells in particular are small rods, each 1–2 μ. However, the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaløe’s experiments on how E. coli establishes its size began with shifts between rich and poor media. Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems. This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK) which are 2–4 × longer than their non-mutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.
Collapse
Affiliation(s)
- Ziad W El-Hajj
- Department of Biology, Concordia University , Montreal, QC, Canada
| | - Elaine B Newman
- Department of Biology, Concordia University , Montreal, QC, Canada
| |
Collapse
|
20
|
Teske A, Callaghan AV, LaRowe DE. Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 2014; 5:362. [PMID: 25132832 PMCID: PMC4117188 DOI: 10.3389/fmicb.2014.00362] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022] Open
Abstract
Temperature is one of the key constraints on the spatial extent, physiological and phylogenetic diversity, and biogeochemical function of subsurface life. A model system to explore these interrelationships should offer a suitable range of geochemical regimes, carbon substrates and temperature gradients under which microbial life can generate energy and sustain itself. In this theory and hypothesis article, we make the case for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California as a suitable model system where extensive temperature and geochemical gradients create distinct niches for active microbial populations in the hydrothermally influenced sedimentary subsurface that in turn intercept and process hydrothermally generated carbon sources. We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin - with an eye on sulfate-dependent oxidation of abundant alkanes - and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64.
Collapse
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Amy V. Callaghan
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, USA
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
21
|
Flood BE, Bailey JV, Biddle JF. Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments. GEOBIOLOGY 2014; 12:119-132. [PMID: 24382125 DOI: 10.1111/gbi.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat-forming micro-organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria-dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.
Collapse
Affiliation(s)
- B E Flood
- Department of Earth Sciences, University of Minnesota- Twin Cities, Minneapolis, MN, USA
| | | | | |
Collapse
|
22
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
23
|
Bailey JV, Corsetti FA, Greene SE, Crosby CH, Liu P, Orphan VJ. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. GEOBIOLOGY 2013; 11:397-405. [PMID: 23786451 DOI: 10.1111/gbi.12046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Marine phosphate-rich sedimentary deposits (phosphorites) are important geological reservoirs for the biologically essential nutrient phosphorous. Phosphorites first appear in abundance approximately 600 million years ago, but their proliferation at that time is poorly understood. Recent marine phosphorites spatially correlate with the habitats of vacuolated sulfide-oxidizing bacteria that store polyphosphates under oxic conditions to be utilized under sulfidic conditions. Hydrolysis of the stored polyphosphate results in the rapid precipitation of the phosphate-rich mineral apatite-providing a mechanism to explain the association between modern phosphorites and these bacteria. Whether sulfur bacteria were important to the formation of ancient phosphorites has been unresolved. Here, we present the remains of modern sulfide-oxidizing bacteria that are partially encrusted in apatite, providing evidence that bacterially mediated phosphogenesis can rapidly permineralize sulfide-oxidizing bacteria and perhaps other types of organic remains. We also describe filamentous microfossils that resemble modern sulfide-oxidizing bacteria from two major phosphogenic episodes in the geologic record. These microfossils contain sulfur-rich inclusions that may represent relict sulfur globules, a diagnostic feature of modern sulfide-oxidizing bacteria. These findings suggest that sulfur bacteria, which are known to mediate the precipitation of apatite in modern sediments, were also present in certain phosphogenic settings for at least the last 600 million years. If polyphosphate-utilizing sulfide-oxidizing bacteria also played a role in the formation of ancient phosphorites, their requirements for oxygen, or oxygen-requiring metabolites such as nitrate, might explain the temporal correlation between the first appearance of globally distributed marine phosphorites and increasing oxygenation of Neoproterozoic oceans.
Collapse
Affiliation(s)
- J V Bailey
- Department of Earth Sciences, University of Minnesota- Twin Cities, Minneapolis, MN, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mahe YF, Perez MJ, Tacheau C, Fanchon C, Martin R, Rousset F, Seite S. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin Cosmet Investig Dermatol 2013; 6:191-6. [PMID: 24039440 PMCID: PMC3770492 DOI: 10.2147/ccid.s47324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vitreoscilla filiformis (VF) biomass (VFB) has been widely used in cosmetic preparations and shown to modulate the major inducible free-radical scavenger mitochondrial superoxide dismutase in skin cells. By adding La Roche-Posay (LRP) thermal spring water to the VF culture medium, we obtained a biomass (LRP-VFB) with a similar mitochondrial superoxide dismutase activation capacity to VF. Also, the new biomass more powerfully stimulated mRNA expression and antimicrobial peptides in reconstructed epidermis. Interestingly, a predictive computer model that analyzed transducing events within skin epidermal cells suggested that this protective activity may involve the Toll-like receptor 2/protein kinase C, zeta transduction pathway. Protein kinase C, zeta inhibition was effectively shown to abolish VFB-induced gene stimulation and confirmed this hypothesis. This thus opens new avenues for investigation into the improvement of skin homeostatic defense in relation to the control of its physiological microbiota and innate immunity.
Collapse
|
25
|
Desai MS, Assig K, Dattagupta S. Nitrogen fixation in distinct microbial niches within a chemoautotrophy-driven cave ecosystem. ISME JOURNAL 2013; 7:2411-23. [PMID: 23924780 PMCID: PMC3834856 DOI: 10.1038/ismej.2013.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
Microbial sulfur and carbon cycles in ecosystems driven by chemoautotrophy-present at deep-sea hydrothermal vents, cold seeps and sulfidic caves-have been studied to some extent, yet little is known about nitrogen fixation in these systems. Using a comprehensive approach comprising of (15)N2 isotope labeling, acetylene reduction assay and nitrogenase gene expression analyses, we investigated nitrogen fixation in the sulfide-rich, chemoautotrophy-based Frasassi cave ecosystem (Italy). Nitrogen fixation was examined in three different microbial niches within the cave waters: (1) symbiotic bacterial community of Niphargus amphipods, (2) Beggiatoa-dominated biofilms, which occur at the sulfide-oxygen interface, and (3) sulfidic sediment. We found evidence for nitrogen fixation in all the three niches, and the nitrogenase gene (homologs of nifH) expression data clearly show niche differentiation of diazotrophic Proteobacteria within the water streams. The nifH transcript originated from the symbiotic community of Niphargus amphipods might belong to the Thiothrix ectosymbionts. Two abundantly expressed nifH genes in the Beggiatoa-dominated biofilms are closely related to those from Beggiatoa- and Desulfovibrio-related bacteria. These two diazotrophs were consistently found in Beggiatoa-dominated biofilms collected at various time points, thus illustrating species-specific associations of the diazotrophs in biofilm formation, and micron-scale niche partitioning of sulfur-oxidizing and sulfate-reducing bacteria driven by steep redox gradients within the biofilm. Finally, putative heterotrophs (Geobacter, Azoarcus and Desulfovibrio related) were the active diazotrophs in the sulfidic sediment. Our study is the first to shed light on nitrogen fixation in permanently dark caves and suggests that diazotrophy may be widespread in chemosynthetic communities.
Collapse
Affiliation(s)
- Mahesh S Desai
- Courant Research Center Geobiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
26
|
Russ L, Kartal B, Op den Camp HJM, Sollai M, Le Bruchec J, Caprais JC, Godfroy A, Sinninghe Damsté JS, Jetten MSM. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol 2013; 4:219. [PMID: 23935595 PMCID: PMC3731535 DOI: 10.3389/fmicb.2013.00219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023] Open
Abstract
Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the “Candidatus Scalindua” genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5′-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.
Collapse
Affiliation(s)
- Lina Russ
- Department of Ecological Microbiology, Institute for Wetland and Water Research, Radboud University Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meyer S, Wegener G, Lloyd KG, Teske A, Boetius A, Ramette A. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 2013; 4:207. [PMID: 23898326 PMCID: PMC3723108 DOI: 10.3389/fmicb.2013.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022] Open
Abstract
The Guaymas Basin (Gulf of California) hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit of life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1–5 μmol ml−1 d−1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs) number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T < 10°C), medium (10°C ≤ T < 40°C) or hot (T ≥ 40°C) temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.
Collapse
Affiliation(s)
- Stefanie Meyer
- HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany ; HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. GEOBIOLOGY 2013; 11:340-355. [PMID: 23647923 DOI: 10.1111/gbi.12039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.
Collapse
Affiliation(s)
- M Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 2013; 104:169-86. [PMID: 23793621 DOI: 10.1007/s10482-013-9952-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery. In some taxa, it has been demonstrated that the vacuole can also serve for the storage of high millimolar concentrations of nitrate. Over the course of the past two centuries, a wide range of morphological variation within the family Beggiatoaceae has been found. However, representatives of this clade are frequently recalcitrant to current standard microbiological techniques, including 16S rRNA gene sequencing and culturing, and a reliable classification of these bacteria is often complicated. Here we present a summary of the efforts made and achievements accomplished in the past years, and give perspectives for investigating the heterogeneity and possible evolutionary developments in this extraordinary group of bacteria.
Collapse
Affiliation(s)
- Verena Salman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA.
| | | | | |
Collapse
|
30
|
Li X, Vanner S, Wang W, Li Y, Gallardo VA, Magarvey NA. Macplocimine A, a new 18-membered macrolide isolated from the filamentous sulfur bacteria Thioploca sp. J Antibiot (Tokyo) 2013; 66:443-6. [PMID: 23778115 DOI: 10.1038/ja.2013.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 11/09/2022]
Abstract
Macplocimine A (1), a rare naturally occurring 18-membered macrolide, was isolated from the marine-derived filamentous sulfur bacteria Thioploca sp. The structure was determined by a combination of spectroscopic techniques, including HRESIMS, 1D and 2D NMR analyses. 1 features a thymine group, which is attached to an aromatic fused 18-membered macrolide ring structure derived from a polyketide synthase biosynthetic pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Coyne KJ, Countway PD, Pilditch CA, Lee CK, Caron DA, Cary SC. Diversity and Distributional Patterns of Ciliates in Guaymas Basin Hydrothermal Vent Sediments. J Eukaryot Microbiol 2013; 60:433-47. [DOI: 10.1111/jeu.12051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
| | - Peter D. Countway
- Department of Biological Sciences; University of Southern California; Los Angeles California 90089-0371 USA
| | - Conrad A. Pilditch
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| | - Charles K. Lee
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| | - David A. Caron
- Department of Biological Sciences; University of Southern California; Los Angeles California 90089-0371 USA
| | - Stephen C. Cary
- College of Earth, Ocean, and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| |
Collapse
|
32
|
Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. GEOBIOLOGY 2013; 11:279-293. [PMID: 23551687 DOI: 10.1111/gbi.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the majority of endolithic anaerobic primary production in hydrothermal vent chimneys.
Collapse
Affiliation(s)
- H C Olins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
33
|
Jannasch HW. Microbial Interactions with Hydrothermal Fluids. SEAFLOOR HYDROTHERMAL SYSTEMS: PHYSICAL, CHEMICAL, BIOLOGICAL, AND GEOLOGICAL INTERACTIONS 2013. [DOI: 10.1029/gm091p0273] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 2012; 79:1183-90. [PMID: 23220958 DOI: 10.1128/aem.02538-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.
Collapse
|
35
|
Schopf JW, Farmer JD, Foster IS, Kudryavtsev AB, Gallardo VA, Espinoza C. Gypsum-permineralized microfossils and their relevance to the search for life on Mars. ASTROBIOLOGY 2012; 12:619-33. [PMID: 22794252 DOI: 10.1089/ast.2012.0827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum.
Collapse
Affiliation(s)
- J William Schopf
- Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN. Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie van Leeuwenhoek 2011; 101:347-57. [PMID: 21909788 PMCID: PMC3261416 DOI: 10.1007/s10482-011-9640-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/27/2011] [Indexed: 11/29/2022]
Abstract
Sulfide-oxidizing bacteria of the genus Beggiatoa are known to accumulate phosphate intracellularly as polyphosphate but little is known about the structure and properties of these inclusions. Application of different staining techniques revealed the presence of unusually large polyphosphate inclusions in the marine Beggiatoa strain 35Flor. The inclusions showed a co-occurrence of polyphosphate, calcium and magnesium when analyzed by scanning electron microscopy and energy dispersive X-ray analysis. Similar to polyphosphate-enriched acidocalcisomes of prokaryotes and eukaryotes, the polyphosphate inclusions in Beggiatoa strain 35Flor are enclosed by a lipid layer and store cations. However, they are not notably acidic. 16S rRNA gene sequence-based phylogenetic reconstruction showed an affiliation of Beggiatoa strain 35Flor to a monophyletic branch, comprising other narrow vacuolated and non-vacuolated Beggiatoa species. The polyphosphate inclusions represent a new type of membrane surrounded storage compartment within the genus Beggiatoa, distinct from the mostly nitrate-storing vacuoles known from other marine sulfide-oxidizing bacteria of the family Beggiatoaceae.
Collapse
Affiliation(s)
- Jörg Brock
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Grünke S, Felden J, Lichtschlag A, Girnth AC, De Beer D, Wenzhöfer F, Boetius A. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). GEOBIOLOGY 2011; 9:330-348. [PMID: 21535364 DOI: 10.1111/j.1472-4669.2011.00281.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sulfidic muds of cold seeps on the Nile Deep Sea Fan (NDSF) are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, and (iii) single, spherical Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for the different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped above the seafloor in the bottom water interface. Filamentous sulfide oxidizers were associated with steep gradients of oxygen and sulfide in the sediment. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide in the bottom water. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the NDSF, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.
Collapse
Affiliation(s)
- S Grünke
- HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hinck S, Mussmann M, Salman V, Neu TR, Lenk S, Beer DD, Jonkers HM. Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus. Environ Microbiol 2011; 13:3194-205. [PMID: 21651683 DOI: 10.1111/j.1462-2920.2011.02513.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, members of a specific group of thin (6-14 µm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.
Collapse
Affiliation(s)
- Susanne Hinck
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 2011; 9:719-738. [PMID: 21673885 PMCID: PMC3111178 DOI: 10.3390/md9050719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 03/20/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.
Collapse
|
40
|
Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 2011; 34:243-59. [PMID: 21498017 DOI: 10.1016/j.syapm.2011.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.
Collapse
Affiliation(s)
- Verena Salman
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Hedrick DB, Pledger RD, White DC, Baross JA. In situ microbial ecology of hydrothermal vent sediments. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1992.tb01642.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
|
44
|
Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin. Extremophiles 2010; 15:177-89. [DOI: 10.1007/s00792-010-0346-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
45
|
Comparative analysis of Beggiatoa from hypersaline and marine environments. Micron 2010; 41:507-17. [DOI: 10.1016/j.micron.2010.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 11/22/2022]
|
46
|
McHatton SC, Barry JP, Jannasch HW, Nelson DC. High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp. Appl Environ Microbiol 2010; 62:954-8. [PMID: 16535282 PMCID: PMC1388807 DOI: 10.1128/aem.62.3.954-958.1996] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Massive accumulations of very large Beggiatoa spp. are found at a Monterey Canyon cold seep and at Guaymas Basin hydrothermal vents. Both environments are characterized by high sediment concentrations of soluble sulfide and low levels of dissolved oxygen in surrounding waters. These filamentous, sulfur-oxidizing bacteria accumulate nitrate intracellularly at concentrations of 130 to 160 mM, 3,000- to 4,000-fold higher than ambient levels. Average filament widths range from 24 to 122 (mu)m, and individual cells of all widths possess a central vacuole. These findings plus recent parallel discoveries for Thioploca spp. (H. Fossing, V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa, Nature (London) 374:713-715, 1995) suggest that nitrate accumulation may be a universal property of vacuolate, filamentous sulfur bacteria. Ribulose bisphosphate carboxylase-oxygenase and 2-oxoglutarate dehydrogenase activities in the Beggiatoa sp. from Monterey Canyon suggest in situ autotrophic growth of these bacteria. Nitrate reductase activity is much higher in the Monterey Beggiatoa sp. than in narrow, laboratory-grown strains of Beggiatoa spp., and the activity is found primarily in the membrane fraction, suggesting that the vacuolate Beggiatoa sp. can reduce nitrate coupled to electron flow through an electron transport system. Nitrate-concentrating and respiration potentials of these chemolithoautotrophs suggest that the Beggiatoa spp. described here are an important link between the sulfur, nitrogen, and carbon cycles at the Monterey Canyon seeps and the Guaymas Basin hydrothermal vents where they are found.
Collapse
|
47
|
Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA. Comparative Physiological Studies on Hyperthermophilic Archaea Isolated from Deep-Sea Hot Vents with Emphasis on Pyrococcus Strain GB-D. Appl Environ Microbiol 2010; 58:3472-81. [PMID: 16348799 PMCID: PMC183131 DOI: 10.1128/aem.58.11.3472-3481.1992] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three new sulfur- or non-sulfur-dependent archaeal isolates, including a Pyrococcus strain, from Guaymas Basin hydrothermal vents (Gulf of California; depth, 2,010 m) were characterized and physiologically compared with four known hyperthermophiles, previously isolated from other vent sites, with an emphasis on growth and survival under the conditions particular to the natural habitat. Incubation under in situ pressure (200 atm [1 atm = 101.29 kPa]) did not increase the maximum growth temperature by more than 1 degrees C for any of the organisms but did result in increases in growth rates of up to 15% at optimum growth temperatures. At in situ pressure, temperatures considerably higher than those limiting growth (i.e., > 105 degrees C) were survived best by isolates with the highest maximum growth temperatures, but none of the organisms survived at temperatures of 150 degrees C or higher for 5 min. Free oxygen was toxic to all isolates at growth range temperatures, but at ambient deep-sea temperature (3 to 4 degrees C), the effect varied in different isolates, the non-sulfur-dependent isolate being the most oxygen tolerant. Hyperthermophiles could be isolated from refrigerated and oxygenated samples after 5 years of storage. Cu, Zn, and Pb ions were found to be toxic under nongrowth conditions (absence of organic substrate), with the non-sulfur-dependent isolate again being the most tolerant.
Collapse
Affiliation(s)
- H W Jannasch
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, and Department of Microbiology, University of South Dakota, Vermillion, South Dakota 57069
| | | | | | | |
Collapse
|
48
|
Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. MARINE BIOLOGY 2009; 157:791-800. [PMID: 24391244 PMCID: PMC3873080 DOI: 10.1007/s00227-009-1362-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/24/2009] [Indexed: 05/30/2023]
Abstract
Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow hydrothermal vents (White Point, CA) were found at deep-sea hydrothermal vents. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near vents at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge. A phylogenetic analysis comparing their 16S rRNA gene sequences to those collected from the shallow White Point site showed that all vacuolate-attached filament sequences form a monophyletic group within the vacuolate sulfur-oxidizing bacteria clade in the gamma proteobacteria. Abundance of the attached filaments was quantified over the length of the exterior surface of the tubes of Ridgeia piscesae worms collected from the Clam Bed site at Juan de Fuca yielding a per worm average of 0.070 ± 0.018 cm3 (n = 4). In agreement with previous results for White Point filaments, anion measurements by ion chromatography showed no detectable internal nitrate concentrations above ambient seawater (n = 9). For one R. piscesae tube worm "bush" at the Easter Island vent site, potential gross epibiont productivity is estimated to be 15 to 45× the net productivity of the worms.
Collapse
Affiliation(s)
- Karen M. Kalanetra
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
- Present Address: Department of Public Health Sciences, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Douglas C. Nelson
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
| |
Collapse
|
49
|
Emergence of Animals from Heat Engines – Part 1. Before the Snowball Earths. ENTROPY 2009. [DOI: 10.3390/e11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, Stadnitskaia A, Foucher JP, Boetius A. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 2008; 74:3198-215. [PMID: 18378658 PMCID: PMC2394935 DOI: 10.1128/aem.01751-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 02/29/2008] [Indexed: 11/20/2022] Open
Abstract
In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium "Candidatus Arcobacter sulfidicus." Fluorescence in situ hybridization indicated that microorganisms targeted by a "Ca. Arcobacter sulfidicus"-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to "Ca. Arcobacter sulfidicus" were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol x cm(-3) x day(-1)) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol x cm(-3) x day(-1)). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.
Collapse
MESH Headings
- Arcobacter/cytology
- Arcobacter/genetics
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Biodiversity
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ferric Compounds/metabolism
- Ferrous Compounds/metabolism
- Genes, rRNA
- Geologic Sediments/microbiology
- Iron/metabolism
- Leptothrix/cytology
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sulfides/metabolism
- Sulfur/metabolism
Collapse
|