1
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
2
|
|
3
|
McCormick SP, Hohn TM. Accumulation of Trichothecenes in Liquid Cultures of a Fusarium sporotrichioides Mutant Lacking a Functional Trichothecene C-15 Hydroxylase. Appl Environ Microbiol 2010; 63:1685-8. [PMID: 16535589 PMCID: PMC1389144 DOI: 10.1128/aem.63.5.1685-1688.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant strain of Fusarium sporotrichioides NRRL 3299 produced by disruption of Tri11, a gene encoding a cytochrome P-450 monooxygenase, was shown to be altered in its ability to biosynthesize T-2 toxin. This mutant strain produced four trichothecenes that were not observed in cultures of the parent strain. The compounds were identified as isotrichodermin, 8-hydroxyisotrichodermin, 8-hydroxyisotrichodermol, and 3,4,8-trihydroxytricothecene on the basis of their nuclear magnetic resonance and mass spectra. This is the first report of these 8-hydroxytrichothecenes as metabolites of F. sporotrichioides. The accumulation of isotrichodermin and the results of whole-cell feeding experiments with a Tri11(sup-) strain confirm that oxygenation of C-15 is blocked.
Collapse
|
4
|
The Trichothecenes and Their Biosynthesis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2007. [DOI: 10.1007/978-3-211-49389-2_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Thines E, Aguirre J, Foster AJ, Deising HB. Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant pathogens. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-27998-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
6
|
Brown DW, Proctor RH, Dyer RB, Plattner RD. Characterization of a fusarium 2-gene cluster involved in trichothecene C-8 modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:7936-7944. [PMID: 14690377 DOI: 10.1021/jf030607+] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Fusarium trichothecenes T-2 toxin and deoxynivalenol (DON) are potent inhibitors of eukaryotic protein synthesis and are a significant agricultural problem. Three coregulated loci are required for T-2 toxin synthesis by Fusarium sporotrichioides. The core-trichothecene gene cluster consists of 12 genes (Tri3-Tri14) while the second locus consists of a single gene (Tri101). The third locus was recently partially described and encodes 1-2 biosynthetic enzymes and a putative regulatory gene. Here, we describe a detailed characterization of this locus. Located adjacent to Tri1 is Tri16, which is required for esterification of the C-8 hydroxyl. A putative regulatory gene, also adjacent to Tri1, is not required for T-2 toxin synthesis. The genomic sequence of Fusarium graminearum (a DON producer) contains a putative functional Tri1 and a nonfunctional Tri16. The presence of the Tri16 pseudogene is consistent with the chemical structure of DON, which has a C-8 keto group rather than the C-8 ester of T-2 toxin.
Collapse
Affiliation(s)
- Daren W Brown
- USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, USA.
| | | | | | | |
Collapse
|
7
|
Meek IB, Peplow AW, Ake C, Phillips TD, Beremand MN. Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 2003; 69:1607-13. [PMID: 12620849 PMCID: PMC150100 DOI: 10.1128/aem.69.3.1607-1613.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 12/20/2002] [Indexed: 11/20/2022] Open
Abstract
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.
Collapse
Affiliation(s)
- Isaac B Meek
- Department of Plant Pathology and Microbiology. Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
8
|
Shanmugam V, Viswanathan R, Raguchander T, Balasubramanian P, Samiyappan R. Immunology of the pathogen virulence and phytotoxin production in relation to disease severity: a case study in sheath blight of rice. Folia Microbiol (Praha) 2002; 47:551-8. [PMID: 12503403 DOI: 10.1007/bf02818797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polyclonal antibodies against purified Rhizoctonia solani toxin obtained from infected rice sheath tissues (sheath blight toxin, SBT) and culture filtrates (culture filtrate toxin, CFT) were developed in rabbit and chicken. The IgG was isolated from serum and egg yolk of rabbit and chicken, respectively, and their specificity was investigated by indirect ELISA. Antibodies developed against CFT and SBT in rabbits exhibited relatively higher titer values when compared to chicken antibodies. Positive correlation was observed between the degree of sheath blighting and the levels of antigens induced by each isolate during sheath blight symptom development as detected by rabbit SBT antibody and the isolate RS7 was identified as most virulent. Optimization of incubation period for maximum toxin production in liquid medium and rice sheaths indicated that the production of CFT and SBT is maximum after 15 d and 6 d of pathogen inoculation. Studies of the possible translocation of RS-toxin in rice plants upon inoculation with R. solani showed downward translocation as detected by rabbit/chicken SBT antibodies. Since plant inoculation required a higher concentration of inoculum and maintenance of plants, serological assay by ELISA is more sensitive than whole-plant assays in detecting RS-toxin, with the advantage that ELISA also allows rapid determination of RS-toxin production.
Collapse
Affiliation(s)
- V Shanmugam
- Department of Plant Pathology, Center for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | | | | | | | | |
Collapse
|
9
|
Kimura M, Anzai H, Yamaguchi I. Microbial toxins in plant-pathogen interactions: Biosynthesis, resistance mechanisms, and significance. J GEN APPL MICROBIOL 2001; 47:149-160. [PMID: 12483615 DOI: 10.2323/jgam.47.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the history of phytopathology, microbial toxins have been the objects of extensive studies as possible pathogenicity or virulence factors for the producer pathogens. The recent development of molecular genetic techniques provided an experimental basis to thoroughly test the role of these secondary metabolites in pathogenesis. Some of them did prove to be highly associated with disease initiation or enhanced virulence in certain plant-pathogen interactions. In this review, we describe recent progresses in the field of plant-pathogen interactions focusing on two toxins; i.e., tabtoxin from Pseudomonas syringae and trichothecenes from Fusarium and other fungi. These microbial toxins have convincingly been shown to play causal roles in plant disease development. Studies on the biosynthesis and resistance mechanisms of these producers are outlined, and the significance of this knowledge is discussed in relation to practical applications in agriculture.
Collapse
Affiliation(s)
- Makoto Kimura
- Laboratory for Remediation Research, Plant Science Center, and Microbial Toxicology Laboratory, RIKEN, Wako 351-0198, Japan
| | | | | |
Collapse
|
10
|
|
11
|
Kimura M, Matsumoto G, Shingu Y, Yoneyama K, Yamaguchi I. The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett 1998; 435:163-8. [PMID: 9762900 DOI: 10.1016/s0014-5793(98)01061-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trichothecene 3-O-acetyltransferase gene, Tri101, plays a pivotal role for the well-being of the type B trichothecene producer Fusarium graminearum. We have analyzed the cosmids containing Tri101 and found that this resistance gene is not in the biosynthetic gene cluster reported so far. It was located between the UTP-ammonia ligase gene and the phosphate permease gene which are not related to trichothecene biosynthesis. These two 'house-keeping' genes were also linked in Fusarium species that do not produce trichothecenes. The result suggests that the isolated occurrence of Tri101 is attributed to horizontal gene transfer and not to the reciprocal translocation of the chromosome containing the gene cluster. Interestingly, 3-O-acetylation was not always a primary self-defensive strategy for all the t-type trichothecene producers; i.e. the type A trichothecene producer Fusarium sporotrichioides did not acetylate T-2 toxin in vivo although the fungus possessed a functional 3-O-acetyltransferase gene. Thus Tri101 appears to be a defense option which the producers have independently acquired in addition to their original resistance mechanisms.
Collapse
Affiliation(s)
- M Kimura
- Microbial Toxicology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
12
|
Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 1998; 273:1654-61. [PMID: 9430709 DOI: 10.1074/jbc.273.3.1654] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.
Collapse
Affiliation(s)
- M Kimura
- Microbial Toxicology Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Wing N, Burgess L, Bryden W. Cultural degeneration in two Fusarium species and its effects on toxigenicity and cultural morphology. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0953-7562(09)80721-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 1993. [PMID: 8246841 DOI: 10.1128/cmr.16.3.497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products.
Collapse
Affiliation(s)
- A E Desjardins
- Mycotoxin Research Unit, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | |
Collapse
|
16
|
Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 1993. [PMID: 8246841 DOI: 10.1128/mmbr.57.3.595-604.1993] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products.
Collapse
Affiliation(s)
- A E Desjardins
- Mycotoxin Research Unit, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | |
Collapse
|
17
|
Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 1993; 57:595-604. [PMID: 8246841 PMCID: PMC372927 DOI: 10.1128/mr.57.3.595-604.1993] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products.
Collapse
Affiliation(s)
- A E Desjardins
- Mycotoxin Research Unit, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | |
Collapse
|
18
|
McCormick SP, Taylor SL, Plattner RD, Beremand MN. Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol 1990; 56:702-6. [PMID: 2317042 PMCID: PMC183409 DOI: 10.1128/aem.56.3.702-706.1990] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liquid cultures of a mutant strain of Fusarium sporotrichioides NRRL 3299 that accumulates trichodiene rather than T-2 toxin converted tricho-9-ene-2 alpha,3 alpha,11 alpha-triol, trichotriol (tricho-10-ene-2 alpha,3 alpha,9 alpha-triol), tricho-10-ene-2 alpha,3 alpha,9 beta-triol, 3 alpha-hydroxytrichothecene, and 3 alpha-acetoxytrichothecene to T-2 toxin. Other possible oxygenated precursors of T-2 toxin, including trichodiol (tricho-10-ene-2 alpha,9 alpha-diol), trichothecene, 4 alpha-hydroxytrichothecene, and 15-hydroxytrichothecene, were not metabolized. The results indicate that in the biosynthesis of T-2 toxin by F. sporotrichioides, (i) oxygenation at C-3 occurs prior to the second cyclization, (ii) this second cyclization involves two steps that may be nonenzymatic, and (iii) oxidation at C-3 precedes that at C-4 or C-15.
Collapse
Affiliation(s)
- S P McCormick
- Northern Regional Research Center, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | | | |
Collapse
|
19
|
Kim KH, Lee YW, Mirocha CJ, Pawlosky RJ. Isoverrucarol production by Fusarium oxysporum CJS-12 isolated from corn. Appl Environ Microbiol 1990; 56:260-3. [PMID: 2310181 PMCID: PMC183300 DOI: 10.1128/aem.56.1.260-263.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Isoverrucarol (3,15-dihydroxy-12,13-epoxy-trichothec-9-ene) was isolated and purified from wheat cultures of a toxic strain of Fusarium oxysporum CJS-12. The toxin was characterized by thin-layer chromatography, gas chromatography-mass spectrometry, and 1H and 13C nuclear magnetic resonance spectrometry. Isoverrucarol caused toxic effects in rats, including loss of appetite, bodily weakness, severe mucosae of the stomach, and death, when administered orally at 10 and 20 mg/kg of body weight. The toxin also caused a definite dermatitic reaction of epidermis and an edematic-necrotic response of the dermis.
Collapse
Affiliation(s)
- K H Kim
- Department of Agricultural Biology, Seoul National University, Suwon, Korea
| | | | | | | |
Collapse
|
20
|
McCormick SP, Taylor SL, Plattner RD, Beremand MN. New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides. Appl Environ Microbiol 1989; 55:2195-9. [PMID: 2802605 PMCID: PMC203055 DOI: 10.1128/aem.55.9.2195-2199.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutant strains of Fusarium sporotrichioides NRRL 3299 deficient in the ability to synthesize T-2 toxin were examined on solid rice medium. Five novel alicyclic trichothecenes were isolated: 11 alpha-hydroxytrichodiene; tricho-9-ene-2 alpha,3 alpha,11 alpha-triol; tricho-9-ene-2 alpha,3 alpha,8 alpha,11 alpha-tetraol; tricho-9-ene-2 alpha,3 alpha,8 beta,11 alpha-tetraol; and tricho-9-ene-2 alpha,3 alpha,11 alpha,16-tetraol.
Collapse
Affiliation(s)
- S P McCormick
- Northern Regional Research Center, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | | | |
Collapse
|