1
|
Gasser MT, Liu A, Altamia M, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587001. [PMID: 38585906 PMCID: PMC10996688 DOI: 10.1101/2024.03.27.587001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Annie Liu
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Marvin Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Bryan R. Brensinger
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Sarah L. Brewer
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Ron Flatau
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | | | - Claire Marie Filone
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Dan L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| |
Collapse
|
2
|
Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci Rep 2019; 9:16542. [PMID: 31719545 PMCID: PMC6851124 DOI: 10.1038/s41598-019-52675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Fibrobacter succinogenes S85, isolated from the rumen of herbivores, is capable of robust lignocellulose degradation. However, the mechanism by which it achieves this is not fully elucidated. In this study, we have undertaken the most comprehensive quantitative proteomic analysis, to date, of the changes in the cell envelope protein profile of F. succinogenes S85 in response to growth on cellulose. Our results indicate that the cell envelope proteome undergoes extensive rearrangements to accommodate the cellulolytic degradation machinery, as well as associated proteins involved in adhesion to cellulose and transport and metabolism of cellulolytic products. Molecular features of the lignocellulolytic enzymes suggest that the Type IX secretion system is involved in the translocation of these enzymes to the cell envelope. Finally, we demonstrate, for the first time, that cyclic-di-GMP may play a role in mediating catabolite repression, thereby facilitating the expression of proteins involved in the adhesion to lignocellulose and subsequent lignocellulose degradation and utilisation. Understanding the fundamental aspects of lignocellulose degradation in F. succinogenes will aid the development of advanced lignocellulosic biofuels.
Collapse
Affiliation(s)
- Mahendra P Raut
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Narciso Couto
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.,Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Esther Karunakaran
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Catherine A Biggs
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
de Paula RG, Antoniêto ACC, Nogueira KMV, Ribeiro LFC, Rocha MC, Malavazi I, Almeida F, Silva RN. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:146. [PMID: 31223336 PMCID: PMC6570945 DOI: 10.1186/s13068-019-1487-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Trichoderma reesei is the most important industrial producer of lignocellulolytic enzymes. These enzymes play an important role in biomass degradation leading to novel applications of this fungus in the biotechnology industry, specifically biofuel production. The secretory pathway of fungi is responsible for transporting proteins addressed to different cellular locations involving some cellular endomembrane systems. Although protein secretion is an extremely efficient process in T. reesei, the mechanisms underlying protein secretion have remained largely uncharacterized in this organism. RESULTS Here, we report for the first time the isolation and characterization of T. reesei extracellular vesicles (EVs). Using proteomic analysis under cellulose culture condition, we have confidently identified 188 vesicular proteins belonging to different functional categories. Also, we characterized EVs production using transmission electron microscopy in combination with light scattering analysis. Biochemical assays revealed that T. reesei extracellular vesicles have an enrichment of filter paper (FPase) and β-glucosidase activities in purified vesicles from 24, 72 and 96, and 72 and 96 h, respectively. Furthermore, our results showed that there is a slight enrichment of small RNAs inside the vesicles after 96 h and 120 h, and presence of hsp proteins inside the vesicles purified from T. reesei grown in the presence of cellulose. CONCLUSIONS This work points to important insights into a better understanding of the cellular mechanisms underlying the regulation of cellulolytic enzyme secretion in this fungus.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| |
Collapse
|
4
|
Enhancement the Cellulase Activity Induced by Endophytic Bacteria Using Calcium Nanoparticles. Curr Microbiol 2019; 76:346-354. [DOI: 10.1007/s00284-018-1614-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
5
|
Neumann AP, Weimer PJ, Suen G. A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:295. [PMID: 30386432 PMCID: PMC6204037 DOI: 10.1186/s13068-018-1290-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cellulose is the most abundant biological polymer on earth, making it an attractive substrate for the production of next-generation biofuels and commodity chemicals. However, the economics of cellulose utilization are currently unfavorable due to a lack of efficient methods for its hydrolysis. Fibrobacter succinogenes strain S85, originally isolated from the bovine rumen, is among the most actively cellulolytic mesophilic bacteria known, producing succinate as its major fermentation product. In this study, we examined the transcriptome of F. succinogenes S85 grown in continuous culture at several dilution rates on cellulose, cellobiose, or glucose to gain a system-level understanding of cellulose degradation by this bacterium. RESULTS Several patterns of gene expression were observed for the major cellulases produced by F. succinogenes S85. A large proportion of cellulase genes were constitutively expressed, including the gene encoding for Cel51A, the major cellulose-binding endoglucanase produced by this bacterium. Moreover, other cellulase genes displayed elevated expression during growth on cellulose relative to growth on soluble sugars. Growth rate had a strong effect on global gene expression, particularly with regard to genes predicted to encode carbohydrate-binding modules and glycoside hydrolases implicated in hemicellulose degradation. Expression of hemicellulase genes was tightly regulated, with these genes displaying elevated expression only during slow growth on soluble sugars. Clear differences in gene expression were also observed between adherent and planktonic populations within continuous cultures growing on cellulose. CONCLUSIONS This work emphasizes the complexity of the fiber-degrading system utilized by F. succinogenes S85, and reinforces the complementary role of hemicellulases for accessing cellulose by these bacteria. We report for the first time evidence of global differences in gene expression between adherent and planktonic populations of an anaerobic bacterium growing on cellulose at steady state during continuous cultivation. Finally, our results also highlight the importance of controlling for growth rate in investigations of gene expression.
Collapse
Affiliation(s)
- Anthony P. Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Paul J. Weimer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Agricultural Research Service, United States Department of Agriculture, Madison, WI USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
6
|
Nogueira KMV, Costa MDN, de Paula RG, Mendonça-Natividade FC, Ricci-Azevedo R, Silva RN. Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose. BMC Microbiol 2015; 15:195. [PMID: 26424592 PMCID: PMC4590280 DOI: 10.1186/s12866-015-0536-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Background The signaling second messenger cyclic AMP (cAMP) regulates many aspects of cellular function in all organisms. Previous studies have suggested a role for cAMP in the regulation of gene expression of cellulolytic enzymes in Trichoderma reesei (anamorph of Hypocrea jecorina). Methods The effects of cAMP in T. reesei were analyzed through both activity and expression of cellulase, intracellular cAMP level measurement, western blotting, indirect immunofluorescence and confocal microscopy. Results To elucidate the involvement of cAMP in the cellulase expression, we analyzed the growth of the mutant strain ∆acy1 and its parental strain QM9414 in the presence of the inducers cellulose, cellobiose, lactose, or sophorose, and the repressor glucose. Our results indicated that cAMP regulates the expression of cellulase in a carbon source-dependent manner. The expression cel7a, and cel6a genes was higher in the presence of sophorose than in the presence of cellulose, lactose, cellobiose, or glucose. Moreover, intracellular levels of cAMP were up to four times higher in the presence of sophorose compared to other carbon sources. Concomitantly, our immunofluorescence microscopy and western blot data suggest that in the presence of sophorose, cAMP may regulate secretion of cellulolytic enzymes in T. reesei. Conclusions These results allow us to better understand the role of cAMP and expand our knowledge on the signal transduction pathways involved in the regulation of cellulase expression in T. reesei. Finally, our data may help develop new strategies to improve the expression of cel7a and cel6a genes, and therefore, favor their application in several biotechnology fields. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0536-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Mariana do Nascimento Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Flávia Costa Mendonça-Natividade
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Rafael Ricci-Azevedo
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:124. [PMID: 26300971 PMCID: PMC4545925 DOI: 10.1186/s13068-015-0302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lignocellulase hypersecretion has been achieved in industrial fungal workhorses such as Trichoderma reesei, but the underlying mechanism associated with this process is not well understood. Although previous comparative genomic studies have revealed that the mutagenic T. reesei strain RUT-C30 harbors hundreds of mutations compared with its parental strain QM6a, how these mutations actually contribute to the hypersecretion phenotype remains to be elucidated. RESULTS In this study, we systematically screened gene knockout (KO) mutants in the cellulolytic fungus Neurospora crassa, which contains orthologs of potentially defective T. reesei RUT-C30 mutated genes. Of the 86 deletion mutants screened in N. crassa, 12 exhibited lignocellulase production more than 25% higher than in the wild-type (WT) strain and 4 showed nearly 25% lower secretion. We observed that the deletion of Ncap3m (NCU03998), which encodes the μ subunit of the adaptor protein 3 (AP-3) complex in N. crassa, led to the most significant increase in lignocellulase secretion under both Avicel and xylan culture conditions. Moreover, strains lacking the β subunit of the AP-3 complex, encoded by Ncap3b (NCU06569), had a similar phenotype to ΔNcap3m, suggesting that the AP-3 complex is involved in lignocellulase secretion in N. crassa. We also found that the transcriptional abundance of major lignocellulase genes in ΔNcap3m was maintained at a relatively higher level during the late stage of fermentation compared with the WT, which might add to the hypersecretion phenotype. Finally, we found that importation of the T. reesei ap3m ortholog Trap3m into ΔNcap3m can genetically restore secretion of lignocellulases to normal levels, which suggests that the effect of the AP-3 complex on lignocellulase secretion is conserved in cellulolytic ascomycetes. CONCLUSIONS Using the model cellulolytic fungus N. crassa, we explored potential hypersecretion-related mutations in T. reesei strain RUT-C30. Through systematic genetic screening of 86 corresponding orthologous KO mutants in N. crassa, we identified several genes, particularly those encoding the AP-3 complex that contribute to lignocellulase secretion. These findings will be useful for strain improvement in future lignocellulase and biomass-based chemical production.
Collapse
Affiliation(s)
- Xue Pei
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Feiyu Fan
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yong Chen
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Shihong Zhang
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
| | - Chaoguang Tian
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
8
|
Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Arch Microbiol 2014; 197:269-76. [PMID: 25354721 DOI: 10.1007/s00203-014-1049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Fibrobacter succinogenes is one of the most pivotal fibrolytic bacterial species in the rumen. In a previous study, we confirmed enhancement of fiber digestion in a co-culture of F. succinogenes S85 with non-fibrolytic ruminal strains R-25 and/or Selenomonas ruminantium S137. In the present study, mRNA expression level of selected functional genes in the genome of F. succinogenes S85 was monitored by real-time RT-PCR. Growth profile of F. succinogenes S85 was similar in both the monoculture and co-cultures with non-fibrolytics. However, expression of 16S rRNA gene of F. succinogenes S85 in the co-culture was higher (P < 0.01) than that of the monoculture. This finding suggests that metabolic activity of F. succinogenes S85 was enhanced by coexistence with strains R-25 and/or S. ruminantium S137. The mRNA expression of fumarate reductase and glycoside hydrolase genes was up-regulated (P < 0.01) when F. succinogenes S85 was co-cultured with non-fibrolytics. These results indicate the enhancement of succinate production and fiber hydrolysis by F. succinogenes S85 in co-cultures of S. ruminantium and R-25 strains.
Collapse
|
9
|
Yan S, Wu G. Secretory pathway of cellulase: a mini-review. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:177. [PMID: 24295495 PMCID: PMC4177124 DOI: 10.1186/1754-6834-6-177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/19/2013] [Indexed: 05/07/2023]
Abstract
Cellulase plays an important role in modern industry and holds great potential in biofuel production. Many different types of organisms produce cellulase, which go through secretory pathways to reach the extracellular space, where enzymatic reactions take place. Secretory pathways in various cells have been the focus of many research fields; however, there are few studies on secretory pathways of cellulases in the literature. It is therefore necessary and important to review the current knowledge on the secretory pathways of cellulases. In this mini-review, we address the subcellular locations of cellulases in different organisms, discuss the secretory pathways of cellulases in different organisms, and examine the secretory mechanisms of cellulases. These sections start with a description of general secreted proteins, advance to the situation of cellulases, and end with the knowledge of cellulases, as documented in UniProt Knowledgebase (UniProtKB). Finally, gaps in existing knowledge are highlighted, which may shed light on future studies for biofuel engineering.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- DreamSciTech, Apt 207, Zhencaili 26, Zhujiang Road, Hexi District, Tianjin, 300222, China
| |
Collapse
|
10
|
Abstract
Analysis of 16S ribosomal RNA (rRNA)-encoding gene sequences from gut microbial ecosystems reveals bewildering genetic diversity. Some metabolic functions, such as glucose utilisation, are fairly widespread throughout the genetic spectrum. Others, however, are not. Despite so many phylotypes being present, single species or perhaps only two or three species often carry out key functions. Among ruminal bacteria, only three species can break down highly structured cellulose, despite the prevalence and importance of cellulose in ruminant diets, and one of those species, Fibrobacter succinogenes, is distantly related to the most abundant ruminal species. Fatty acid biohydrogenation in the rumen, particularly the final step of biohydrogenation of C18 fatty acids, stearate formation, is achieved only by a small sub-group of bacteria related to Butyrivibrio fibrisolvens. Individuals who lack Oxalobacter formigenes fail to metabolise oxalate and suffer kidney stones composed of calcium oxalate. Perhaps the most celebrated example of the difference a single species can make is the 'mimosine story' in ruminants. Mimosine is a toxic amino acid found in the leguminous plant, Leucaena leucocephala. Mimosine can cause thyroid problems by being converted to the goitrogen, 3-hydroxy-4(1H)-pyridone, in the rumen. Observations that mimosine-containing plants were toxic to ruminants in some countries but not others led to the discovery of Synergistes jonesii, which metabolises 3-hydroxy-4(1H)-pyridone and protects animals from toxicity. Thus, despite the complexities indicated by molecular microbial ecology and genomics, it should never be forgotten that gut communities contain important metabolic niches inhabited by species with highly specific metabolic capability.
Collapse
|
11
|
Fukuma N, Koike S, Kobayashi Y. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85. FEMS Microbiol Lett 2012; 336:17-25. [PMID: 22849722 DOI: 10.1111/j.1574-6968.2012.02649.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 11/28/2022] Open
Abstract
In a previous study, we reported the ecological significance of uncultured bacterial group U2 in the rumen. In this study, the involvement of a recently cultured group U2 bacterium, strain R-25, in fiber digestion was tested in coculture with the fibrolytic bacterium Fibrobacter succinogenes S85. Dry matter (DM) digestion, growth and metabolites were examined in culture using rice straw as the carbon source. Although strain R-25 did not digest rice straw in monoculture, coculture of strain R-25 and F. succinogenes S85 showed enhanced DM digestion compared with that for F. succinogenes S85 monoculture (36.9 ± 0.6% vs. 32.8 ± 1.3%, P < 0.05). Growth of strain R-25 and production of the main metabolites, d-lactate (strain R-25) and succinate (F. succinogenes S85), were enhanced in the coculture. Enzyme assay showed increased activities of carboxymethylcellulase and xylanase in coculture of strain R-25 and F. succinogenes S85. Triculture including strain R-25, F. succinogenes S85 and Selenomonas ruminantium S137 showed a further increase in DM digestion (41.8 ± 0.8%, P < 0.05) with a concomitant increase in propionate, produced from the conversion of d-lactate and succinate. These results suggest that the positive interaction between strains R-25 and F. succinogenes S85 causes increased rice straw digestion.
Collapse
Affiliation(s)
- Naoki Fukuma
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
12
|
|
13
|
Miron J, Forsberg CW. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 2007; 4:35-43. [PMID: 16887622 DOI: 10.1006/anae.1997.0132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1997] [Accepted: 10/31/1997] [Indexed: 11/22/2022]
Abstract
A spontaneous adhesion-defective mutant (DR7-M) of Fibrobacter intestinalis DR7 was isolated which was capable of growing on glucose and cellobiose, but impaired in its capacity to degrade cellulose. Levels of enzyme activities were determined in solubilized fractions of DR7 and DR7-M. Total endoglucanases and xylanase activity values of parent DR7 fractions were 2.84 and 1.85 folds higher than those of the mutant, and were distributed mainly in the bacterial envelope fractions, with some activity also found in the extracellular fluid. In a separate assay, measurement of the enzymatic activity bound to cellulose showed that a portion of the endoglucanase activity bound to cellulose while most xylanase activity did not bind. Notwithstanding, the wild type DR7 cells had 26-fold higher total activities of cellulose-degrading enzymes than the mutant, and 96% of its activity was exclusively located in outer membrane and periplasm fractions. In the mutant, the lower cellulose degrading enzymes activity was located only in the extracellular fluid. Most of the cellulose degrading enzymes activity of DR7 had the capability to bind to cellulose. SDS-page electrophoresis of outer membrane and periplasm cell fractions showed that DR7 and DR7-M possess similar molecular weight (MW) profiles but different quantities of 16 cellulose-binding-proteins (CBPs) in the MW range of 36 up to 225 kDa. Zymogram analysis with soluble substrates, either carboxymethylcellulose or soluble xylan, following SDS-page of DR7 and DR7-M fractions, suggested that CBPs of approximate MW 120, 110, 100, 90, 70 and 40 kDa have endoglucanase activity, and that CBPs of all fractions lack any xylanase activity.
Collapse
Affiliation(s)
- J Miron
- Metabolic Unit, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | |
Collapse
|
14
|
Koike S, Pan J, Kobayashi Y, Tanaka K. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J Dairy Sci 2003; 86:1429-35. [PMID: 12741567 DOI: 10.3168/jds.s0022-0302(03)73726-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stems of orchardgrass hay in nylon bags were incubated in the rumens of three ruminally fistulated sheep to monitor the rate and extent of fiber attachment by the representative ruminal cellulolytic bacteria via competitive polymerase chain reaction. After incubation for 5 min, the numbers of Fibrobacter succinogenes and the two ruminococcal species attached to stems were 10(5) and 10(4)/g dry matter (DM) of stem, respectively. At 10 min, the numbers of all three species attached to stems increased 10-fold. Thereafter, attached cell numbers of the three species gradually increased and peaked at 24 h (10(9)/g DM for F. succinogenes and 10(7)/g DM for Ruminococcus flavefaciens) or 48 h (10(6)/g DM for Ruminococcus albus). On the other hand, cell numbers of all three species in the whole digesta were constant over 24 h. Changes in the rate of in sacco neutral detergent fiber disappearance of hay stem, which showed a linear increase up to 96 h, were not synchronized with changes in cellulolytic bacterial mass. These results suggest that sufficient numbers of cells of the three cellulolytic species to move to new plant fragments are present at the start of incubation, the initial attachment to new plant matter is mostly accomplished within 10 min and then bacterial growth and fibrolytic action follow. F. succinogenes was most dominant, both in the whole rumen digesta and on the suspended hay stems, demonstrating the ecological and functional significance of this species in ruminal fiber digestion.
Collapse
Affiliation(s)
- S Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
15
|
Mitsumori M, Xu LM, Kajikawa H, Kurihara M. Properties of cellulose-binding modules in endoglucanase F from Fibrobacter succinogenes S85 by means of surface plasmon resonance. FEMS Microbiol Lett 2002; 214:277-81. [PMID: 12351243 DOI: 10.1111/j.1574-6968.2002.tb11359.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Properties of the recombinant proteins derived from Fibrobacter succinogenes endoglucanase F (EGF), AD2 and AD4, were characterized using surface plasmon resonance. Because AD2, which contains two reiterated regions, showed stronger affinity to immobilized carboxymethylcellulose (CMC) than did AD4, which contains only the first reiterated region, it has been assumed that the reiterated regions of EGF are cellulose-binding modules. While calcium enhanced the binding of AD2 to the immobilized CMC, it did not enhance the binding of AD4. Moreover, the results obtained from experiments using cellooligosaccharides showed that the binding sites of AD4 and AD2 span approximately four and nine glucosyl units, respectively.
Collapse
Affiliation(s)
- Makoto Mitsumori
- National Institute of Livestock and Grassland Science, Ikenodai 2, Kukizaki, Ibaraki 305-0901, Japan.
| | | | | | | |
Collapse
|
16
|
Kasperowicz A, Míchalowski T. Assessment of the fructanolytic activities in the rumen bacterium Treponema saccharophilum strain S. J Appl Microbiol 2002; 92:140-6. [PMID: 11849338 DOI: 10.1046/j.1365-2672.2002.01519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To characterize the fructose polymer degrading enzymes of rumen bacterium Treponema saccharophilum strain S. METHODS AND RESULTS Conventional methods were used to examine bacterial growth and enzyme activities. Electrophoretic zymogram under native conditions, and thin layer chromatography, were applied to identify and characterize the enzymes. Treponema saccharophilum utilized Timothy grass fructan, inulin and sucrose but not free fructose. Timothy grass fructan was degraded at a significantly higher rate than sucrose and inulin. Two fructanolytic enzymes were found in the soluble, and one in the membrane fraction of bacterial cell extract. The first degraded each mentioned carbohydrate to monosaccharides. The second released oligosaccharides only from Timothy grass fructan. CONCLUSIONS The bacterium T. saccharophilum strain S is capable of synthesizing non-specific beta-fructofuranosidases and 2,6-beta-D-fructan fructanohydrolase. The enzymes are of constitutive character. SIGNIFICANCE AND IMPACT OF THE STUDY It has been stated for the first time that the 2,6-beta-D-fructan fructanohydrolase is synthesized by the rumen bacterium T. saccharophilum. This organism appears to be responsible for grass fructan degradation in the rumen.
Collapse
Affiliation(s)
- A Kasperowicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| | | |
Collapse
|
17
|
Miron J, Jacobovitch J, Bayer EA, Lamed R, Morrison M, Ben-Ghedalia D. Subcellular distribution of glycanases and related components in Ruminococcus albus SY3 and their role in cell adhesion to cellulose. J Appl Microbiol 2001; 91:677-85. [PMID: 11576305 DOI: 10.1046/j.1365-2672.2001.01434.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To compare the subcellular distribution of glycanase-related components between wild-type Ruminococcus albus SY3 and an adhesion-defective mutant, to identify their possible contribution to the adhesion process, and to determine their association with cellulosome-like complexes. METHODS AND RESULTS Cell fractionation revealed that most of the cellulases and xylanases were associated with capsular and cell-wall fractions. SDS-PAGE and gel filtration indicated that most of the bacterial enzyme activity was not integrated into cellulosome-like complexes. The adhesion-defective mutant produced significantly less (5- to 10-fold) overall glycanase activity, and the 'true cellulase activity' appeared to be entirely confined to the cell membrane fractions. Antibodies specific for the cellulosomal scaffoldin of Clostridium thermocellum recognized a single 240 kDa band in R. albus SY3. CONCLUSIONS The adhesion-defective mutant appeared to be blocked in exocellular transport of enzymes involved in true cellulase activity. A potential cellulosomal scaffoldin candidate was identified in R. albus SY3. SIGNIFICANCE AND IMPACT OF THE STUDY Several glycanase-related proteins and more than one mechanism appear to be involved in the adhesion of R. albus SY3 to cellulose.
Collapse
Affiliation(s)
- J Miron
- Metabolic Unit, The Volcani Center, Bet Dagan, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Béra-Maillet C, Gaudet G, Forano E. Endoglucanase activity and relative expression of glycoside hydrolase genes of Fibrobacter succinogenes S85 grown on different substrates. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:77-85. [PMID: 11087943 DOI: 10.1016/s0167-4838(00)00194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.
Collapse
Affiliation(s)
- C Béra-Maillet
- Laboratoire de Microbiologie, INRA, Centre de Clermont-Ferrand-Theix, 63122, Saint-Genès-Champanelle, France
| | | | | |
Collapse
|
19
|
Béra-Maillet C, Broussolle V, Pristas P, Girardeau JP, Gaudet G, Forano E. Characterisation of endoglucanases EGB and EGC from Fibrobacter succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:191-202. [PMID: 10669785 DOI: 10.1016/s0167-4838(99)00255-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzymatic properties of two endoglucanases from Fibrobacter succinogenes, EGB and EGC, were analysed. EGB and EGC were purified from recombinant Escherichia coli cultures expressing their gene. The failure of purification of EGB by classical techniques led us to produce antipeptide antibodies that allowed immunopurification of the protein from E. coli as well as its detection in F. succinogenes cultures. Synthetic peptides were selected from the predicted primary structure of EGB, linked to bovine serum albumin and used as immunogens to obtain specific antibodies. One of the polyclonal antipeptide antisera was used to purify EGB. EGC was purified by affinity chromatography with Ni-NTA resin. The endo mode of action of the two enzymes on carboxymethyl-cellulose was different. The values of K(m) and V(max) were respectively 13.6 mg/ml and 46 micromol/min mg protein for EGB, and 7 mg/ml and 110 micromol/min mg protein for EGC. The reactivity of the antipeptide and the anti-EGC sera with F. succinogenes proteins of molecular mass different from that of EGB and EGC produced in E. coli suggested post-translational modification of the two enzymes in F. succinogenes cultures. Expression of endB and endC genes in F. succinogenes was confirmed by RT-PCR.
Collapse
Affiliation(s)
- C Béra-Maillet
- Laboratoire de Microbiologie, INRA, Centre de Clermont-Ferrand-Theix, 63122, Saint-Genès-Champanelle, France
| | | | | | | | | | | |
Collapse
|
20
|
Mitsumori M, Minato H. Identification of the cellulose-binding domain of Fibrobacter succinogenes endoglucanase F. FEMS Microbiol Lett 2000; 183:99-103. [PMID: 10650209 DOI: 10.1111/j.1574-6968.2000.tb08940.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cellulose-binding domain (CBD) of Fibrobacter succinogenes endoglucanase F (EGF) has been determined. The gene encoding EGF (celF) and its derivatives were expressed in Escherichia coli. We were able to obtain eight recombinant proteins and examine their cellulose-binding ability and endoglucanase activity. Because four recombinant proteins, which contain the first N-terminal reiterated region of EGF, bound to cellulose, the region has been identified as the CBD. Although the CBD did not show significant sequence similarity with any other CBDs, it did show significant similarity with a part of endoglucanase J (CelJ) of Clostridium thermocellum F1. Moreover, a large part of the C-terminal catalytic region of EGF showed sequence similarity with alpha-L-arabinofuranosidases of glycosyl hydrolase family 51.
Collapse
Affiliation(s)
- M Mitsumori
- National Institute of Animal Industry, Tsukuba Norindanchi, Ibaraki, Japan.
| | | |
Collapse
|
21
|
Kuhad RC, Singh A, Eriksson KE. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 57:45-125. [PMID: 9204751 DOI: 10.1007/bfb0102072] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of natures most important biological processes is the degradation of lignocellulosic materials to carbon dioxide, water and humic substances. This implies possibilities to use biotechnology in the pulp and paper industry and consequently, the use of microorganisms and their enzymes to replace or supplement chemical methods is gaining interest. This chapter describes the structure of wood and the main wood components, cellulose, hemicelluloses and lignins. The enzyme and enzyme mechanisms used by fungi and bacteria to modify and degrade these components are described in detail. Techniques for how to assay for these enzyme activities are also described. The possibilities for biotechnology in the pulp and paper industry and other fiber utilizing industries based on these enzymes are discussed.
Collapse
Affiliation(s)
- R C Kuhad
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
22
|
Azachi M, Henis Y, Shapira R, Oren A. The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1249-1254. [PMID: 8704965 DOI: 10.1099/13500872-142-5-1249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the mechanism of formaldehyde tolerance in Gram-negative bacteria, two formaldehyde-tolerant strains, Escherichia coli VU3695 and Halomonas sp. MAC (DSM 7328), and formaldehyde-sensitive revertants obtained by ethidium bromide or novobiocin treatment were studied. The presence of high levels of formaldehyde dehydrogenase activity alone proved insufficient to confer tolerance to high formaldehyde concentrations, as shown by high activity displayed by formaldehyde-sensitive revertants of Halomonas MAC. Moreover, formaldehyde-tolerant strains also proved to be tolerant to high concentrations of acetaldehyde and glutaraldehyde, which are not oxidized by formaldehyde dehydrogenase. Treatment with sublethal concentrations of EDTA rendered the resistant strains highly sensitive to formaldehyde without affecting the activity of formaldehyde dehydrogenase. Comparison of the outer membrane proteins of formaldehyde-resistant strains with those of their sensitive revertants showed the presence of at least one additional high molecular mass protein in the tolerant strains. It is concluded that formaldehyde tolerance in the bacteria studied depends on the composition and structure of the outer membrane.
Collapse
Affiliation(s)
- Malkit Azachi
- Department of Plant Pathology and Microbiology, and Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yigal Henis
- Department of Plant Pathology and Microbiology, and Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Roni Shapira
- Department of Biochemistry and Food Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Aharon Oren
- Division of Microbial and Molecular Ecology, Institute of Life Sciences and Moshe Shilo Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Gong J, Egbosimba EE, Forsberg CW. Cellulose-binding proteins of Fibrobacter succinogenes and the possible role of a 180-kDa cellulose-binding glycoprotein in adhesion to cellulose. Can J Microbiol 1996. [DOI: 10.1139/m96-062] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrobacter succinogenes possesses seven cellulose-binding proteins (CBPs) of 40, 45, 50, 120, 180, 220, and 240 kDa. The 120-, 180-, 220-, and 240-kDa proteins were present in the outer membrane (OM), while the 40-, 45-, 50-, and 120-kDa proteins were either periplasmic or peripheral membrane proteins. The 120-kDa CBP, which was identified as endoglucanase 2, was a major component in both the OM and periplasm. Zymogram analysis for glucanases showed that the major membrane-associated CBPs, with the exception of endoglucanase 2, lacked endoglucanase activity. Affinity-purified antibodies against the 180-kDa CBP cross-reacted strongly with numerous cell envelope proteins of higher and lower molecular mass, including the previously characterized chloride-stimulated cellobiosidase. Treatment of the 180-kDa CBP and cell envelope proteins with periodate resulted in almost complete loss of antibody binding, suggesting that they possessed a common epitope that was carbohydrate in nature. Immunogold labelling of whole cells using antibodies against the 180-kDa CBP demonstrated that either the 180-kDa CBP or related proteins with a cross-reactive epitope were located at the cell surface. These epitopes were distributed uniformly on cells not bound to cellulose but congregated on the cell surface at sites of adhesion of cells to cellulose. Antibodies to the 180-kDa protein caused 62% inhibition of binding of F. succinogenes to crystalline cellulose, which provides evidence that either the 180-kDa CBP and (or) other related cross-reactive surface proteins have a role in adhesion to cellulose.Key words: cellulose, adhesin, adhesion, binding, Fibrobacter, succinogenes, rumen.
Collapse
|
24
|
Mittendorf V, Thomson JA. Transcriptional induction and expression of the endoglucanase celA gene from a ruminal Clostridium sp. ("C. longisporum"). J Bacteriol 1995; 177:4805-8. [PMID: 7642509 PMCID: PMC177248 DOI: 10.1128/jb.177.16.4805-4808.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Northern (RNA) blot analysis of RNA from Clostridium sp. revealed induction of transcription of the celA gene when barley beta-glucan was used as carbon source, while no celA mRNA was detected after growth on cellobiose. Western blots (immunoblots), prepared by using a rabbit antiserum raised against CelA protein purified from Escherichia coli, revealed the extracellular location of CelA in Clostridium sp. Despite the absence of detectable celA mRNA, significant quantities of CelA were detected in the culture supernatant during growth on cellobiose. This finding indicated a low constitutive expression of celA. A 6.7-fold increase in the total beta-glucanase specific activity in the extracellular fraction was observed during growth on beta-glucan. The transcriptional start site of celA was mapped by extension and was found to be the same in Clostridium sp. and in E. coli expressing the cloned celA gene. A consensus E. coli -10 promoter region (AATAAT), but not a -35 promoter region, could be identified. Two direct repeats (TATTGAATTTAT) separated by 15 nucleotides flank the region where the consensus -35 promoter regions would have been. The size of the celA mRNA transcript corresponded with the size of the open reading frame. A potential stem-loop structure was found 18 nucleotides downstream of the 3' stop codon, which could be responsible for termination of transcription.
Collapse
Affiliation(s)
- V Mittendorf
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
25
|
Affiliation(s)
- P Tomme
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
26
|
Inhibition of the exo-β-1,4-glucanase from Ruminococcus flavefaciens FD-1 by a specific monoclonal antibody. Enzyme Microb Technol 1994. [DOI: 10.1016/0141-0229(94)90102-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Gong J, Forsberg CW. Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase. J Bacteriol 1993; 175:6810-21. [PMID: 8226622 PMCID: PMC206804 DOI: 10.1128/jb.175.21.6810-6821.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose. The cytoplasmic membrane (CM) was isolated from OM-depleted cells after disruption with a French press. The OM and membrane vesicles isolated from the extracellular culture fluid of cellulose-grown cells had a higher density, much lower succinate dehydrogenase activity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles different from those of the CM. The OM from both glucose- and cellulose-grown cells and the extracellular membrane vesicles from cellulose-grown cultures exhibited higher endoglucanase, xylanase, and acetylesterase activities than the CM and other cell fractions. Endoglucanase 2 was absent from the isolated OM fractions of glucose- and cellulose-grown cells and from the extracellular membrane vesicles of cellulose-grown cells but was present in the CM and intracellular glycogen granule fractions, while endoglucanase 3 was enriched in the OM. Cellobiosidase was located primarily in the periplasm as previously reported, while cellobiase was mainly present in the glycogen granule fraction of glucose-grown cells and in a nongranular glycogen and CM complex in cellulose-grown cells. The cellobiase was not eluted from glycogen granules by cellobiose, maltose, and maltotriose nor from either the granules or the cell membranes by nondenaturing detergents but was eluted from both glycogen granules and cell membranes by high concentrations of salts. The eluted cellobiase rebound almost quantitatively when diluted and mixed with purified glycogen granules but exhibited a low affinity for Avicel cellulose. Thus, we have documented a method for isolation of OM from F. succinogenes, identified the OM origin of the extracellular membrane vesicles, and located glycanases and cellobiase in membrane and glycogen fractions.
Collapse
Affiliation(s)
- J Gong
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
28
|
Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 1993; 175:7056-65. [PMID: 7693655 PMCID: PMC206833 DOI: 10.1128/jb.175.21.7056-7065.1993] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We screened members of a new genus of grass-associated diazotrophs (Azoarcus spp.) for the presence of cellulolytic enzymes. Out of five Azoarcus strains representing different species, only in the endorhizosphere isolate BH72, which is also capable of invading grass roots, was significant endoglucanase activity, in addition to beta-glucosidase and cellobiohydrolase activity, present. Reducing sugars were readily released from medium-viscosity carboxymethylcellulose (CMC), but neither CMC, cellulose filter strips, Avicel, cellobiose, nor D-glucose served as the sole carbon source for growth of Azoarcus spp. Clones from a plasmid library of strain BH72 expressed all three enzymes in Escherichia coli, apparently not from their own promoter. According to restriction endonuclease mapping and subclone analysis, beta-glucosidase and cellobiohydrolase activities were localized on a single 2.6-kb fragment not physically linked to a 1.45-kb fragment from which endoglucanase (egl) was expressed. Two isoenzymes of endoglucanase probably resulting from proteolytic cleavage had pI values of 6.4 and 6.1 and an apparent molecular mass of approximately 36 kDa. Cellobiohydrolase and beta-glucosidase activity were conferred by one enzyme 41 kDa in size with a pI of 5.4, which we classified as an unspecific exoglycanase (exg) according to substrate utilization and specificity mapping; hydrolysis of various oligomeric substrates differentiated it from endoglucanase, which degraded substituted soluble cellulose derivatives but not microcrystalline cellulose. Both enzymes were not excreted but were associated with the surface of Azoarcus cells. Both activities were only slightly influenced by the presence of CMC or D-glucose in the growth medium but were enhanced by ethanol. egl was located on a large transcript approximately 15 kb in size, which was detectable only in cells grown under microaerobic conditions on N2. Surface-bound exo- and endoglucanases with some unusual regulatory features, detected in this study in a strain which is unable to metabolize cellulose or sugars, might assist Azoarcus sp. strain BH72 in infection of grass roots.
Collapse
MESH Headings
- Blotting, Northern
- Carbohydrate Sequence
- Cellulase/biosynthesis
- Cellulase/isolation & purification
- Cellulase/metabolism
- Cellulose 1,4-beta-Cellobiosidase
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli
- Glucan 1,3-beta-Glucosidase
- Glycoside Hydrolases/isolation & purification
- Glycoside Hydrolases/metabolism
- Gram-Negative Facultatively Anaerobic Rods/enzymology
- Isoelectric Focusing
- Molecular Sequence Data
- Molecular Weight
- Plasmids
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Restriction Mapping
- Transcription, Genetic
- beta-Glucosidase/isolation & purification
- beta-Glucosidase/metabolism
Collapse
|
29
|
Weimer PJ. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microbiol 1993; 160:288-94. [PMID: 8239881 DOI: 10.1007/bf00292079] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014-0.076 h-1) and extracellular pH (6.11-6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentration to response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07-0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04-0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11-0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determine that maintenance coefficient (0.04-0.06 g cellulose/g cells.h) and true growth yield (0.23-0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower mu max on microcrystalline cellulose.
Collapse
Affiliation(s)
- P J Weimer
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, WI 53706
| |
Collapse
|
30
|
Bae HD, McAllister TA, Yanke J, Cheng KJ, Muir AD. Effects of Condensed Tannins on Endoglucanase Activity and Filter Paper Digestion by
Fibrobacter succinogenes
S85. Appl Environ Microbiol 1993; 59:2132-8. [PMID: 16348990 PMCID: PMC182247 DOI: 10.1128/aem.59.7.2132-2138.1993] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of condensed tannins from birdsfoot trefoil (
Lotus corniculatus
L.) on the cellulolytic rumen bacterium
Fibrobacter succinogenes
S85 was examined. Condensed tannins inhibited endoglucanase activity in the extracellular culture fluid, at concentrations as low as 25 μg ml
-1
. In contrast, cell-associated endoglucanase activity increased in concentrations of condensed tannins between 100 and 300 μg ml
-1
. Inhibition of endoglucanase activity in both the extracellular and the cell-associated fractions was virtually complete at 400 μg of condensed tannins ml
-1
. Despite the sharp decline in extracellular endoglucanase activity with increasing concentrations of condensed tannins, filter paper digestion declined only moderately between 0 and 200 μg of condensed tannins ml
-1
. However, at 300 μg ml
-1
, filter paper digestion was dramatically reduced and at 400 μg ml
-1
, almost no filter paper was digested.
F. succinogenes
S85 was seen to form digestive grooves on the surface of cellulose, and at 200 μg ml
-1
, digestive pits were formed which penetrated into the interior of cellulose fibers. Cells grown with condensed tannins (100 to 300 μg ml
-1
) possessed large amounts of surface material, and although this material may have been capsular carbohydrate, its osmiophilic nature suggested that it had arisen from the formation of tannin-protein complexes on the cell surface. The presence of electron-dense extracellular material suggested that similar complexes were formed with extracellular protein.
Collapse
Affiliation(s)
- H D Bae
- Research Station, Agriculture Canada, Lethbridge, Alberta, Canada T1J 4B1, and Research Station, Agriculture Canada, Saskatoon, Saskatchewan, Canada S7N 0X2
| | | | | | | | | |
Collapse
|
31
|
Piwonka E, Firkins J. Effect of Glucose on Fiber Digestion and Particle-Associated Carboxymethylcellulase Activity In Vitro. J Dairy Sci 1993. [DOI: 10.3168/jds.s0022-0302(93)77332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Firkins JL, Bowman JG, Weiss WP, Naderer J. Effects of protein, carbohydrate, and fat sources on bacterial colonization degradation of fiber in vitro. J Dairy Sci 1991; 74:4273-83. [PMID: 1664837 DOI: 10.3168/jds.s0022-0302(91)78622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In trial 1, our objectives were to study effects of different substrates (cellulose, red clover, and orchardgrass) on bacterial colonization and degradation of fiber. To quantitate bacterial colonization, we used 15N as a marker. Use of 15N appeared to underestimate bacterial colonization of cellulose, but it was assumed that relative differences among treatments and across times were accurate. The 15N and carboxymethylcellulase activity techniques gave similar patterns for bacterial colonization with time on purified cellulose but not orchardgrass or red clover; this indicated a higher concentration of cellulolytic versus total bacteria colonizing cellulose. Relatively lower detachment from red clover or orchardgrass than cellulose with time may have been due to selection for different types of microbes that were attached more firmly or were less prone to lysis. In trial 2, replacing cellulose with 30% starch or different protein sources (12% CP) decreased NDF digestion of crystalline cellulose but increased adherent bacterial CP concentration (estimated using 15N) and carboxymethylcellulase activity. The addition of starch and preformed protein may have selected for adherent, noncellulolytic microbes and decreased cellulolysis. The addition of 10% unsaturated or saturated fat did not affect colonization or NDF digestion, perhaps because of the larger surface area of the cellulose dispersing fatty acids more than would occur with more typical substrates. The addition of starch probably increased carboxymethylcellulase activity more than when using purines or 15N. Experiments using pure cultures of bacteria or purified substrates are not necessarily related to those using mixed cultures or natural forages.
Collapse
Affiliation(s)
- J L Firkins
- Department of Dairy Science, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
33
|
Cavicchioli R, Watson K. The involvement of transcriptional read-through from internal promoters in the expression of a novel endoglucanase gene FSendA, from Fibrobacter succinogenes AR1. Nucleic Acids Res 1991; 19:1661-9. [PMID: 2027774 PMCID: PMC333930 DOI: 10.1093/nar/19.7.1661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two distinct mRNA transcripts were synthesized in Escherichia coli during expression of FSendA, an endoglucanase gene from Fibrobacter succinogenes AR1. Expression of FSendA required a ribosomal frameshift between open reading frame 1 (ORF1) and ORF2 to allow contiguous translation of a 453 amino acid protein (1). The primary transcript initiated upstream of ORF1 and the secondary transcript from within ORF1. Both transcripts terminated downstream of ORF2 and termination was essential for endoglucanase expression. Deletion of the primary transcript promoter region allowed read-through of the secondary transcript beyond the terminator region, indicating that a component of the intact FSendA gene allowed efficient transcription termination. The possibility of autogenous regulation by translation products is suggested.
Collapse
Affiliation(s)
- R Cavicchioli
- Department of Biochemistry, Microbiology and Nutrition, University of New England, NSW, Australia
| | | |
Collapse
|
34
|
Huang L, Forsberg CW. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol 1990; 56:1221-8. [PMID: 2339881 PMCID: PMC184386 DOI: 10.1128/aem.56.5.1221-1228.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture. During growth on cellulose, there was no accumulation of soluble carbohydrate. When the growth medium contained either glucose or cellobiose in combination with microcrystalline cellulose, there was a lag in cellulose digestion until all of the soluble sugar had been utilized, suggesting an end product feedback mechanism that affects cellulose digestion. Cl-stimulated cellobiosidase and periplasmic cellodextrinase were produced under all growth conditions tested, indicating constitutive synthesis. Both cellobiosidases were cell associated until the stationary phase of growth, whereas proteins antigenically related to the Cl-stimulated cellobiosidase and a proportion of the endoglucanase were released into the extracellular culture fluid during growth, irrespective of the substrate. Immunoelectron microscopy of cells with a polyclonal antibody to Cl-stimulated cellobiosidase as the primary antibody and 10-nm-diameter gold particles conjugated to goat anti-rabbit antibodies as the second antibody revealed protrusions of the outer surface which were selectively labeled with gold, suggesting that Cl-stimulated cellobiosidase was located on the protrusions. These data support the contention that the protrusions have a role in cellulose hydrolysis; however, this interpretation is complicated by reactivity of the antibodies with a large number of other proteins that possess related antigenic epitopes.
Collapse
Affiliation(s)
- L Huang
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
35
|
Huang L, McGavin M, Forsberg CW, Lam JS, Cheng KJ. Antigenic nature of the chloride-stimulated cellobiosidase and other cellulases of Fibrobacter succinogenes subsp. succinogenes S85 and related fresh isolates. Appl Environ Microbiol 1990; 56:1229-34. [PMID: 1692677 PMCID: PMC184387 DOI: 10.1128/aem.56.5.1229-1234.1990] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Huang
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|