1
|
Cubides D, Guimerà X, Jubany I, Gamisans X. A review: Biological technologies for nitrogen monoxide abatement. CHEMOSPHERE 2023; 311:137147. [PMID: 36347354 DOI: 10.1016/j.chemosphere.2022.137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen oxides (NOx), including nitrogen monoxide (NO) and nitrogen dioxide (NO2), are among the most important global atmospheric pollutants because they have a negative impact on human respiratory health, animals, and the environment through the greenhouse effect and ozone layer destruction. NOx compounds are predominantly generated by anthropogenic activities, which involve combustion processes such as energy production, transportation, and industrial activities. The most widely used alternatives for NOx abatement on an industrial scale are selective catalytic and non-catalytic reductions; however, these alternatives have high costs when treating large air flows with low pollutant concentrations, and most of these methods generate residues that require further treatment. Therefore, biotechnologies that are normally used for wastewater treatment (based on nitrification, denitrification, anammox, microalgae, and combinations of these) are being investigated for flue gas treatment. Most of such investigations have focused on chemical absorption and biological reduction (CABR) systems using different equipment configurations, such as biofilters, rotating reactors, or membrane reactors. This review summarizes the current state of these biotechnologies available for NOx treatment, discusses and compares the use of different microorganisms, and analyzes the experimental performance of bioreactors used for NOx emission control, both at the laboratory scale and in industrial settings, to provide an overview of proven technical solutions and biotechnologies for NOx treatment. Additionally, a comparative assessment of the advantages and disadvantages is performed, and special challenges for biological technologies for NO abatement are presented.
Collapse
Affiliation(s)
- David Cubides
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain; Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain.
| | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| |
Collapse
|
2
|
Dundas CM, Walker DJ, Keitz BK. Tuning Extracellular Electron Transfer by Shewanella oneidensis Using Transcriptional Logic Gates. ACS Synth Biol 2020; 9:2301-2315. [PMID: 32786362 DOI: 10.1021/acssynbio.9b00517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular electron transfer (EET) pathways, such as those in the bacterium Shewanella oneidensis, interface cellular metabolism with a variety of redox-driven applications. However, designer control over EET flux in S. oneidensis has proven challenging because a functional understanding of its EET pathway proteins and their effect on engineering parametrizations (e.g., response curves, dynamic range) is generally lacking. To address this, we systematically altered transcription and translation of single genes encoding parts of the primary EET pathway of S. oneidensis, CymA/MtrCAB, and examined how expression differences affected model-fitted parameters for Fe(III) reduction kinetics. Using a suite of plasmid-based inducible circuits maintained by appropriate S. oneidensis knockout strains, we pinpointed construct/strain pairings that expressed cymA, mtrA, and mtrC with maximal dynamic range of Fe(III) reduction rate. These optimized EET gene constructs were employed to create Buffer and NOT gate architectures that predictably turn on and turn off EET flux, respectively, in response to isopropyl β-D-1-thiogalactopyranoside (IPTG). Furthermore, we found that response functions generated by these logic gates (i.e., EET activity vs inducer concentration) were comparable to those generated by conventional synthetic biology circuits, where fluorescent reporters are the output. Our results provide insight on programming EET activity with transcriptional logic gates and suggest that previously developed transcriptional circuitry can be adapted to predictably control EET flux.
Collapse
Affiliation(s)
- Christopher M. Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David J.F. Walker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Ouyang B, Lu X, Li J, Liu H. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1008-1018. [PMID: 31018416 DOI: 10.1016/j.scitotenv.2019.03.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The evolution of iron minerals under buried conditions is one of the most important processes controlling the mineral composition and heavy metal transportation in sediments. Microbial-mediated reduction plays a critical role in iron mineral transformation in natural environment. This study examined the transformation pathways of iron minerals mediated by bacteria and the changes of associated arsenic species in iron-rich mine tailings. Static and column reactions were designed to monitor variations of minerals and released iron and arsenic, a reactive transport model was simulated to support laboratory results. Laboratory experiments showed that major ferric minerals were preferentially dissolved and reduced by dissimilatory iron-reducing bacteria. The released Fe3+ in fluid promoted oxidative dissolution of pyrite and arsenopyrite, and precipitation of oxides and carbonates. The arsenic released to fluid was inferred to be immobilized by both pristine ferrihydrite and newly formed hydrous ferric oxides via surface complexation. The reaction system maintained a steady-state of iron mineral transformation and arsenic (im)mobilization. In the latter stage of column reactor experiments, continuous reaction and removal of dissolved Fe3+ and Fe2+ destabilized the state, leading to arsenic re-location and eventually rising concentration in fluid. The findings implicate that microbial-mediated iron mineral evolution remarkably influence the natural mineral assemblages and the fate of contaminant transport in the environment, and that deposition of iron oxides is essential in environmental protection and pollution recovery.
Collapse
Affiliation(s)
- Bingjie Ouyang
- Earth Sciences Department, Dartmouth College, HB6105 Fairchild Hall, Hanover, NH 03755, United States; Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Xiancai Lu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Juan Li
- State Key Laboratory for Deposits research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Huan Liu
- State Key Laboratory for Deposits research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
4
|
Chen J, Rosen BP. Organoarsenical Biotransformations by Shewanella putrefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7956-63. [PMID: 27366920 PMCID: PMC4984541 DOI: 10.1021/acs.est.6b00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbes play a critical role in the global arsenic biogeocycle. Most studies have focused on redox cycling of inorganic arsenic in bacteria and archaea. The parallel cycles of organoarsenical biotransformations are less well characterized. Here we describe organoarsenical biotransformations in the environmental microbe Shewanella putrefaciens. Under aerobic growth conditions, S. putrefaciens reduced the herbicide MSMA (methylarsenate or MAs(V)) to methylarsenite (MAs(III)). Even though it does not contain an arsI gene, which encodes the ArsI C-As lyase, S. putrefaciens demethylated MAs(III) to As(III). It cleaved the C-As bond in aromatic arsenicals such as the trivalent forms of the antimicrobial agents roxarsone (Rox(III)), nitarsone (Nit(III)) and phenylarsenite (PhAs(III)), which have been used as growth promoters for poultry and swine. S. putrefaciens thiolated methylated arsenicals, converting MAs(V) into the more toxic metabolite monomethyl monothioarsenate (MMMTAs(V)), and transformed dimethylarsenate (DMAs(V)) into dimethylmonothioarsenate (DMMTAs(V)). It also reduced the nitro groups of Nit(V), forming p-aminophenyl arsenate (p-arsanilic acid or p-AsA(V)), and Rox(III), forming 3-amino-4-hydroxybenzylarsonate (3A4HBzAs(V)). Elucidation of organoarsenical biotransformations by S. putrefaciens provides a holistic appreciation of how these environmental pollutants are degraded.
Collapse
Affiliation(s)
| | - Barry P. Rosen
- Corresponding Author. Phone: (+1) 305-348-0657; fax: (+1) 305-348-0651;
| |
Collapse
|
5
|
Zhou Z, Lin T, Jing G, Lv B, Liu Y. High-efficiency removal of NO x by a novel integrated chemical absorption and two-stage bioreduction process using magnetically stabilized fluidized bed reactors. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5413-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas. Appl Microbiol Biotechnol 2014; 98:8497-512. [PMID: 25149446 DOI: 10.1007/s00253-014-6016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 01/09/2023]
Abstract
Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.
Collapse
|
7
|
Mu A, Boreham C, Leong HX, Haese RR, Moreau JW. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment. Front Microbiol 2014; 5:209. [PMID: 24860559 PMCID: PMC4030138 DOI: 10.3389/fmicb.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/19/2014] [Indexed: 01/08/2023] Open
Abstract
Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event.
Collapse
Affiliation(s)
- Andre Mu
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - Chris Boreham
- Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia ; Geoscience Australia Canberra, NSW, Australia
| | - Henrietta X Leong
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - Ralf R Haese
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| | - John W Moreau
- School of Earth Sciences, Faculty of Science, University of Melbourne Melbourne, VIC, Australia ; Cooperative Research Centre for Greenhouse Gas Technologies Canberra, NSW, Australia
| |
Collapse
|
8
|
Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ. Multi-heme proteins: nature's electronic multi-purpose tool. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:938-48. [PMID: 23558243 DOI: 10.1016/j.bbabio.2013.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
Abstract
While iron is often a limiting nutrient to Biology, when the element is found in the form of heme cofactors (iron protoporphyrin IX), living systems have excelled at modifying and tailoring the chemistry of the metal. In the context of proteins and enzymes, heme cofactors are increasingly found in stoichiometries greater than one, where a single protein macromolecule contains more than one heme unit. When paired or coupled together, these protein associated heme groups perform a wide variety of tasks, such as redox communication, long range electron transfer and storage of reducing/oxidizing equivalents. Here, we review recent advances in the field of multi-heme proteins, focusing on emergent properties of these complex redox proteins, and strategies found in Nature where such proteins appear to be modular and essential components of larger biochemical pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Kathryn D Bewley
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
9
|
Rauschenbach I, Bini E, Häggblom MM, Yee N. Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors. FEMS Microbiol Ecol 2012; 81:156-62. [DOI: 10.1111/j.1574-6941.2012.01351.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ines Rauschenbach
- Department of Biochemistry and Microbiology; School of Environmental and Biological Sciences; Rutgers University; New Brunswick; NJ; USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology; School of Environmental and Biological Sciences; Rutgers University; New Brunswick; NJ; USA
| | - Max M. Häggblom
- Department of Biochemistry and Microbiology; School of Environmental and Biological Sciences; Rutgers University; New Brunswick; NJ; USA
| | - Nathan Yee
- Department of Environmental Sciences; School of Environmental and Biological Sciences; Rutgers University; New Brunswick; NJ; USA
| |
Collapse
|
10
|
Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption–biological reduction integrated NO x removal system. Appl Microbiol Biotechnol 2011; 93:2653-9. [DOI: 10.1007/s00253-011-3573-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
11
|
Firer-Sherwood MA, Bewley KD, Mock JY, Elliott SJ. Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics 2011; 3:344-8. [PMID: 21327265 DOI: 10.1039/c0mt00097c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Examining electron transfer between two proteins with identical spectroscopic signatures is a challenging task. It is supposed that several multiheme cytochromes in Shewanella oneidensis form a molecular "wire" through which electrons are transported across the cellular space and a direct study of this transient protein-protein interaction has not yet been reported. In this study, we present variations on catalytic protein film voltammetry and an anaerobic affinity chromatography assay to demonstrate unidirectional electron transfer between proposed protein pairs. Through use of these techniques, we are able to confirm the transient interactions between these cytochromes, supporting the model of electron transfer that is present in the literature.
Collapse
|
12
|
Guerin WF, Blakemore RP. Redox Cycling of Iron Supports Growth and Magnetite Synthesis by Aquaspirillum magnetotacticum. Appl Environ Microbiol 2010; 58:1102-9. [PMID: 16348681 PMCID: PMC195561 DOI: 10.1128/aem.58.4.1102-1109.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under anaerobic conditions and in the absence of alternative electron acceptors, growth of the magnetic bacterium Aquaspirillum magnetotacticum MSI was iron concentration dependent. Weak chelation of the iron (with quinate, oxalate, or 2,3-dihydroxybenzoate) enhanced growth, whereas strong chelation (with EDTA, citrate, or nitrilotriacetic acid) retarded the growth of strain MSI relative to that of controls lacking chelators. Growth was proportional to the percentage of unchelated iron in medium containing EDTA in various molar ratios to iron. Addition of the respiratory inhibitors antimycin A (5 muM), NaCN (10 mM), and NaN(3) (10 mM) inhibited growth with Fe(III) or NO(3) as the terminal electron acceptor. Growth with O(2) and NO(3) was inhibited by 2-heptyl-4-hydroxyquinolone-N-oxide (HOQNO) but not with 2 mM Fe(III). Under strongly reducing conditions, strain MS1 survived but grew poorly and became irreversibly nonmagnetic. Growth and iron reduction in anaerobic cultures were stimulated by the provision of small amounts of O(2) or H(2)O(2). Slow infusion of air to cultures which had reduced virtually all of the Fe(III) in the medium (2 mM) supported a high rate of iron reoxidation (relative to killed controls) and growth in proportion to the amount of iron reoxidized. Oxygen consumption by iron-reducing cultures was predominantly biological, since NaCN and HOQNO both inhibited consumption. Inhibition of oxygen consumption (and iron reoxidation) by the addition of ferrozine and the inhibition of iron oxidation (and oxygen consumption) by the addition of HOQNO suggest that iron oxidation by strain MS1 is an aerobic respiratory process, perhaps tied to energy conservation. Iron oxidation was also necessary for magnetite synthesis, since in microaerobic denitrifying cultures, sequestration of reduced iron by ferrozine present in 10-fold molar excess to the available iron resulted in loss of magnetism and a severe drop in the average magnetosome number of the cells.
Collapse
Affiliation(s)
- W F Guerin
- Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824
| | | |
Collapse
|
13
|
Gorby YA, Lovley DR. Electron Transport in the Dissimilatory Iron Reducer, GS-15. Appl Environ Microbiol 2010; 57:867-70. [PMID: 16348451 PMCID: PMC182808 DOI: 10.1128/aem.57.3.867-870.1991] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms for electron transport to Fe(III) were investigated in GS-15, a novel anaerobic microorganism which can obtain energy for growth by coupling the complete oxidation of organic acids or aromatic compounds to the reduction of Fe(III) to Fe(II). The results indicate that Fe(III) reduction proceeds through a type b cytochrome and a membrane-bound Fe(III) reductase which is distinct from the nitrate reductase.
Collapse
Affiliation(s)
- Y A Gorby
- Water Resources Division, U. S. Geological Survey, 430 National Center, Reston, Virginia 22092
| | | |
Collapse
|
14
|
Thomas SH, Sanford RA, Amos BK, Leigh MB, Cardenas E, Löffler FE. Unique ecophysiology among U(VI)-reducing bacteria as revealed by evaluation of oxygen metabolism in Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 2010; 76:176-83. [PMID: 19897758 PMCID: PMC2798628 DOI: 10.1128/aem.01854-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022] Open
Abstract
Anaeromyxobacter spp. respire soluble hexavalent uranium, U(VI), leading to the formation of insoluble U(IV), and are present at the uranium-contaminated Oak Ridge Integrated Field Research Challenge (IFC) site. Pilot-scale in situ bioreduction of U(VI) has been accomplished in area 3 of the Oak Ridge IFC site following biostimulation, but the susceptibility of the reduced material to oxidants (i.e., oxygen) compromises long-term U immobilization. Following oxygen intrusion, attached Anaeromyxobacter dehalogenans cells increased approximately 5-fold from 2.2x10(7)+/-8.6x10(6) to 1.0x10(8)+/-2.2x10(7) cells per g of sediment collected from well FW101-2. In the same samples, the numbers of cells of Geobacter lovleyi, a population native to area 3 and also capable of U(VI) reduction, decreased or did not change. A. dehalogenans cells captured via groundwater sampling (i.e., not attached to sediment) were present in much lower numbers (<1.3x10(4)+/-1.1x10(4) cells per liter) than sediment-associated cells, suggesting that A. dehalogenans cells occur predominantly in association with soil particles. Laboratory studies confirmed aerobic growth of A. dehalogenans strain 2CP-C at initial oxygen partial pressures (pO2) at and below 0.18 atm. A negative linear correlation [micro=(-0.09xpO2)+0.051; R2=0.923] was observed between the instantaneous specific growth rate micro and pO2, indicating that this organism should be classified as a microaerophile. Quantification of cells during aerobic growth revealed that the fraction of electrons released in electron donor oxidation and used for biomass production (fs) decreased from 0.52 at a pO2 of 0.02 atm to 0.19 at a pO2 of 0.18 atm. Hence, the apparent fraction of electrons utilized for energy generation (i.e., oxygen reduction) (fe) increased from 0.48 to 0.81 with increasing pO2, suggesting that oxygen is consumed in a nonrespiratory process at a high pO2. The ability to tolerate high oxygen concentrations, perform microaerophilic oxygen respiration, and preferentially associate with soil particles represents an ecophysiology that distinguishes A. dehalogenans from other known U(VI)-reducing bacteria in area 3, and these features may play roles for stabilizing immobilized radionuclides in situ.
Collapse
Affiliation(s)
- Sara H. Thomas
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Sanford
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Benjamin K. Amos
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Mary Beth Leigh
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Erick Cardenas
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| | - Frank E. Löffler
- School of Civil and Environmental Engineering, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, Department of Geology, University of Illinois, Urbana, Illinois 61801-2352, Department of Biology and Wildlife and Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
15
|
Truex MJ, Peyton BM, Valentine NB, Gorby YA. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnol Bioeng 2009; 55:490-6. [PMID: 18636514 DOI: 10.1002/(sici)1097-0290(19970805)55:3<490::aid-bit4>3.0.co;2-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dissimilatory metal-reducing microorganisms may be useful in processes designed for selective removal of uranium from aqueous streams. These bacteria can use U(VI) as an electron acceptor and thereby reduce soluble U(VI) to insoluble U(IV). While significant research has been devoted to demonstrating and describing the mechanism of dissimilatory metal reduction, the reaction kinetics necessary to apply this for remediation processes have not been adequately defined. In this study, pure culture Shewanella alga strain BrY reduced U(VI) under non-growth conditions in the presence of excess lactate as the electron donor. Initial U(VI) concentrations ranged from 13 to 1680 microM. A maximum specific U(VI) reduction rate of 2.37 micromole-U(VI)/(mg-biomass h) and Monod half-saturation coefficient of 132 microM-U(VI) were calculated from measured U(VI) reduction rates. U(VI) reduction activity was sustained at 60% of this rate for at least 80 h. The initial presence of oxygen at a concentration equal to atmospheric saturation at 22 degrees C delays but does not prevent U(VI) reduction. The rate of U(VI) reduction by BrY is comparable or better than rates reported for other metal reducing species. BrY reduces U(VI) at a rate that is 30% of its Fe(III) reduction rate.
Collapse
Affiliation(s)
- M J Truex
- Pacific Northwest National Laboratory, PO Box 999, MS P7-41, Richland, Washington 99352, USA.
| | | | | | | |
Collapse
|
16
|
Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl Environ Microbiol 2008; 74:4472-6. [PMID: 18487393 DOI: 10.1128/aem.00209-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several anaerobic metal-reducing bacteria have been shown to be able to donate electrons directly to an electrode. This property is of great interest for microbial fuel cell development. To date, microbial fuel cell design requires avoiding O(2) diffusion from the cathodic compartment to the sensitive anodic compartment. Here, we show that Acidiphilium sp. strain 3.2 Sup 5 cells that were isolated from an extreme acidic environment are able to colonize graphite felt electrodes. These bacterial electrodes were able to produce high-density electrocatalytic currents, up to 3 A/m(2) at a poised potential of +0.15 V (compared to the value for the reference standard calomel electrode) in the absence of redox mediators, by oxidizing glucose even at saturating air concentrations and very low pHs.
Collapse
|
17
|
Turick CE, Caccavo F, Tisa LS. Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron. Can J Microbiol 2008; 54:334-9. [DOI: 10.1139/w08-014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin production by Shewanella algae BrY occurred during late- and (or) post-exponential growth in lactate basal salts liquid medium supplemented with tyrosine or phenylalanine. The antioxidant ascorbate inhibited melanin production but not production of the melanin precursor homogentisic acid. In the absence of ascorbate, melanin production was inhibited by the 4-hydroxyphenylpyruvate dioxygenase inhibitor sulcotrione and by concentrations of Fe ≥ 0.38 mmol·L–1. These data support the hypothesis that pigment production by S. algae BrY was a result of the conversion of tyrosine or phenylalanine to homogentisic acid, which was excreted, auto-oxidized, and self-polymerized to form pyomelanin. Pyomelanin production by S. algae BrY may play an important role in the biogeochemical cycling of Fe in the environment.
Collapse
Affiliation(s)
- Charles E. Turick
- Environmental Biotechnology Section, Savannah River National Laboratory, Building 999W, Aiken, SC 29808, USA
- Department of Biology, Whitworth College, Spokane, WA 99251, USA
- Department of Microbiology, University of New Hampshire, Durham, NH 03824-2617, USA
| | - Frank Caccavo
- Environmental Biotechnology Section, Savannah River National Laboratory, Building 999W, Aiken, SC 29808, USA
- Department of Biology, Whitworth College, Spokane, WA 99251, USA
- Department of Microbiology, University of New Hampshire, Durham, NH 03824-2617, USA
| | - Louis S. Tisa
- Environmental Biotechnology Section, Savannah River National Laboratory, Building 999W, Aiken, SC 29808, USA
- Department of Biology, Whitworth College, Spokane, WA 99251, USA
- Department of Microbiology, University of New Hampshire, Durham, NH 03824-2617, USA
| |
Collapse
|
18
|
Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 2007; 73:7003-12. [PMID: 17644630 PMCID: PMC2074945 DOI: 10.1128/aem.01087-07] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.
Collapse
Affiliation(s)
- Orianna Bretschger
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Woźnica A, Dzirba J, Mańka D, Łabuzek S. Effects of electron transport inhibitors on iron reduction in Aeromonas hydrophila strain KB1. Anaerobe 2007; 9:125-30. [PMID: 16887699 DOI: 10.1016/s1075-9964(03)00059-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/09/2003] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the influence of respiratory chain inhibitors upon iron (III) reduction in Aeromonas hydrophila strain KB1. Optimal conditions of the reduction process were established by determining the amount of biomass, optimal pH, temperature and substrate concentration. The obtained results allowed us to determine Hill equation coefficients (K(m)=1.45+/-0.18 mM; V(max)=83.40+/-2.70 microM/min, and h=0.7+/-0.03). The value of h points to Michaelis-like kinetics of the process. The substrate concentration used in our study was such as to allow the maximum iron reduction rate. The reaction was mesophilic. The participation of electron carriers in the iron reduction process was investigated using respiratory chain inhibitors. Rotenone and capsaicin were used to study Q sites of the respiratory chain complex I. Dicumarol was used as an inhibitor of the quinone loop, while quinacrine was used to inhibit alloxazine centers. Additionally, complex III inhibitors, such as antimycin A, myxothiazole and 2-heptyl-4-hydroxy-quinoline N-oxide (HQNO) were used. Azide was used to inhibit complex IV. The observed inhibition of iron reduction by rotenone and capsaicin may suggest the existence of Q sites in formate reductase, analogous to those in complex I. Inhibition of quinones, isoalloxazine centers and complex III suggests participation of these carriers in the electron transport during iron reduction. Lack of inhibition of iron reduction by azide suggests that complex IV does not participate in this process.
Collapse
Affiliation(s)
- A Woźnica
- Faculty of Biology and Environmental Protection, Department of Biochemistry, University of Silesia, Jagiellonska 28, Katowice 40-007, Poland.
| | | | | | | |
Collapse
|
20
|
Xu M, Guo J, Kong X, Chen X, Sun G. Fe(III)-enhanced Azo Reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 2007; 74:1342-9. [PMID: 17216448 DOI: 10.1007/s00253-006-0773-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/16/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Shewanella decolorationis S12 is capable of high rates of azo dye decolorization and dissimilatory Fe(III) reduction. Under anaerobic conditions, when Fe(III) and azo dye were copresent in S12 cultures, dissimilatory Fe(III) reduction and azo dye biodecolorization occurred simultaneously. Furthermore, the dye decolorization was enhanced by the presence of Fe(III). When 1 mM Fe(III) was added, the methyl red decolorizing efficiency was 72.1% after cultivation for 3 h, whereas the decolorizing efficiency was only 60.5% in Fe(III)-free medium. The decolorizing efficiencies increased as the concentration of Fe(III) was increased from 0 to 6 mM. Enzyme activities, which mediate the dye decolorization and Fe(III) reduction, were not affected by preadaption of cells to Fe(III) and azo dye nor by the addition of chloramphenicol. Both the Fe(III) reductase and the azo reductase were membrane associated. The respiratory electron transport chain inhibitors metyrapone, dicumarol, and stigmatellin showed significantly different effects on Fe(III) reduction than on azo dye decolorization.
Collapse
Affiliation(s)
- Meiying Xu
- Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Developments in mcirobial leaching—mechanisms of manganese solubilization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006. [DOI: 10.1007/bfb0102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
22
|
Cooper DC, Picardal FW, Schimmelmann A, Coby AJ. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 2003; 69:3517-25. [PMID: 12788758 PMCID: PMC161479 DOI: 10.1128/aem.69.6.3517-3525.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although previous research has demonstrated that NO(3)(-) inhibits microbial Fe(III) reduction in laboratory cultures and natural sediments, the mechanisms of this inhibition have not been fully studied in an environmentally relevant medium that utilizes solid-phase, iron oxide minerals as a Fe(III) source. To study the dynamics of Fe and NO(3)(-) biogeochemistry when ferric (hydr)oxides are used as the Fe(III) source, Shewanella putrefaciens 200 was incubated under anoxic conditions in a low-ionic-strength, artificial groundwater medium with various amounts of NO(3)(-) and synthetic, high-surface-area goethite. Results showed that the presence of NO(3)(-) inhibited microbial goethite reduction more severely than it inhibited microbial reduction of the aqueous or microcrystalline sources of Fe(III) used in other studies. More interestingly, the presence of goethite also resulted in a twofold decrease in the rate of NO(3)(-) reduction, a 10-fold decrease in the rate of NO(2)(-) reduction, and a 20-fold increase in the amounts of N(2)O produced. Nitrogen stable isotope experiments that utilized delta(15)N values of N(2)O to distinguish between chemical and biological reduction of NO(2)(-) revealed that the N(2)O produced during NO(2)(-) or NO(3)(-) reduction in the presence of goethite was primarily of abiotic origin. These results indicate that concomitant microbial Fe(III) and NO(3)(-) reduction produces NO(2)(-) and Fe(II), which then abiotically react to reduce NO(2)(-) to N(2)O with the subsequent oxidation of Fe(II) to Fe(III).
Collapse
Affiliation(s)
- D Craig Cooper
- Environmental Science Research Center, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405-1405, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Almost all organisms require iron for enzymes involved in essential cellular reactions. Aerobic microbes living at neutral or alkaline pH encounter poor iron availability due to the insolubility of ferric iron. Assimilatory ferric reductases are essential components of the iron assimilatory pathway that generate the more soluble ferrous iron, which is then incorporated into cellular proteins. Dissimilatory ferric reductases are essential terminal reductases of the iron respiratory pathway in iron-reducing bacteria. While our understanding of dissimilatory ferric reductases is still limited, it is clear that these enzymes are distinct from the assimilatory-type ferric reductases. Research over the last 10 years has revealed that most bacterial assimilatory ferric reductases are flavin reductases, which can serve several physiological roles. This article reviews the physiological function and structure of assimilatory and dissimilatory ferric reductases present in the Bacteria, Archaea and Yeast. Ferric reductases do not form a single family, but appear to be distinct enzymes suggesting that several independent strategies for iron reduction may have evolved.
Collapse
Affiliation(s)
- Imke Schröder
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, 1602 Molecular Sciences Bldg., Los Angeles, CA 90095-1489, USA.
| | | | | |
Collapse
|
24
|
Nielsen JL, Juretschko S, Wagner M, Nielsen PH. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 2002; 68:4629-36. [PMID: 12200322 PMCID: PMC124101 DOI: 10.1128/aem.68.9.4629-4636.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microautoradiography (MAR) was used to enumerate acetate-consuming bacteria under Fe(III)-reducing conditions in activated sludge. This population is believed to consist of dissimilatory iron-reducing bacteria, because the applied incubation conditions and the use of specific inhibitors excluded consumption of radiolabeled acetate by other physiological groups such as sulfate reducers. By use of this approach, dissimilatory iron reducers were found in a concentration of 1.1 x 10(8) cells per ml, corresponding to approximately 3% of the total cell count as determined by DAPI (4',6'-diamino-2-phenylindoledihydrochloride-dilactate) staining. The MAR enumeration method was compared to the traditional most-probable-number (MPN) method (FeOOH-MPN) and a modified MPN method, which contains Ferrozine directly within the MPN dilutions to determine the production of small amounts of ferrous iron (Ferrozine-MPN). The Ferrozine-MPN method yielded values 6 to 10 times higher than those obtained by the FeOOH-MPN method. Nevertheless, the MAR approach yielded counts that were 100 to 1,000 times higher than those obtained by the Ferrozine-MPN method. Specific in situ Fe(III) reduction rates per cell (enumerated by the MAR method) were calculated and found to be comparable to the respective rates for pure cultures of dissimilatory iron-reducing bacteria, suggesting that the new MAR method is most reliable. A combination of MAR and fluorescence in situ hybridization was used for phylogenetic characterization of the putative iron-reducing bacteria. All activated-sludge cells able to consume acetate under iron-reducing conditions were targeted by the bacterial oligonucleotide probe EUB338. Around 20% were identified as gamma Proteobacteria, and 10% were assigned to the delta subclass of Proteobacteria.
Collapse
Affiliation(s)
- Jeppe Lund Nielsen
- Department of Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
25
|
Küsel K, Roth U, Drake HL. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ Microbiol 2002; 4:414-21. [PMID: 12123477 DOI: 10.1046/j.1462-2920.2002.00314.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In acidic, coal mining lake sediments, facultatively anaerobic Acidiphilium species are probably involved in the reduction of Fe(III). Previous results indicate that these bacteria can co-respire O2 and Fe(III). In this study, we investigated the capacity of the sediment microbiota to reduce Fe(III) in the presence of O2 at pH 3. In sediment microcosms with 4% O2 in the headspace, the concentration of Fe(II) increased at a rate of 1.03 micromol (g wet sediment)-1 day-1 within the first 7 days of incubation which was similar to the rate obtained with controls incubated under anoxic conditions. However, in microcosms incubated under air, Fe(II) was consumed after a lag phase of 8 h with a rate of 2.66 micromol (g wet sediment)-1 day-1. Acidiphilium cryptum JF-5, isolated from this sediment, reduced soluble Fe(III) with either 4 or 21% O2 in the headspace, and concomitantly consumed O2. However, the rate of Fe(II) formation normalized for cell density decreased under oxic conditions. Schwertmannite, the predominant Fe(III)-mineral of this sediment, was also reduced by A. cryptum JF-5 under oxic conditions. The rate of Fe(II) formation by A. cryptum JF-5 decreased after transfer from preincubation under air in medium lacking Fe(III). Acidiphilium cryptum JF-5 did not form Fe(II) when preincubated under air and transferred to anoxic medium containing Fe(III) and chloramphenicol, an inhibitor of protein synthesis. These results indicate that: (i) the reduction of Fe(III) can occur at low O2 concentrations in acidic sediments; (ii) Fe(II) can be oxidized at O2 concentrations near saturation; and (iii) the enzyme(s) responsible for the reduction of Fe(III) in A. cryptum JF-5 are not constitutive.
Collapse
Affiliation(s)
- Kirsten Küsel
- Department of Ecological Microbiology, BITOEK, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
26
|
Johnson DB, Bridge TAM. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp. J Appl Microbiol 2002; 92:315-21. [PMID: 11849360 DOI: 10.1046/j.1365-2672.2002.01535.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. METHODS AND RESULTS Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. CONCLUSIONS The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. SIGNIFICANCE AND IMPACT OF THE STUDY Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.
Collapse
Affiliation(s)
- D B Johnson
- School of Biological Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
27
|
A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00478-1] [Citation(s) in RCA: 666] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Lower SK, Hochella MF, Beveridge TJ. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 2001; 292:1360-3. [PMID: 11359008 DOI: 10.1126/science.1059567] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Force microscopy has been used to quantitatively measure the infinitesimal forces that characterize interactions between Shewanella oneidensis (a dissimilatory metal-reducing bacterium) and goethite (alpha-FeOOH), both commonly found in Earth near-surface environments. Force measurements with subnanonewton resolution were made in real time with living cells under aerobic and anaerobic solutions as a function of the distance, in nanometers, between a cell and the mineral surface. Energy values [in attojoules (10(-18) joules)] derived from these measurements show that the affinity between S. oneidensis and goethite rapidly increases by two to five times under anaerobic conditions in which electron transfer from bacterium to mineral is expected. Specific signatures in the force curves suggest that a 150-kilodalton putative iron reductase is mobilized within the outer membrane of S. oneidensis and specifically interacts with the goethite surface to facilitate the electron transfer process.
Collapse
Affiliation(s)
- S K Lower
- NanoGeoscience and Technology Laboratory, Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
29
|
Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 2001; 39:722-30. [PMID: 11169112 DOI: 10.1046/j.1365-2958.2001.02257.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shewanella putrefaciens is a facultative anaerobe that can use metal oxides as terminal electron acceptors during anaerobic respiration. Two proteins, MtrB and Cct, have been identified that are specifically involved in metal reduction. Analysis of S. putrefaciens mutants deficient in metal reduction led to the identification of two additional proteins that are involved in this process. MtrA is a periplasmic decahaem c-type cytochrome that appears to be part of the electron transport chain, which leads to Fe(III) and Mn(IV) reduction. MtrC is an outer membrane decahaem c-type cytochrome that appears to be required for the activity of the terminal Fe(III) reductase. Membrane fractions of mutants deficient in MtrC exhibited a decreased level of Fe(III) reduction compared with the wild type. We suggest that MtrC may be a component of the terminal reductase or may be required for its assembly.
Collapse
Affiliation(s)
- A S Beliaev
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | | | | |
Collapse
|
30
|
Blakeney MD, Moulaei T, DiChristina TJ. Fe(III) reduction activity and cytochrome content of Shewanella putrefaciens grown on ten compounds as sole terminal electron acceptor. Microbiol Res 2000; 155:87-94. [PMID: 10950190 DOI: 10.1016/s0944-5013(00)80042-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Shewanella putrefaciens was grown on a series of ten alternate compounds as sole terminal electron acceptor. Each cell type was analyzed for Fe(III) reduction activity, absorbance maxima in reduced-minus-oxidized difference spectra and heme-containing protein content. High-rate Fe(III) reduction activity, pronounced difference maxima at 521 and 551 nm and a predominant 29.3 kDa heme-containing protein expressed by cells grown on Fe(III), Mn(IV), U(VI), SO3(2-) and S2O3(2-), but not by cells grown on O2, NO3, NO2-, TMAO or fumarate. These results suggest that microbial Fe(III) reduction activity is enhanced by anaerobic growth on metals and sulfur compounds, yet is limited under all other terminal electron-accepting conditions.
Collapse
Affiliation(s)
- M D Blakeney
- School of Biology, Georgia Institute of Technology, Atlanta 30332-0230, USA
| | | | | |
Collapse
|
31
|
Kim S, Picardal FW. Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 1999; 18:2142-2150. [PMID: 29857631 DOI: 10.1002/etc.5620181005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 01/05/1999] [Indexed: 06/08/2023]
Abstract
Rates of anaerobic transformation of carbon tetrachloride (CT) by the facultative anaerobe Shewanella putrefaciens 200 were increased by the presence of Fe(III)-containing minerals. In batch reactors with amorphous, Fe(III)-hydroxide and S. putrefaciens, CT transformation rates could be modeled by a first-order expression in which the pseudo-first-order rate constant was linearly proportional to the initial concentration of Fe(III)-oxide. Subsequent measurement of soluble and acid-extractable Fe(II) showed that increased CT transformation rates were proportional to microbially reduced, surface-bound Fe(II), rather than soluble Fe(II). In biomimetic experiments using 20 mM dithiothreitol (DTT) as a reductant, rates of transformation of CT by DTT were low in the absence of Fe(III)-oxides. However, in the presence of iron oxides, DTT was able to transform CT at elevated rates. Results again strongly suggested that surface-bound Fe(II) was primarily responsible for the reductive transformation of CT. Results suggested that the surface area of the iron mineral determines the rate of CT transformation by affecting the extent of iron reduction. Chloroform (CF) was the only transformation product identified and production of CF was nonstoichiometric. In microbial and abiotic experiments with Fe(III) oxides, the percentage of the transformed CT recovered as CF decreased even though the rate and extent of CT transformation was increased. Overall, our results have important implications for an improved understanding of possible microbial and geochemical interactions in the environmental transformation of chlorinated organic pollutants and for modeling of CT transformation rates in anaerobic, iron-bearing sediments.
Collapse
Affiliation(s)
- Sanggoo Kim
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | - Flynn W Picardal
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
Küsel K, Dorsch T, Acker G, Stackebrandt E. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 1999; 65:3633-40. [PMID: 10427060 PMCID: PMC91545 DOI: 10.1128/aem.65.8.3633-3640.1999] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium species that are capable of coupling the reduction of Fe(III) to the complete oxidation of a large variety of substrates including glucose and H(2).
Collapse
Affiliation(s)
- K Küsel
- Department of Ecological Microbiology, BITOEK, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | | | |
Collapse
|
33
|
Spasojevic I, Armstrong SK, Brickman TJ, Crumbliss AL. Electrochemical Behavior of the Fe(III) Complexes of the Cyclic Hydroxamate Siderophores Alcaligin and Desferrioxamine E. Inorg Chem 1999; 38:449-454. [PMID: 11673947 DOI: 10.1021/ic980635n] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redox behavior of Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E was investigated by cyclic voltammetry. The limiting, pH independent redox potential (E(1/2) vs NHE) is -446 mV for alcaligin above pH 9 and -477 mV for ferrioxamine E above pH 7.5. At lower pH values, the redox potential for both complexes shifts positive, with a loss of voltammetric reversibility which is interpreted to be the consequence of a secondary dissociation of Fe(II) from the reduced form of the complexes. These observations are of biological importance, since they suggest the possibility of a reductive mechanism in microbial cells which utilize these siderophores to acquire Fe. For comparison purposes, cyclic voltammograms were obtained for Fe(III) complexes with trihydroxamic acids of cyclic (ferrioxamine E) and linear (ferrioxamine B) structures, with dihydroxamic acids of cyclic (alcaligin) and linear (rhodotorulic and sebacic acids) structures, and with monohydroxamic acids (acetohydroxamic and N-methylacetohydroxamic acids) at identical conditions. The observed redox potentials allow us to estimate the overall stability constants for fully coordinated Fe(II) complexes as log beta(II)(Fe(2)alcaligin(3)) = 24.6 and log beta(II)(ferrioxamine E) = 12.1. A linear correlation between E(1/2) and pM was found, and the basis for this relationship is discussed in terms of structural (denticity and cyclic/acyclic) and electronic differences among the {alkyl-NOH-CO-alkyl} type of hydroxamic acid ligands studied.
Collapse
Affiliation(s)
- Ivan Spasojevic
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, and Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina 27858-4354
| | | | | | | |
Collapse
|
34
|
Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM. Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. Chem Rev 1999; 99:77-174. [PMID: 11848981 DOI: 10.1021/cr980011z] [Citation(s) in RCA: 470] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gordon E. Brown
- Environmental Molecular Sciences, Laboratory Pacific Northwest National Laboratory, Richland, Washington 99352
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dawood Z, Ehrenreich L, Brözel VS. The effect of molecular oxygen on sulfite reduction byShewanella putrefaciens. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13113.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
McLeod ES, Dawood Z, MacDonald R, Oosthuizen MC, Graf J, Steyn PL, Brözel VS. Isolation and Identification of Sulphite- and Iron Reducing, Hydrogenase Positive Facultative Anaerobes from Cooling Water Systems. Syst Appl Microbiol 1998. [DOI: 10.1016/s0723-2020(98)80037-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
|
38
|
Picardal F, Arnold RG, Huey BB. Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol 1995; 61:8-12. [PMID: 7887629 PMCID: PMC167256 DOI: 10.1128/aem.61.1.8-12.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.
Collapse
Affiliation(s)
- F Picardal
- Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
39
|
Saffarini D, DiChristina T, Bermudes D, Nealson K. Anaerobic respiration ofShewanella putrefaciensrequires both chromosomal and plasmid-borne genes. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb06900.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
DiChristina TJ, DeLong EF. Isolation of anaerobic respiratory mutants of Shewannella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on Fe3+. J Bacteriol 1994; 176:1468-74. [PMID: 8113188 PMCID: PMC205214 DOI: 10.1128/jb.176.5.1468-1474.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A genetic approach was used to study (dissimilatory) ferric iron (Fe3+) reduction in Shewanella putrefaciens 200. Chemical mutagenesis procedures and two rapid plate assays were developed to facilitate the screening of Fe3+ reduction-deficient mutants. Sixty-two putative Fe3+ reduction-deficient mutants were identified, and each was subsequently tested for its ability to grow anaerobically on various compounds as sole terminal electron acceptors, including Fe3+, nitrate (NO3-), nitrite (NO2-), manganese oxide (Mn4+), sulfite (SO3(2-)), thiosulfate (S2O3(2-)), trimethylamine N-oxide, and fumarate. A broad spectrum of mutants deficient in anaerobic growth on one or more electron acceptors was identified. Nine of the 62 mutants (designated Fer mutants) were deficient only in anaerobic growth on Fe3+ and retained the ability to grow on all other electron acceptors. These results suggest that S. putrefaciens expresses at least one terminal Fe3+ reductase that is distinct from other terminal reductases coupled to anaerobic growth. The nine Fer mutants were conjugally mated with an S. putrefaciens genomic library harbored in Escherichia coli S17-1. Complemented S. putrefaciens transconjugants were identified by the acquired ability to grow anaerobically on Fe3+ as the sole terminal electron acceptor. All recombinant cosmids that conferred the Fer+ phenotype appeared to carry a common internal region.
Collapse
Affiliation(s)
- T J DiChristina
- Biology Department, Woods Hole Oceanographic Institution, Massachusetts 02543
| | | |
Collapse
|
41
|
Saffarini DA, Nealson KH. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J Bacteriol 1993; 175:7938-44. [PMID: 8253682 PMCID: PMC206972 DOI: 10.1128/jb.175.24.7938-7944.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-1. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S. putrefaciens etrA is able to complement an fnr mutant of E. coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etrA mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S. putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.
Collapse
Affiliation(s)
- D A Saffarini
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204
| | | |
Collapse
|
42
|
DiChristina TJ. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol 1992; 174:1891-6. [PMID: 1548235 PMCID: PMC205793 DOI: 10.1128/jb.174.6.1891-1896.1992] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The inhibitory effects of nitrate (NO3-) and nitrite (NO2-) on dissimilatory iron (FE3+) reduction were examined in a series of electron acceptor competition experiments using Shewanella putrefaciens 200 as a model iron-reducing microorganism. S. putrefaciens 200 was found to express low-rate nitrate reductase, nitrite reductase, and ferrireductase activity after growth under highly aerobic conditions and greatly elevated rates of each reductase activity after growth under microaerobic conditions. The effects of NO3- and NO2- on the Fe3+ reduction activity of both aerobically and microaerobically grown cells appeared to follow a consistent pattern; in the presence of Fe3+ and either NO3- or NO2-, dissimilatory Fe3+ and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe3+, suggesting that S. putrefaciens 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO3-, NO2-, and Fe3+. However, Fe3+ reduction was partially inhibited by the presence of either NO3- or NO2-. An in situ ferrozine assay was used to distinguish the biological and chemical components of the observed inhibitory effects. Rate data indicated that neither NO3- nor NO2- acted as a chemical oxidant of bacterially produced Fe2+. In addition, the decrease in Fe3+ reduction activity observed in the presence of both NO3- and NO2- was identical to the decrease observed in the presence of NO2- alone. These results suggest that bacterially produced NO2- is responsible for inhibiting electron transport to Fe3+.
Collapse
|
43
|
Nealson KH, Myers CR. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 1992; 58:439-43. [PMID: 1610166 PMCID: PMC195266 DOI: 10.1128/aem.58.2.439-443.1992] [Citation(s) in RCA: 231] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- K H Nealson
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204
| | | |
Collapse
|
44
|
Abstract
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.
Collapse
Affiliation(s)
- D R Lovley
- Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092
| |
Collapse
|