1
|
Li D, Guo W, Chen B, Zhai Y, Lang Y, Guo T, Cao X, Zhao L. Niche construction in a bioelectrochemical system with 3D-electrodes for efficient and thorough biodechlorination. WATER RESEARCH 2024; 265:122260. [PMID: 39167969 DOI: 10.1016/j.watres.2024.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The design of bioelectrochemical system based on the principle of niche construction, offers a prospective pathway for achieving efficient and thorough biodechlorination in groundwater. This study designed a single-chamber microbial electrolysis cell, with porous three-dimensional (3D) electrodes introduced, to accelerate the niche construction process of functional communities. This approach allowed the growth of various bacteria capable of simultaneously degrading 2,4-dichlorophenol (DCP) and its refractory intermediates, 4-chlorophenol (4CP). The 3D-electrodes provided abundant attachment sites for diverse microbes with a high initial Shannon index (3.4), and along the degradation progress, functional bacteria (Hydrogenoanaerobacterium and Rhodococcus erythropolis for DCP-degrading, Sphingobacterium hotanense for 4CP-degrading and Delftia tsuruhatensis for phenol-degrading) constructed their niches. Applying an external voltage (0.6 V) further increased the selective pressure and niche construction pace, as well as provided 'micro-oxidation' site on the electrode surface, thereby achieving the degradation of 4CP and mineralization of phenol. The porous electrodes could also adsorb contaminants and narrow their interaction distance with microbes, which benefited the degradation efficiency. Thus a 10-fold increase in the overall mineralization of DCP was achieved. This study constructed a novel bioelectrochemical system for achieving efficient and thorough biodechlorination, which was suitable for in situ bioremediation of groundwater.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Lang
- The Fourth Engineering Co., LTD. of China Railway No 4 Group, Hefei Anhui 230000, China
| | - Tianbao Guo
- Zhou Enlai School of Government Management, Nankai University, Tianjin 300071, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Yan N, An M, Chu J, Cao L, Zhu G, Wu W, Wang L, Zhang Y, Rittmann BE. More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria. BIORESOURCE TECHNOLOGY 2021; 326:124738. [PMID: 33497925 DOI: 10.1016/j.biortech.2021.124738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The key step for anaerobic biodegradation of 2,4-dichlorophenol (2,4-DCP) is an initial dechlorination reaction, but Cl in the para-position is more difficult to remove than Cl in the ortho-position using normal 2,4-DCP-acclimated bacteria. In this work, a bacterial community previously acclimated to biodegrading 2,4-DCP slowly dechlorinated 4-chlorophenol (4-CP Cl only in the para-position), which limited mineralization. That community was exposed to the selective pressure of having 4-CP as its only organic substrate in order to generate a 4-CP-dechlorinating community. When the 4-CP-dechlorinating community was challenged with 2,4-DCP, 4-CP hardly accumulated, although the kinetics for 2,4-DCP biodegradation were slower. When the community acclimated to 4-CP was mixed with the community acclimated to 2,4-DCP, the 2,4-DCP removal rate remained high, and 4-CP was more rapidly biodegraded. The genera Treponema, Blvii28, Dechloromonas, Nitrospira, and Thauera were significantly more abundant in the 4-CP-dechlorinating biomass and may have played roles in 2,4-DCP dechlorination and mineralization.
Collapse
Affiliation(s)
- Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Meng An
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Junyi Chu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lifeng Cao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Weimin Wu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China; Yangtze Delta Wetlands Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 85287-5701, USA
| |
Collapse
|
3
|
Lechner U, Türkowsky D, Dinh TTH, Al‐Fathi H, Schwoch S, Franke S, Gerlach M, Koch M, von Bergen M, Jehmlich N, Dang TCH. Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill. Microb Biotechnol 2018; 11:1137-1156. [PMID: 30117290 PMCID: PMC6196390 DOI: 10.1111/1751-7915.13301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/17/2022] Open
Abstract
The herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was a major component of Agent Orange, which was used as a defoliant in the Vietnam War. Little is known about its degradation under anoxic conditions. Established enrichment cultures using soil from an Agent Orange bioremediation plant in southern Vietnam with pyruvate as potential electron donor and carbon source were shown to degrade 2,4,5-T via ether cleavage to 2,4,5-trichlorophenol (2,4,5-TCP), which was further dechlorinated to 3,4-dichlorophenol. Pyruvate was initially fermented to hydrogen, acetate and propionate. Hydrogen was then used as the direct electron donor for ether cleavage of 2,4,5-T and subsequent dechlorination of 2,4,5-TCP. 16S rRNA gene amplicon sequencing indicated the presence of bacteria and archaea mainly belonging to the Firmicutes, Bacteroidetes, Spirochaetes, Chloroflexi and Euryarchaeota. Desulfitobacterium hafniense was identified as the dechlorinating bacterium. Metaproteomics of the enrichment culture indicated higher protein abundances of 60 protein groups in the presence of 2,4,5-T. A reductive dehalogenase related to RdhA3 of D. hafniense showed the highest fold change, supporting its function in reductive dehalogenation of 2,4,5-TCP. Despite an ether-cleaving enzyme not being detected, the inhibition of ether cleavage but not of dechlorination, by 2-bromoethane sulphonate, suggested that the two reactions are catalysed by different organisms.
Collapse
Affiliation(s)
- Ute Lechner
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Dominique Türkowsky
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Thi Thu Hang Dinh
- Vietnamese Academy of Science and TechnologyInstitute of BiotechnologyHanoiVietnam
- Present address:
Vietnamese Academy of Science and TechnologyGraduate University of Science and TechnologyHanoiVietnam
| | - Hassan Al‐Fathi
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Stefan Schwoch
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Stefan Franke
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergHalleGermany
| | | | - Mandy Koch
- Institute of Chemistry/Food and Environmental ChemistryMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Martin von Bergen
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Thi Cam Ha Dang
- Vietnamese Academy of Science and TechnologyInstitute of BiotechnologyHanoiVietnam
| |
Collapse
|
4
|
Bjerketorp J, Röling WFM, Feng XM, Garcia AH, Heipieper HJ, Håkansson S. Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation. Appl Microbiol Biotechnol 2018; 102:2031-2040. [PMID: 29349491 PMCID: PMC5794804 DOI: 10.1007/s00253-017-8706-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 10/27/2022]
Abstract
Chlorophenols are widespread and of environmental concern due to their toxic and carcinogenic properties. Development of less costly and less technically challenging remediation methods are needed; therefore, we developed a formulation based on micronized vermiculite that, when air-dried, resulted in a granular product containing the 4-chlorophenol (4-CP)-degrading Gram-positive bacterium Arthrobacter chlorophenolicus A6. This formulation and stabilization method yielded survival rates of about 60% that remained stable in storage for at least 3 months at 4 °C. The 4-CP degradation by the formulated and desiccated A. chlorophenolicus A6 cells was compared to that of freshly grown cells in controlled-environment soil microcosms. The stabilized cells degraded 4-CP equally efficient as freshly grown cells in two different set-ups using both hygienized and non-treated soils. The desiccated microbial product was successfully employed in an outdoor pot trial showing its effectiveness under more realistic environmental conditions. No significant phytoremediation effects on 4-CP degradation were observed in the outdoor pot experiment. The 4-CP degradation kinetics from both the microcosms and the outdoor pot trial were used to generate a predictive model of 4-CP biodegradation potentially useful for larger-scale operations, enabling better bioremediation set-ups and saving of resources. This study also opens up the possibility of formulating and stabilizing also other Arthrobacter strains possessing different desirable pollutant-degrading capabilities.
Collapse
Affiliation(s)
- Joakim Bjerketorp
- Department of Molecular Sciences, Swedish University of Agricultural Sciences-SLU, Uppsala, Sweden
| | - Wilfred F M Röling
- Department Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Xin-Mei Feng
- RISE Research Institutes of Sweden, Uppsala, Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences-SLU, Uppsala, Sweden
| | - Hermann J Heipieper
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sebastian Håkansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences-SLU, Uppsala, Sweden.
| |
Collapse
|
5
|
Arora PK, Bae H. Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 2014; 13:31. [PMID: 24589366 PMCID: PMC3975901 DOI: 10.1186/1475-2859-13-31] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/20/2014] [Indexed: 12/02/2022] Open
Abstract
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
6
|
Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 2013; 116:602-9. [DOI: 10.1016/j.jbiosc.2013.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022]
|
7
|
Cui Y, Woo SG, Lee J, Sinha S, Kang MS, Jin L, Kim KK, Park J, Lee M, Lee ST. Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2013; 63:3727-3732. [PMID: 23645020 DOI: 10.1099/ijs.0.047043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-positive, rod-shaped, non-spore-forming bacterium (strain 2C1-5(T)) was isolated from activated sludge of an industrial wastewater treatment plant in Daegu, South Korea. Its taxonomic position was investigated by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity, the closest phylogenetic relatives were the type strains of Nocardioides nitrophenolicus (98.6 % similarity), N. kongjuensis (98.5 %), N. caeni (98.4 %), N. simplex (98.3 %), N. aromaticivorans (98.1 %) and N. ginsengisoli (97.5 %); the phylogenetic distance from other species with validly published names within the genus Nocardioides was greater than 3 %. Strain 2C1-5(T) was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone and iso-C16 : 0, C16 : 0 and C17 : 1ω6c as the major fatty acids. The G+C content of the genomic DNA was 74.9 mol%. These chemotaxonomic properties and phenotypic characteristics supported the affiliation of strain 2C1-5(T) to the genus Nocardioides. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 2C1-5(T) from existing species with validly published names. Therefore, strain 2C1-5(T) represents a novel species of the genus Nocardioides, for which the name Nocardioides daeguensis sp. nov. is proposed, with the type strain 2C1-5(T) ( = JCM 17460(T) = KCTC 19799(T)).
Collapse
Affiliation(s)
- Yingshun Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sung-Geun Woo
- Research and Development Division, H-Plus Eco Ltd, BVC #301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea.,School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jangho Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sahastranshu Sinha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.,Research and Development Division, H-Plus Eco Ltd, BVC #301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Myung-Suk Kang
- National Institute of Biological Resources, Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon 404-708, Republic of Korea
| | - Long Jin
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Myungjin Lee
- WIZCHEM Co., Ltd. Inno-Biz Park No. 403 HNU, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - Sung-Taik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
8
|
Cui Y, Kang MS, Woo SG, Jin L, Kim KK, Park J, Lee M, Lee ST. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2013; 63:152-157. [DOI: 10.1099/ijs.0.038141-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-positive, non-spore-forming, aerobic actinobacterial strain (2C6-41T) was isolated from the activated sludge from an industrial wastewater treatment plant in Daegu, South Korea. Its taxonomic position was investigated by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity, closest phylogenetic relatives to strain 2C6-41T were
Brevibacterium pityocampae
DSM 21720T (97.2 %),
Brevibacterium salitolerans
KCTC 19616T (96.7 %),
Brevibacterium album
KCTC 19173T (96.2 %) and
Brevibacterium samyangense
KCCM 42316T (96.2 %). The DNA G+C content of strain 2C6-41T was 66.4 mol%. Chemotaxonomic data, which included MK-8(H2) as the major menaquinone; meso-diaminopimelic acid, glutamic acid and alanine as cell-wall amino acids; ribose, mannose and glucose as major cell-wall sugars; and anteiso-C15 : 0, anteiso-C17 : 0, C16 : 0 and iso-C15 : 0 as major fatty acids, supported the affiliation of strain 2C6-41T to the genus
Brevibacterium
. The aromatic ring cleavage enzyme catechol 1,2-dioxygenase was not detected in strain 2C6-41T, but catechol 2,3-dioxygenase was detected. The results of physiological and biochemical tests, and the low level of DNA–DNA relatedness to the closest phylogenetic relative enabled strain 2C6-41T to be differentiated genotypically and phenotypically from recognized species of the genus
Brevibacterium
. The isolate is therefore considered to represent a novel species in the genus
Brevibacterium
, for which the name Brevibacterium daeguense sp. nov. is proposed. The type strain is 2C6-41T ( = KCTC 19800T = JCM 17458T).
Collapse
Affiliation(s)
- Yingshun Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Myung-Suk Kang
- National Institute of Biological Resources, Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon 404-708, Republic of Korea
| | - Sung-Geun Woo
- Research and Development Division, H-Plus Eco Ltd, BVC #301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Long Jin
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Myungjin Lee
- Research and Development Division, H-Plus Eco Ltd, BVC #301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Sung-Taik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
9
|
Karn SK, Reddy MS. Removal of 2,4,5-trichlorophenol by bacterial isolates from the secondary sludge of pulp and paper mill. J Basic Microbiol 2012; 53:752-7. [PMID: 22961799 DOI: 10.1002/jobm.201200163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/01/2012] [Indexed: 11/11/2022]
Abstract
2,4,5-trichlorophenol (2,4,5-TCP) mineralizing bacteria were isolated from the secondary sludge of pulp and paper industry. These isolates used 2,4,5-TCP as a source of carbon and energy and were capable of degrading this compound, as indicated by stoichimetric release of chloride and biomass formation. Based on 16S rRNA sequence analysis, these bacteria were identified as Kocuria sp. (CL2), Bacillus pumillus (CL5), Pseudomonas stutzeri (CL7). HPLC analysis revealed that these isolates were able to degrade 2,4,5-TCP at higher concentrations (600 mg/l or 3.0 mM). A consortia of these isolates completely removed 2,4,5-TCP from the sludge obtained from pulp and paper mill within 2 weeks when supplemented at a rate of 100 mg l(-1) . Bacterial consortium also significantly reduced absorbable organic halogen (AOX) and extractable organic halogen (EOX) by 61% and 63%, respectively from the sludge. These isolates have high potential to remove 2,4,5-TCP and may be used for remediation of pulp paper mill waste containing 2,4,5-TCP.
Collapse
Affiliation(s)
- Santosh Kr Karn
- Department of Biotechnology, Thapar University, Patiala, 147 004, Punjab, India
| | | |
Collapse
|
10
|
Varank G, Demir A, Top S, Sekman E, Akkaya E, Yetilmezsoy K, Bilgili MS. Migration behavior of landfill leachate contaminants through alternative composite liners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3183-3196. [PMID: 21621822 DOI: 10.1016/j.scitotenv.2011.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻⁸ m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings.
Collapse
Affiliation(s)
- Gamze Varank
- Department of Environmental Engineering, Faculty of Civil Engineering Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
11
|
Winding A. [H]thymidine incorporation to estimate growth rates of anaerobic bacterial strains. Appl Environ Microbiol 2010; 58:2660-2. [PMID: 16348755 PMCID: PMC195835 DOI: 10.1128/aem.58.8.2660-2662.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incorporation of [H]thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [H]thymidine, whereas the sulfate-reducing bacterium and two of the methanogenic bacteria were unable to incorporate [H]thymidine during growth. It is concluded that the [H]thymidine incorporation method underestimates bacterial growth in anaerobic environments.
Collapse
Affiliation(s)
- A Winding
- Department of General Microbiology, University of Copenhagen, Sølvgade 83 H, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
12
|
Mun CH, He J, Ng WJ. Pentachlorophenol dechlorination by an acidogenic sludge. WATER RESEARCH 2008; 42:3789-3798. [PMID: 18691730 DOI: 10.1016/j.watres.2008.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
This study reports the feasibility of removing pentachlorophenol (PCP) by an acidogenic process in batch reactors. When the acidogenic sludge was first acclimated with 2,4,6-trichlorophenol (2,4,6-TCP) and developed 2,4,6-TCP dechlorinating activity, PCP could be ortho-dechlorinated to 3,4,5,-trichlorophenol (3,4,5-TCP) via 2,3,4,5-tetrachlorophenol as the intermediary. However, due to PCP's higher hydrophobicity and its higher expected Gibbs free energy yield, it was adsorbed to the sludge and dechlorinated preferentially to 2,4,6-TCP. This resulted in the inhibition of 2,4,6-TCP dechlorination. PCP removal under acidogenic condition was attributed to both reductive dechlorination and adsorption. At low PCP loads of 0.48micromoles/gMLVSS.d, dechlorination was the dominant removal mechanism (69% of total removal), while at the higher PCP load of 9.3micromoles/gMLVSS.d, adsorption was the main mechanism (82% of total removal). Attempts to induce meta or para position dechlorination of PCP failed when using meta position chlorophenols such as 2,3,6-TCP, 3,4,5-TCP and 3,5-DCP as the initial substrates. Overall, acidogenic biotreatment was an effective process in reducing PCP loads prior to downstream biological treatment.
Collapse
Affiliation(s)
- Cheok Hong Mun
- Division of Environmental Science & Engineering, National University of Singapore, Singapore 117576.
| | | | | |
Collapse
|
13
|
Ucisik AS, Trapp S. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 54:619-627. [PMID: 17960449 DOI: 10.1007/s00244-007-9065-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
4-chlorophenol (4-CP) is a well-known hazardous chlorinated compound and a precursor for the synthesis of the herbicide 2,4-dichlorophenoxyacetate. The relation between uptake, accumulation, toxicity, and removal of 4-CP in willow trees (Salix viminalis) was determined. In addition, the feasibility of implementing phytoremediation as a treatment method for 4-CP contamination was investigated. Willows were exposed to 4-CP levels < or =79.9 mg/L in hydroponic solution. The transpiration of the trees was used to determine toxic effects. Almost no inhibition of transpiration was detected at concentrations > or =15 mg/L. For concentrations > or =37.3 mg/L, transpiration decreased to < or =50%, and the trees wilted. Trees exposed to 79.9 mg/L wilted and eventually died. For concentrations of 79.9 mg/L, a significantly higher amount of 4-CP remained at the end of experiments in the test system compared with the amount remaining at all other concentrations. The loss of chemical from the system in experiments with trees was high, < or =99.5%. In treeless experiments, the mass loss of 4-CP was only 6% to 10%. The results indicated that degradation in the root zone is the main reason for the removal of 4-CP from the media. Phytoremediation of 4-CP in willow trees seems to be a remediation option, especially at concentrations <37.3 mg/L, at which point degradation of 4-CP is rapid and efficient, and the toxic effects on trees are not lethal.
Collapse
Affiliation(s)
- A S Ucisik
- Institute of Environment and Resources, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark.
| | | |
Collapse
|
14
|
Zhao BX, Li XZ, Wang P. 2,4-Dichlorophenol Degradation by an Integrated Process: Photoelectrocatalytic Oxidation and E-Fenton Oxidation. Photochem Photobiol 2007; 83:642-6. [PMID: 17132072 DOI: 10.1562/2006-09-05-ra-1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new reactor system was designed for an integrated process involving photoelectrocatalytic oxidation (PECO) and electro-Fenton (E-Fenton) oxidation. Its efficiency was evaluated in terms of 2,4-dichlorophenol (2,4-DCP) degradation in aqueous solution. In this process, a TiO2 electrode and an iron (Fe) electrode were used as anodes in parallel, while graphite felt (GF) was used as a cathode. When an electrical current is applied between the anodes and the cathode, the iron anode can release Fe2+ and the GF cathode can generate H2O2 continuously in the reaction solution. Under UV-A illumination, while a H2O2-assisted PECO reaction occurs on the surface of the TiO2 photo anode, an E-Fenton reaction takes place in the solution. The experimental results demonstrated that 2,4-DCP degradation in aqueous solution was greatly enhanced because of the interaction between the two types of reactions. Moreover, the effect of pH as an important factor was investigated. It was found that the combined reaction becomes less pH sensitive than the typical E-Fenton reaction and may be suitable for application in a wide pH range.
Collapse
Affiliation(s)
- B X Zhao
- Research Center for Green Chemistry and Technology, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | |
Collapse
|
15
|
Marsolek MD, Kirisits MJ, Rittmann BE. Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 2006; 18:351-8. [PMID: 17091354 DOI: 10.1007/s10532-006-9069-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 07/04/2006] [Indexed: 11/30/2022]
Abstract
Chlorinated aromatic compounds challenge our environment and wastewater treatment processes due to their biorecalcitrance and inhibition. In particular, 2,4,5-trichlorophenol (TCP) seems to demonstrate greater resistance to biodegradation than other trichlorophenols and is a known uncoupler of the electron transport chain, although little work addresses this compound specifically. Here, we investigate the biorecalcitrance, inhibition, and adaptation to 2,4,5-trichlorophenol by aerobic mixed microbial communities. We show that 2,4,5-trichlorophenol is strongly resistant to biodegradation at concentrations greater than 40 microM, demonstrates inhibition to respiration in direct proportion to 2,4,5-trichlorophenol concentration (with 50% inhibition projected near 85 microM 2,4,5-trichlorophenol), and does not sustain biomass in continuous reactors, even when all input 2,4,5-trichlorophenol is degraded. Communities showed consistent adaptation patterns to 2,4,5-trichlorophenol at concentrations of 10 microM and 20 microM, but these patterns diverged at concentrations greater than 40 microM. Finally, thermodynamic approximations were used to estimate the yield of 2,4,5-trichlorophenol as 0.165 gVSS/gCOD, a low value that partially explains why biodegradation of 2,4,5-trichlorophenol did not sustain the biomass. In particular, we estimated that the minimum concentration to support steady-state biomass (S (min)) is approximately 180 microM, a value much larger than the 40-microM concentration that is strongly resistant to biodegradation. Thus, readily biodegradable concentrations of 2,4,5-trichlorophenol are too low to sustain the biomass that biodegrades it.
Collapse
Affiliation(s)
- Michael D Marsolek
- Department of Chemical Engineering, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
16
|
Ehlers GA, Rose PD. An integrated anaerobic/aerobic bioprocess for the remediation of chlorinated phenol-contaminated soil and groundwater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:701-9. [PMID: 16929640 DOI: 10.2175/106143006x101728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.
Collapse
Affiliation(s)
- George A Ehlers
- Environmental Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa.
| | | |
Collapse
|
17
|
Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system. Process Biochem 2005. [DOI: 10.1016/j.procbio.2005.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Buitrón G, Schoeb ME, Moreno-Andrade I, Moreno JA. Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-chlorophenol. WATER RESEARCH 2005; 39:1015-1024. [PMID: 15766956 DOI: 10.1016/j.watres.2004.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 07/09/2004] [Accepted: 12/21/2004] [Indexed: 05/24/2023]
Abstract
The operation of a sequencing batch reactor (SBR) exposed to high concentration peaks (shock loads) of a toxic compound (4-chlorophenol, 4CP) was evaluated. Two control strategies based on on-line measurements of the dissolved oxygen concentration were tested. The first strategy, called variable timing control (VTC), detects the end of the reaction period to stop it. In the second control strategy, called observer-based time optimal control (OB-TOC), the automated system tries to maintain the critical specific growth rate by controlling the feed rate, i.e. the maximum growth rate when the substrate is toxic. The system operating under the VTC strategy presented a stable and efficient operation when the acclimated microorganisms (to an initial concentration of 350 mg 4CP/L) were exposed to punctual concentration peaks of 700 mg 4CP/L. A 4CP concentration peak higher than or equal to 1050 mg/L disturbed the system (1 month to recover). A 1400 mg/L peak caused strong inhibition that shut down the metabolic activity of the microorganisms, leading to reactor failure. With the OB-TOC strategy, the system was stable and worked efficiently when punctual concentration peaks of 700, 1050 and 1400 mg 4CP/L were fed. The system controlled by the OB-TOC strategy treated 1400 mg 4CP/L in less than 8h without affecting the operation of the reactor. The conclusion is that the OB-TOC strategy is more efficient than the VTC strategy to control a bioreactor when there are variations of concentrations of toxic organic compounds.
Collapse
Affiliation(s)
- Germán Buitrón
- Environmental Bioprocess Department, Institute of Engineering, UNAM, C.U. Apartado Postal 70-472, 04510 Coyacan, Mexico, DF, Mexico.
| | | | | | | |
Collapse
|
19
|
Mogensen AS, Dolfing J, Haagensen F, Ahring BK. Potential for anaerobic conversion of xenobiotics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 82:69-134. [PMID: 12747566 DOI: 10.1007/3-540-45838-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research on reactor and in situ bioaugmentation is reported.
Collapse
Affiliation(s)
- A S Mogensen
- BioCentrum-DTU, Building 227, The Technical University of Denmark, 2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
20
|
Warner KA, Gilmour CC, Capone DG. Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. FEMS Microbiol Ecol 2002; 40:159-65. [DOI: 10.1111/j.1574-6941.2002.tb00948.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Bae HS, Yamagishi T, Suwa Y. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. MICROBIOLOGY (READING, ENGLAND) 2002; 148:221-227. [PMID: 11782514 DOI: 10.1099/00221287-148-1-221] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although chlorophenol (CP) degradation has been studied, no bacterium responsible for degradation of CP under denitrifying conditions has been isolated. Moreover, little substantial evidence for anaerobic degradation of CPs coupled with denitrification is available even for mixed cultures. Degradation of CP [2-CP, 3-CP, 4-CP, 2,4-dichlorophenol (DCP) or 2,6-DCP] under denitrifying conditions was examined in anaerobic batch culture inoculated with activated sludge. Although 3-CP, 4-CP, 2,4-DCP and 2,6-DCP were not stably degraded, 2-CP was degraded and its degradation capability was sustained in a subculture. However, the rate of 2-CP degradation was not significantly enhanced by subculturing. In 2-CP-degrading cultures, nitrate was consumed stoichiometrically and concomitantly during 2-CP degradation, and a dechlorination intermediate was not detected, suggesting that 2-CP degradation was coupled with nitrate reduction. A 2-CP-degrading enrichment culture degraded 2-CP in the presence of nitrate, but did not in the absence of nitrate or the presence of sulfate. This suggests that the enrichment culture strictly requires nitrate for degradation of 2-CP. The apparent specific growth rate of the 2-CP degrading species was 0.0139 d(-1). Thus the apparent doubling time of the 2-CP-degrading population in the enrichment culture was greater than 50 d, which may explain difficulty in enrichment and isolation of micro-organisms responsible for CP degradation under denitrifying conditions.
Collapse
Affiliation(s)
- Hee-Sung Bae
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| | - Takao Yamagishi
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| | - Yuichi Suwa
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| |
Collapse
|
22
|
Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate. Biodegradation 1997. [DOI: 10.1007/bf00056426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
|
24
|
Bae HS, Lee JM, Lee ST. Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 1996; 145:125-9. [PMID: 8931337 DOI: 10.1111/j.1574-6968.1996.tb08566.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A newly isolated Arthrobacter ureafaciens, strain CPR706, could degrade 4-chlorophenol via a new pathway, in which the chloro-substituent was eliminated in the first step and hydroquinone was produced as a transient intermediate. Strain CPR706 exhibited much higher substrate tolerance and degradation rate than other strains that degraded 4-chlorophenol by the hydroxylation at the second carbon position to form chlorocatechol. Strain CPR706 could also degrade other para-substituted phenols (4-nitro-, 4-bromo-, 4-iodo-, and 4-fluoro-phenol) via the hydroquinone pathway.
Collapse
Affiliation(s)
- H S Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejun, South Korea
| | | | | |
Collapse
|
25
|
Sanford RA, Cole JR, Löffler FE, Tiedje JM. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 1996; 62:3800-8. [PMID: 8837437 PMCID: PMC168189 DOI: 10.1128/aem.62.10.3800-3808.1996] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Strain Co23, an anaerobic spore-forming microorganism, was enriched and isolated from a compost soil on the basis of its ability to grow with 2,3-dichlorophenol (DCP) as its electron acceptor, ortho chlorines were removed from polysubstituted phenols but not from monohalophenols. Growth by chlororespiration was indicated by a growth yield of 3.24 g of cells per mol of reducing equivalents (as 2[H]) from lactate oxidation to acetate in the presence of 3-chloro-4-hydroxybenzoate but no growth in the absence of the halogenated electron acceptor. Other indicators of chlororespiration were the fraction of electrons from the electron donor used for dechlorination (0.67) and the H2 threshold concentration of < 1.0 ppm. Additional electron donors utilized for reductive dehalogenation were pyruvate, formate, butyrate, crotonate, and H2. Pyruvate supported homoacetogenic growth in the absence of an electron acceptor. Strain Co23 also used sulfite, thiosulfate, and sulfur as electron acceptors for growth, but it did not use sulfate, nitrate or fumarate. The temperature optimum for growth was 37 degrees C; however, the rates of dechlorination were optimum at 45 degrees C and activity persisted to temperatures as high as 55 degrees C. The 16S rRNA sequence was determined, and strain Co23 was found to be related to Desulfitobacterium dehalogenans JW/IU DC1 and Desulfitobacterium strain PCE1, with sequence similarities of 97.2 and 96.8%, respectively. The phylogenetic and physiological properties exhibited by strain Co23 place it into a new species designated Desulfitobacterium chlororespirans.
Collapse
Affiliation(s)
- R A Sanford
- Center for Microbial Ecology, Michigan State University, East Lansing 48824-1325, USA
| | | | | | | |
Collapse
|
26
|
White C, Gadd GM. A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1996; 17:116-23. [PMID: 8987895 DOI: 10.1007/bf01570054] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Detailed nutrient requirements were determined to maximise efficacy of a sulphate-reducing bacterial mixed culture for biotechnological removal of sulphate, acidity and toxic metals from waste waters. In batch culture, lactate produced the greatest biomass, while ethanol was more effective in stimulating sulphide production and acetate was less effective. The presence of additional bicarbonate and H2 only marginally stimulated sulphide production. The sulphide output per unit of biomass was greatest using ethanol as substrate. In continuous culture, ethanol and lactate were used directly as efficient substrates for sulphate reduction while acetate yielded only slow growth. Glucose was utilised following fermentation to organic acids and therefore had a deleterious effect on pH. Ethanol was selected as the most efficient substrate due to cost and efficient yield of sulphide. On ethanol, the presence of additional carbon sources had no effect on growth or sulphate reduction in batch culture but the presence of complex nitrogen sources (yeast extract or cornsteep) stimulated both. Cornsteep showed the strongest effect and was also preferred on cost grounds. In continuous culture, cornsteep significantly improved the yield of sulphate reduced per unit of ethanol consumed. These results suggest that the most efficient nutrient regime for bioremediation using sulphate-reducing bacteria required both ethanol as carbon source and cornsteep as a complex nitrogen source.
Collapse
Affiliation(s)
- C White
- Department of Biological Sciences, University of Dundee, Scotland, UK
| | | |
Collapse
|
27
|
Susarla S, Masunaga S, Yonezawa Y. Biotransformation of halogenated benzenes in anaerobic sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 1996; 3:71-74. [PMID: 24234950 DOI: 10.1007/bf02985492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/1996] [Accepted: 06/05/1996] [Indexed: 06/02/2023]
Abstract
The transformation kinetics of halogen substituted benzenes was examined in estuarine sediment. The sediment was sulfidogenic with sulfate concentration of 20 mmole/l. All compounds transformed without any lag period, with rate constants between 0.0016 and 0.0342 day(-1) or half-lives of 20 and 433 days. For the compounds with different halogen substituents on the aromatic ring, the transformation rate of the compound decreased in the order: I s> Br s> Cl s> F.
Collapse
Affiliation(s)
- S Susarla
- National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, 305, Ibaraki, Japan
| | | | | |
Collapse
|
28
|
Kennes C, Wu WM, Bhatnagar L, Zeikus JG. Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Appl Microbiol Biotechnol 1996; 44:801-6. [PMID: 8867638 DOI: 10.1007/bf00178622] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anaerobic granules developed for the treatment of pentachlorophenol (PCP) completely mineralized 14C-labeled PCP to 14CH4 and 14CO2. Release of chloride ions from PCP was performed by live cells in the granules under anaerobic conditions. No chloride ions were released under aerobic conditions or by autoclaved cells. Addition of sulfate enhanced the initial chloride release rate and accelerated the process of mineralization of 14C-labeled PCP. Addition of molybdate (10 mM) inhibited the chloride release rate and severely inhibited PCP mineralization. This suggests involvement of sulfate-reducing bacteria in PCP dechlorination and mineralization. Addition of 2-bromoethane sulfonate slightly decreased the chloride release rate and completely stopped production of 14CH4 and 14CO2 from [14C]PCP. 2,4,6-trichlorophenol was observed as an intermediate during PCP dechlorination. On the basis of experimental results, dechlorination of 2,4,6-trichlorophanol by the granules was conducted through 2,4-dichlorophenol, 4-chlorophenol or 2-chlorophenol to phenol at pH 7.0-7.2.
Collapse
Affiliation(s)
- C Kennes
- Michigan Biotechnology Institute, Lansing, 48910-8396, USA
| | | | | | | |
Collapse
|
29
|
Ejlertsson J, Johansson E, Karlsson A, Meyerson U, Svensson BH. Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie Van Leeuwenhoek 1996; 69:67-74. [PMID: 8678481 DOI: 10.1007/bf00641613] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The potential for biological transformation of 23 xenobiotic compounds by microorganisms in municipal solid waste (MSW) samples from a laboratory scale landfill reactor was studied. In addition the influence of these xenobiotic compounds on methanogenesis was investigated. All R11, 1,1 dichloroethylene, 2,4,6 trichlorophenol, dimethyl phthalate, phenol, benzoate and phthalic acid added were completely transformed during the period of incubation ( > 100 days). Parts of the initially added perchloroethylene, trichloroethylene, R12, R114, diethyl phthalate, dibutyl phthalate and benzylbutyl phthalate were transformed. Methanogenesis from acetate was completely inhibited in the presence of 2,5 dichlorophenol, whereas 2,4,6 trichlorophenol and R11 showed an initial inhibition, whenafter methane formation recovered. No transformation or effect on the anaerobic microflora occurred for R13, R22, R114, 3 chlorobenzoate, 2,4,6 trichlorobenzoate, bis(2 ethyl)hexyl phthalate, diisodecyl phthalate and dinonyl phthalate. The results indicate a limited potential for degradation, of the compounds tested, by microorganisms developing in a methanogenic landfill environment as compared with other anaerobic habitats such as sewage digestor sludge and sediments.
Collapse
Affiliation(s)
- J Ejlertsson
- Department of Water and Environmental Studies, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
30
|
Bae HS, Lee JM, Kim YB, Lee ST. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation 1996; 7:463-9. [PMID: 9188195 DOI: 10.1007/bf00115293] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as an additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.
Collapse
Affiliation(s)
- H S Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejun, Korea
| | | | | | | |
Collapse
|
31
|
Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. Appl Microbiol Biotechnol 1995. [DOI: 10.1007/bf00164505] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Madsen T, Rasmussen HB, Nilsson L. Anaerobic biodegradation potentials in digested sludge, a freshwater swamp and a marine sediment. CHEMOSPHERE 1995; 31:4243-4258. [PMID: 8520926 DOI: 10.1016/0045-6535(95)00300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An anaerobic gas production test was used for determining the potential biodegradation of 22 organic chemicals under methanogenic conditions. Nine of the examined chemicals were extensively mineralized (> 75%) both in sewage sludge and in a freshwater swamp indicating good agreement between biodegradation potentials in these habitats. Samples from a marine sediment showed a less extensive mineralization of most of the test chemicals, and lag periods of several weeks often preceded net gas production. As marine sediments usually contain sulfate at the time of collection, the assessment of biodegradation potentials in such environments is probably more reliable when using a method based on sulfate reduction instead of methanogenic gas production. The results of the tests indicate that the commonly recommended washing of sludge solids can be eliminated by applying a more diluted inoculum.
Collapse
Affiliation(s)
- T Madsen
- VKI Water Quality Institute, Hørsholm, Denmark
| | | | | |
Collapse
|
33
|
Juteau P, Beaudet R, McSween G, Lépine F, Bisaillon JG. Study of the reductive dechlorination of pentachlorophenol by a methanogenic consortium. Can J Microbiol 1995; 41:862-8. [PMID: 8590401 DOI: 10.1139/m95-119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pentachlorophenol (PCP) dechlorination by a methanogenic consortium was observed when glucose, formate, lactate, or yeast extract was present in the mineral medium as a secondary carbon source. Acetate was not a good substrate to sustain dechlorination. The consortium was able to dechlorinate the different monochlorophenols, although the chlorine in position ortho and meta was removed more readily than in para position. Dechlorination was most efficient at 37 degrees C. At 45 degrees C, the first PCP dechlorination steps were very rapid, but 3,5-dichlorophenol (3,5-DCP) was not further dechlorinated. At 15 and 4 degrees C, dechlorination was very slow. The dechlorination of PCP to 3-chlorophenol (3-CP) was still observed after the consortium had been subjected to heat treatment (80 degrees C, 60 min), suggesting that spore-forming bacteria were responsible. The dechlorinating activity of the consortium was significantly reduced by the presence of hydrogen, 2-bromoethanosulfonic acid (BESA), or sulfate but not of nitrate. The dechlorination of 3-CP was completely inhibited by heat treatment or the presence of BESA, suggesting that a syntrophic microorganism would be involved. Vigorous agitation of the consortium stopped the dechlorination, but the presence of DEAE-Sephacel acting as a support was very efficient in restoring the activity, suggesting that association between certain members of the consortium was important.
Collapse
Affiliation(s)
- P Juteau
- Centre de recherche en microbiologie, Université du Québec, Ville de Laval, Canada
| | | | | | | | | |
Collapse
|
34
|
Armenante PM, Shu HY, Huang CR, Kung CM, Kafkewitz D. Kinetics of the sequential dechlorination of 2,4,6-trichlorophenol by an anaerobic microbial population. Biotechnol Lett 1995. [DOI: 10.1007/bf00129397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Togna MT, Kafkewitz D, Armenante P. Rapid dehalogenation of 2,4,6-trichlorophenol at alkaline pH by an anaerobic enrichment culture. Lett Appl Microbiol 1995. [DOI: 10.1111/j.1472-765x.1995.tb01299.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Utkin I, Dalton DD, Wiegel J. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 1995; 61:346-51. [PMID: 7887614 PMCID: PMC167288 DOI: 10.1128/aem.61.1.346-351.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Resting cells of Desulfitobacterium dehalogenans JW/IU-DC1 growth with pyruvate and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) as the electron acceptor and inducer of dehalogenation reductively ortho-dehalogenate pentachlorophenol (PCP); tetrachlorophenols (TeCPs); the trichlorophenols 2,3,4-TCP, 2,3,6-TCP, and 2,4,6-TCP; the dichlorophenols 2,3-DCP, 2,4-DCP, and 2,6-DCP; 2,6-dichloro-4-R-phenols (2,6-DCl-4-RPs, where R is -H, -F, -Cl, -NO2, -CO2, or -COOCH3; 2-chloro-4-R-phenols (2-Cl-4-RPs, where R is -H, -F, -Cl, -Br, -NO2, -CO2-, -CH2CO2, or -COOCH3); and the bromophenols 2-BrP, 2,6-DBrP, and 2-Br-4ClP [corrected]. Monochlorophenols, the dichlorophenols 2,5-DCP, 3,4-DCP, and 3,5-DCP, the trichlorophenols 2,3,5-TCP, 2,4,5-TCP, and 3,4,5-TCP, and the fluorinated analog of 3-Cl-4-OHPA, 3-F-4-OHPA ("2-F-4-CH2CO2- P"), are not dehalogenated. A chlorine substituent in position 3 (meta), 4 (para), or 6 (second ortho) of the phenolic moiety facilitates ortho dehalogenation in position 2. Chlorine in the 5 (second meta) position has a negative effect on the dehalogenation rate or even prevents dechlorination in the 2 position. In general, 2,6-DCl-4-RPs are dechlorinated faster than the corresponding 2-Cl-4-RPs with the same substituent R in the 4 position. The highest dechlorination rate, however, was found for dechlorination of 2,3-DCP, with a maximal observed first-order rate constant of 19.4 h-1 g (dry weight) of biomass-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Utkin
- Department of Microbiology, University of Georgia, Athens 30602-2605
| | | | | |
Collapse
|
37
|
Dolfing J, Beurskens JEM. The Microbial Logic and Environmental Significance of Reductive Dehalogenation. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
38
|
Fetzner S, Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 1994; 58:641-85. [PMID: 7854251 PMCID: PMC372986 DOI: 10.1128/mr.58.4.641-685.1994] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.
Collapse
Affiliation(s)
- S Fetzner
- Institut für Mikrobiologie der Universität Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
39
|
Jones GJ, Bourne DG, Blakeley RL, Doelle H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. NATURAL TOXINS 1994; 2:228-35. [PMID: 7952948 DOI: 10.1002/nt.2620020412] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacterial degradation of the cyanobacterial cyclic peptide hepatotoxin microcystin was confirmed in natural waters and by isolated laboratory strains. Degradation of 1 mg L-1 microcystin LR typically began 2-8 days after addition to surface water samples. At concentrations greater than 1 mg L-1 there was an initial slow removal of microcystin LR, rather than a distinct lag (or conditioning) phase, before rapid degradation commenced. The lag phase was absent upon re-addition of microcystin LR to the water. Both single strains and mixed bacterial cultures capable of degrading microcystin LR were isolated from surface water samples. One single strain isolated was a gram-negative rod and appeared to be a Pseudomonas sp., although standard taxonomic tests have given inconclusive results. Degradative activity was mostly intracellular and equally active against microcystin LR and RR, but not against nodularin.
Collapse
Affiliation(s)
- G J Jones
- CSIRO, Division of Water Resources, Griffith, New South Wales, Australia
| | | | | | | |
Collapse
|
40
|
Effect of pH on the anaerobic dechlorination of chlorophenols in a defined medium. Appl Microbiol Biotechnol 1993. [DOI: 10.1007/bf00164465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Häggblom MM, Rivera MD, Young LY. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 1993; 59:1162-7. [PMID: 8476290 PMCID: PMC202255 DOI: 10.1128/aem.59.4.1162-1167.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. Utilization of each chlorophenol and chlorobenzoate isomer was observed under at least one reducing condition; however, no single reducing condition permitted the metabolism of all six compounds tested. The anaerobic biodegradation of the chlorophenols and chlorobenzoates depended on the electron acceptor available and on the position of the chlorine substituent. In general, similar activities were observed under the different reducing conditions in both the freshwater and estuarine sediments. Under denitrifying conditions, degradation of 3- and 4-chlorobenzoate was accompanied by nitrate loss corresponding reasonably to the stoichiometric values expected for complete oxidation of the chlorobenzoate to CO2. Under sulfidogenic conditions, 3- and 4-chlorobenzoate, but not 2-chlorobenzoate, and all three monochlorophenol isomers were utilized, while under methanogenic conditions all compounds except 4-chlorobenzoate were metabolized. Given that the pattern of activity appears different for these chlorinated compounds under each reducing condition, their biodegradability appears to be more a function of the presence of competent microbial populations than one of inherent molecular structure.
Collapse
Affiliation(s)
- M M Häggblom
- Institute of Environmental Medicine, New York University Medical Center, New York 10016
| | | | | |
Collapse
|
42
|
Abstract
Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.
Collapse
Affiliation(s)
- M M Häggblom
- Institute of Environmental Medicine, New York University Medical Center, NY
| |
Collapse
|
43
|
Madsen T, Licht D. Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 1992; 58:2874-8. [PMID: 1444400 PMCID: PMC183021 DOI: 10.1128/aem.58.9.2874-2878.1992] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An obligately anaerobic bacterium which transforms several chlorinated phenols was isolated. Dechlorination of the substituents ortho to the phenolic OH group was preferred, while removal of a meta-substituted chlorine was observed only with 3,5-dichlorophenol. The bacterium was a gram-positive, endospore-forming, motile, slightly curved rod. Sulfate was not reduced. Nitrate was reduced via nitrite to ammonium. The bacterium is related to the genus Clostridium. The highest growth rate was obtained in a medium containing pyruvate and yeast extract. Pyruvate supported growth as the sole source of carbon, and the fermentation of pyruvate produced almost equimolar amounts of acetate.
Collapse
Affiliation(s)
- T Madsen
- Department of General Microbiology, University of Copenhagen, Denmark
| | | |
Collapse
|