1
|
|
2
|
Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The industrial production of lactic acid (LA) is mainly based on bacterial fermentation. This process can result in enantiopure or racemic mixture according to the producing organism. Between the enantiomers, L-lactic acid shows superior market value. Recently, we reported a novel anaplerotic pathway called capnophilic lactic fermentation (CLF) that produces a high concentration of LA by fermentation of sugar in the anaerobic thermophilic bacterium Thermotoga neapolitana. The aim of this work was the identification of the enantiomeric characterization of the LA produced by T. neapolitana and identification of the lactate dehydrogenase in T. neapolitana (TnLDH) and related bacteria of the order Thermotogales. Chemical derivatization and GC/MS analysis were applied to define the stereochemistry of LA from T. neapolitana. A bioinformatics study on TnLDH was carried out for the characterization of the enzyme. Chemical analysis showed a 95.2% enantiomeric excess of L-LA produced by T. neapolitana. A phylogenetic approach clearly clustered the TnLDH together with the L-LDH from lactic acid bacteria. We report for the first time that T. neapolitana is able to produce almost enantiopure L-lactic acid. The result was confirmed by bioinformatics analysis on TnLDH, which is a member of the L-LDH sub-family.
Collapse
|
3
|
Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol 2012; 95:1155-63. [PMID: 22782253 DOI: 10.1007/s00253-012-4269-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
3-Phenyllactic acid (PLA), which is an organic acid widely existing in honey and lactic acid bacteria fermented food, can be produced by many microorganisms, especially lactic acid bacteria. It was proved as an ideal antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi. In addition, it could be used as feed additives to replace antibiotics in livestock feeds. This article presented a review of recent studies on the existing resource, antimicrobial activity, and measurement of PLA. In addition, microorganism strains and dehydrogenases producing PLA were reviewed in detail, the metabolic pathway and regulation of PLA synthesis in LAB strains were discussed, and high-level bioproduction of PLA by microorganism fermentation was also summarized.
Collapse
|
4
|
Arai K, Ichikawa J, Nonaka S, Miyanaga A, Uchikoba H, Fushinobu S, Taguchi H. A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases. J Biochem 2011; 150:579-91. [PMID: 21828088 DOI: 10.1093/jb/mvr100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
l-Lactate dehydrogenase (l-LDH) of Lactobacillus casei (LCLDH) is a typical bacterial allosteric l-LDH that requires fructose 1,6-bisphosphate (FBP) for its enzyme activity. A mutant LCLDH was designed to introduce an inter-subunit salt bridge network at the Q-axis subunit interface, mimicking Lactobacillus pentosus non-allosteric l-LDH (LPLDH). The mutant LCLDH exhibited high catalytic activity with hyperbolic pyruvate saturation curves independently of FBP, and virtually the equivalent K(m) and V(m) values at pH 5.0 to those of the fully activated wild-type enzyme with FBP, although the K(m) value was slightly improved with FBP or Mn(2+) at pH 7.0. The mutant enzyme exhibited a markedly higher apparent denaturating temperature (T(1/2)) than the wild-type enzyme in the presence of FBP, but showed an even lower T(1/2) without FBP, where it exhibited higher activation enthalpy of inactivation (ΔH(‡)). This result is consistent with the fact that the active state is more unstable than the inactive state in allosteric equilibrium of LCLDH. The LPLDH-like network appears to be conserved in many bacterial non-allosteric l-LDHs and dimeric l-malate dehydrogenases, and thus to be a key for the functional divergence of bacterial l-LDHs during evolution.
Collapse
Affiliation(s)
- Kazuhito Arai
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhou Q, Shao WL. Molecular genetic characterization of the thermostable L-lactate dehydrogenase gene (ldhL) of Thermoanaerobacter ethanolicus JW200 and biochemical characterization of the enzyme. BIOCHEMISTRY (MOSCOW) 2010; 75:526-30. [DOI: 10.1134/s0006297910040188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Vázquez-Limón C, Vega-Badillo J, Martínez A, Espinosa-Molina G, Gosset G, Soberón X, López-Munguía A, Osuna J. Growth rate of a non-fermentative Escherichia coli strain is influenced by NAD+ regeneration. Biotechnol Lett 2007; 29:1857-63. [PMID: 17934696 DOI: 10.1007/s10529-007-9481-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/26/2007] [Indexed: 11/27/2022]
Abstract
By complementing a non-fermentative Escherichia coli (ldhA (-) pflB (-)) strain with the recombinant Zymomonas mobilis ethanol pathway (pdc, adhB), we evaluated the effect of different levels of enzymatic activity on growth rate demonstrating that there is a direct relationship between anaerobic growth rate and the total specific activity of pyruvate decarboxylase, which is the limiting enzyme of this specific fermentative NAD(+) regenerating pathway. This relationship was proved to be useful to establish a selection strategy based on growth rate for the analysis of lctE libraries, which encode lactate dehydrogenase from Bacillus subtilis.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J. Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 2007; 73:6125-33. [PMID: 17675424 PMCID: PMC2075002 DOI: 10.1128/aem.00608-07] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the agrBDCA operon in the pathogenic bacterium Listeria monocytogenes EGD-e. In-frame deletion of agrA and agrD resulted in an altered adherence and biofilm formation on abiotic surfaces, suggesting the involvement of the agr system of L. monocytogenes during the early stages of biofilm formation. Real-time PCR experiments indicated that the transcript levels of agrBDCA depended on the stage of biofilm development, since the levels were lower after the initial attachment period than during biofilm growth, whereas transcription during planktonic growth was not growth phase dependent. The mRNA quantification data also suggested that the agr system was autoregulated and pointed to a differential expression of the agr genes during sessile and planktonic growth. Although the reverse transcription-PCR experiments revealed that the four genes were transcribed as a single messenger, chemical half-life and 5' RACE (rapid amplification of cDNA ends) experiments indicated that the full size transcript underwent cleavage followed by degradation of the agrC and agrA transcripts, which suggests a complex regulation of agr transcription.
Collapse
Affiliation(s)
- Aurélie Rieu
- UMR 1229 Microbiologie du Sol et de l'Environnement, Université de Bourgogne, INRA, F-21000 Dijon, France
| | | | | | | | | |
Collapse
|
8
|
Weekes J, Yüksel GU. Molecular characterization of two lactate dehydrogenase genes with a novel structural organization on the genome of Lactobacillus sp. strain MONT4. Appl Environ Microbiol 2004; 70:6290-5. [PMID: 15466577 PMCID: PMC522140 DOI: 10.1128/aem.70.10.6290-6295.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two lactate dehydrogenase (ldh) genes from Lactobacillus sp. strain MONT4 were cloned by complementation in Escherichia coli DC1368 (ldh pfl) and were sequenced. The sequence analysis revealed a novel genomic organization of the ldh genes. Subcloning of the individual ldh genes and their Northern blot analyses indicated that the genes are monocistronic.
Collapse
Affiliation(s)
- Jennifer Weekes
- Department of Food Science and Toxicology, University of Idaho, Moscow, ID 83844-2312, USA
| | | |
Collapse
|
9
|
Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P. Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 2004; 186:3749-59. [PMID: 15175288 PMCID: PMC419957 DOI: 10.1128/jb.186.12.3749-3759.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pyruvate oxidase gene (poxB) from Lactobacillus plantarum Lp80 was cloned and characterized. Northern blot and primer extension analyses revealed that transcription of poxB is monocistronic and under the control of a vegetative promoter. poxB mRNA expression was strongly induced by aeration and was repressed by glucose. Moreover, Northern blotting performed at different stages of growth showed that poxB expression is maximal in the early stationary phase when glucose is exhausted. Primer extension and in vivo footprint analyses revealed that glucose repression of poxB is mediated by CcpA binding to the cre site identified in the promoter region. The functional role of the PoxB enzyme was studied by using gene overexpression and knockout in order to evaluate its implications for acetate production. Constitutive overproduction of PoxB in L. plantarum revealed the predominant role of pyruvate oxidase in the control of acetate production under aerobic conditions. The DeltapoxB mutant strain exhibited a moderate (20 to 25%) decrease in acetate production when it was grown on glucose as the carbon source, and residual pyruvate oxidase activity that was between 20 and 85% of the wild-type activity was observed with glucose limitation (0.2% glucose). In contrast, when the organism was grown on maltose, the poxB mutation resulted in a large (60 to 80%) decrease in acetate production. In agreement with the latter observation, the level of residual pyruvate oxidase activity with maltose limitation (0.2% maltose) was less than 10% of the wild-type level of activity.
Collapse
Affiliation(s)
- Frédérique Lorquet
- Unité de Génétique, Institut des Sciences de la Vie, Université catholique de Louvain, 5 Place Croix du Sud, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou S, Shanmugam KT, Ingram LO. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 2003; 69:2237-44. [PMID: 12676706 PMCID: PMC154814 DOI: 10.1128/aem.69.4.2237-2244.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial production of L-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of L-(+) and D-(-) isomers. For most uses of PLA, the L-(+) isomer is more abundant. As an approach to reduce costs associated with biocatalysis (complex nutrients, antibiotics, aeration, product purification, and waste disposal), a recombinant derivative of Escherichia coli W3110 was developed that contains five chromosomal deletions (focA-pflB frdBC adhE ackA ldhA). This strain was constructed from a D-(-)-lactic acid-producing strain, SZ63 (focA-pflB frdBC adhE ackA), by replacing part of the chromosomal ldhA coding region with Pediococcus acidilactici ldhL encoding an L-lactate dehydrogenase. Although the initial strain (SZ79) grew and fermented poorly, a mutant (SZ85) was readily isolated by selecting for improved growth. SZ85 exhibited a 30-fold increase in L-lactate dehydrogenase activity in comparison to SZ79, functionally replacing the native D-lactate dehydrogenase activity. Sequencing revealed mutations in the upstream, coding, and terminator regions of ldhL in SZ85, which are presumed to be responsible for increased L-lactate dehydrogenase activity. SZ85 produced L-lactic acid in M9 mineral salts medium containing glucose or xylose with a yield of 93 to 95%, a purity of 98% (based on total fermentation products), and an optical purity greater than 99%. Unlike other recombinant biocatalysts for L-lactic acid, SZ85 remained prototrophic and is devoid of plasmids and antibiotic resistance genes.
Collapse
Affiliation(s)
- Shengde Zhou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
11
|
Hakki EE, Akkaya MS. RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment. Enzyme Microb Technol 2001; 28:259-264. [PMID: 11166821 DOI: 10.1016/s0141-0229(00)00319-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
No amino acid or DNA sequence information in sequence databases was found for a fungal lactate dehydrogenase (LDH) isozyme. Highly conserved regions in the lactate dehydrogenase enzymes of all taxonomies are found to be betaalphabeta nucleotide binding and substrate binding sites, also catalysis/active site. The conserved regions were selected as PCR primer target regions. The degenerate primers were designed according to the codon usage, determined by analyzing a number of different genes of Rhizopus species. A fragment of the gene (ldh), coding for approximately 72% of the lactate dehydrogenase enzyme from Rhizopus oryzae, was amplified using degenerate primers by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). The size of the amplified fragment containing betaalphabeta nucleotide binding site, substrate binding site and catalysis/active site is found to be about 700 bp. The reported degenerate PCR primers and the amplification conditions may lead to the cloning of the lactate dehydrogenase gene of R. oryzae, which is an important organism due to its utilization in lactic acid and enzyme productions in industrial scales.
Collapse
Affiliation(s)
- E E. Hakki
- Middle East Technical University, Department of Chemistry, Biotechnology Program, TR-06531, Ankara, Turkey
| | | |
Collapse
|
12
|
Arai K, Kamata T, Uchikoba H, Fushinobu S, Matsuzawa H, Taguchi H. Some Lactobacillus L-lactate dehydrogenases exhibit comparable catalytic activities for pyruvate and oxaloacetate. J Bacteriol 2001; 183:397-400. [PMID: 11114942 PMCID: PMC94891 DOI: 10.1128/jb.183.1.397-400.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 10/06/2000] [Indexed: 11/20/2022] Open
Abstract
The nonallosteric and allosteric L-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate K(m) values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate.
Collapse
Affiliation(s)
- K Arai
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Mora D, Parini C, Fortina MG, Manachini PL. Development of molecular RAPD marker for the identification of Pediococcus acidilactici strains. Syst Appl Microbiol 2000; 23:400-8. [PMID: 11108020 DOI: 10.1016/s0723-2020(00)80071-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A RAPD analysis performed using a single primer targeted to the pediocin AcH/PA-1 gene was carried out on several P. acidilactici strains and on some related species of lactic acid bacteria. The high degree of genetic variability detected in P. acidilactici strains did not allow the selection of a common RAPD fragment that could be chosen as a potential species-specific DNA marker. Nevertheless a 700 bp fragment, that was found to be peculiar of all potential pediocin producer strains analyzed, was cloned and sequenced with the aim to develop a species specific PCR marker. Sequence analysis of the cloned 700 bp fragment showed one putative small open reading frame (ORF1), with no significant homology with known genes, and a partial putative second coding region (ORF2) with a high degree of similarity with several methionyl tRNA synthesis (metS) genes. The two coding regions were separated by a short spacer region. Primers targeted to ORF2 plus part of the spacer region and primers designed for the amplification of the entire cloned RAPD fragment were found to be species-specific for the detection of P. acidilactici strains. Furthermore primers designed on the ORF1 sequence allowed the amplification of a 439 bp fragment only in some P. acidilactici strains, including pediocin producing strains.
Collapse
Affiliation(s)
- D Mora
- Department of Food Science and Microbiology, Industrial Microbiology section, University of Milano, Italy.
| | | | | | | |
Collapse
|
14
|
Derzelle S, Hallet B, Francis KP, Ferain T, Delcour J, Hols P. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J Bacteriol 2000; 182:5105-13. [PMID: 10960094 PMCID: PMC94658 DOI: 10.1128/jb.182.18.5105-5113.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An inverse PCR strategy based on degenerate primers has been used to identify new genes of the cold shock protein family in Lactobacillus plantarum. In addition to the two previously reported cspL and cspP genes, a third gene, cspC, has been cloned and characterized. All three genes encode small 66-amino-acid proteins with between 73 and 88% identity. Comparative Northern blot analyses showed that the level of cspL mRNA increases up to 17-fold after a temperature downshift, whereas the mRNA levels of cspC and cspP remain unchanged or increase only slightly (about two- to threefold). Cold induction of cspL mRNA is transient and delayed in time as a function of the severity of the temperature downshift. The cold shock behavior of the three csp mRNAs contrasts with that observed for four unrelated non-csp genes, which all showed a sharp decrease in mRNA level, followed in one case (bglH) by a progressive recovery of the transcript during prolonged cold exposure. Abundance of the three csp mRNAs was also found to vary during growth at optimal temperature (28 degrees C). cspC and cspP mRNA levels are maximal during the lag period, whereas the abundance of the cspL transcript is highest during late-exponential-phase growth. The differential expression of the three L. plantarum csp genes can be related to sequence and structural differences in their untranslated regions. It also supports the view that the gene products fulfill separate and specific functions, under both cold shock and non-cold shock conditions.
Collapse
Affiliation(s)
- S Derzelle
- Unité de Génétique, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Mora D, Fortina MG, Parini C, Daffonchio D, Manachini PL. Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-1 producing and non-producing strains. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):2027-2038. [PMID: 10931907 DOI: 10.1099/00221287-146-8-2027] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A high degree of genetic polymorphism among P. acidilactici strains was highlighted by a multilocus typing approach analysing several housekeeping genes and by sampling the whole genome using random amplified polymorphic DNA (RAPD) fingerprint analysis performed by using a single primer pedA gene targeted in low-stringency amplification conditions. Restriction fragment length polymorphism of the rpoC, ldhD/L and mle genes, and a modified RAPD analysis, permitted the grouping of Pediococcus acidilactici strains in seven genotypes (I-VII). Genotypic results obtained by analysing housekeeping genes involved in the transcription/translation machinery and in primary metabolism were supported by phylogenetic analysis based on the partial 16S rDNA sequencing of a reference strain of each of the seven clusters obtained. Three of the seven genotypes detected showed relationships with pediocin AcH/PA-1 production and carbohydrate fermentation patterns: all pediocin-producing and sucrose-positive strains were grouped in genotype VII, melibiose-, sucrose- and raffinose-positive strains in genotype VI, and arabinose-positive strains in genotype V.
Collapse
Affiliation(s)
- Diego Mora
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale1 and sezione Microbiologia Agraria, Alimentare e Ecologica2, Università di Milano, via Celoria 2, 20133 Milano, Italy
| | - Maria Grazia Fortina
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale1 and sezione Microbiologia Agraria, Alimentare e Ecologica2, Università di Milano, via Celoria 2, 20133 Milano, Italy
| | - Carlo Parini
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale1 and sezione Microbiologia Agraria, Alimentare e Ecologica2, Università di Milano, via Celoria 2, 20133 Milano, Italy
| | - Daniele Daffonchio
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale1 and sezione Microbiologia Agraria, Alimentare e Ecologica2, Università di Milano, via Celoria 2, 20133 Milano, Italy
| | - Pier Luigi Manachini
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Industriale1 and sezione Microbiologia Agraria, Alimentare e Ecologica2, Università di Milano, via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
16
|
Maleret C, Lauret R, Ehrlich SD, Morel-Deville F, Zagorec M. Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both L- and D-lactate. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3327-3333. [PMID: 9884224 DOI: 10.1099/00221287-144-12-3327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 7 kb DNA fragment was cloned from Lactobacillus sakei which contains the IdhL gene encoding the L(+)-lactate dehydrogenase (L-LDH). Analysis of the DNA sequence, Northern experiments and primer extension experiments showed that IdhL is transcribed from a single promoter, leading to a monocistronic 1.15 kb mRNA which yields the L-LDH. A stable mutant was constructed by chromosomal integration of a chloramphenicol cassette into IdhL by a double-crossover event. Both L- and D-lactate were produced by the wild-type strain whereas only residual amounts of both isomers were produced by the mutant. This demonstrates that L. sakei possesses an L-LDH producing L-lactate and a lactate racemase able to transform it to D-lactate, but is devoid of D-LDH activity. Moreover the ability to degrade L-lactate present in the medium that was observed with the mutant strain grown aerobically suggests that an L-lactate oxidase activity is also present in L. sakei.
Collapse
Affiliation(s)
- Christine Maleret
- Laboratoire de Recherches sur la Viande and Laboratoire de Génétique Microbienne F-78352 Jouy en Josas cedex, France
| | - R Lauret
- Laboratoire de Recherches sur la Viande and Laboratoire de Génétique Microbienne F-78352 Jouy en Josas cedex, France
| | - S Dusko Ehrlich
- Institut National de la Recherche Agronomique, Domaine de Vilvert, F-78352 Jouy en Josas cedex, France
| | - Françoise Morel-Deville
- Laboratoire de Recherches sur la Viande and Laboratoire de Génétique Microbienne F-78352 Jouy en Josas cedex, France
| | - Monique Zagorec
- Laboratoire de Recherches sur la Viande and Laboratoire de Génétique Microbienne F-78352 Jouy en Josas cedex, France
| |
Collapse
|
17
|
Dien BS, Hespell RB, Wyckoff HA, Bothast RJ. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(98)00064-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Savijoki K, Palva A. Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme. Appl Environ Microbiol 1997; 63:2850-6. [PMID: 9212432 PMCID: PMC168581 DOI: 10.1128/aem.63.7.2850-2856.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Lactobacillus helveticus L-(+)-lactate dehydrogenase (L-LDH) gene (ldhL) was isolated from a lambda library. The nucleotide sequence of the ldhL gene was determined and shown to have the capacity to encode a protein of 323 amino acids (35.3 kDa). The deduced sequence of the 35-kDa protein revealed a relatively high degree of identity with other lactobacillar L-LDHs. The highest identity (80.2%) was observed with the Lactobacillus casei L-LDH. The sizes and 5' end analyses of ldhL transcripts showed that the ldhL gene is a monocistronic transcriptional unit. The expression of ldhL, studied as a function of growth, revealed a high expression level at the logarithmic phase of growth. The ldhL gene is preceded by two putative -10 regions, but no corresponding -35 regions could be identified. By primer extension analysis, the ldhL transcripts were confirmed to be derived from the -10 region closest to the initiation codon. However, upstream of these regions additional putative -10/-35 regions could be found. The L-LDH was overexpressed in Escherichia coli and purified to homogeneity by two chromatographic steps. The purified L-LDH was shown to be a nonaliosteric enzyme, and amino acid residues involved in allosteric regulation were not conserved in L. helveticus L-LDH. However, a slight enhancement of enzyme activity was observed in the presence of fructose 1,6-diphosphate, particularly at neutral pH. A detailed enzymatic characterization of L-LDH was performed. The optimal reaction velocity was at pH 5.0, where the kinetic parameters K(m), and Kcat for pyruvate were 0.25 mM and 643 S-1, respectively.
Collapse
Affiliation(s)
- K Savijoki
- Agricultural Research Centre of Finland, Food Research Institute, Jokioinen, Finland
| | | |
Collapse
|
19
|
Jobin MP, Delmas F, Garmyn D, Diviès C, Guzzo J. Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl Environ Microbiol 1997; 63:609-14. [PMID: 9023938 PMCID: PMC168350 DOI: 10.1128/aem.63.2.609-614.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Leuconostoc oenos, different stresses such as heat, ethanol, and acid shocks dramatically induce the expression of an 18-kDa small heat shock protein called Lo 18. The corresponding gene (hsp18) was cloned from a genomic library of L. oenos constructed in Escherichia coli. A 2.3-kb DNA fragment carrying the hsp18 gene was sequenced. The hsp18 gene encodes a polypeptide of 148 amino acids with a calculated molecular mass of 16,938 Da. The Lo18 protein has a significant identity with small heat shock proteins of the alpha-crystallin family. The transcriptional start site was determined by primer extension. This experiment allowed us to identify the promoter region exhibiting high similarity to consensus promoter sequences of gram-positive bacteria, as well as E. coli. Northern blot analysis showed that hsp18 consists of a unique transcription unit of 0.6 kb. Moreover, hsp18 expression seemed to be controlled at the transcriptional level. This small heat shock protein was found to be peripherally associated with the membrane of L. oenos.
Collapse
Affiliation(s)
- M P Jobin
- Laboratoire de Microbiologie, ENSBANA, Dijon, France
| | | | | | | | | |
Collapse
|
20
|
Davidson BE, Kordias N, Dobos M, Hillier AJ. Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek 1996; 70:161-83. [PMID: 8879406 DOI: 10.1007/bf00395932] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current knowledge of the genomes of the lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, and members of the genera Lactobacillus, Leuconostoc, Pediococcus and Carnobacterium, is reviewed. The genomes contain a chromosome within the size range of 1.8 to 3.4 Mbp. Plasmids are common in Lactococcus lactis (most strains carry 4-7 different plasmids), some of the lactobacilli and pediococci, but they are not frequently present in S. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus or the intestinal lactobacilli. Five IS elements have been found in L. lactis and most strains carry multiple copies of at least two of them; some strains also carry a 68-kbp conjugative transposon. IS elements have been found in the genera Lactobacillus and Leuconostoc, but not in S. thermophilus. Prophages are also a normal component of the L. lactis genome and lysogeny is common in the lactobacilli, however it appears to be rare in S. thermophilus. Physical and genetic maps for two L. lactis subsp. lactis strains, two L. lactis subsp. cremoris strains and S. thermophilus A054 have been constructed and each reveals the presence of six rrn operons clustered in less than 40% of the chromosome. The L. lactis subsp. cremoris MG1363 map contains 115 genetic loci and the S. thermophilus map has 35. The maps indicate significant plasticity in the L. lactis subsp. cremoris chromosome in the form of a number of inversions and translocations. The cause(s) of these rearrangements is (are) not known. A number of potentially powerful genetic tools designed to analyse the L. lactis genome have been constructed in recent years. These tools enable gene inactivation, gene replacement and gene recovery experiments to be readily carried out with this organism, and potentially with other lactic acid bacteria and Gram-positive bacteria. Integration vectors based on temperate phage attB sites and the random insertion of IS elements have also been developed for L. lactis and the intestinal lactobacilli. In addition, a L. lactis sex factor that mobilizes the chromosome in a manner reminiscent to that seen with Escherichia coli Hfr strains has been discovered and characterized. With the availability of this new technology, research into the genome of the lactic acid bacteria is poised to undertake a period of extremely rapid information accrual.
Collapse
Affiliation(s)
- B E Davidson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Abstract
Lactic acid bacteria are characterized by a relatively simple sugar fermentation pathway that, by definition, results in the formation of lactic acid. The extensive knowledge of traditional pathways and the accumulating genetic information on these and novel ones, allows for the rerouting of metabolic processes in lactic acid bacteria by physiological approaches, genetic methods, or a combination of these two. This review will discuss past and present examples and future possibilities of metabolic engineering of lactic acid bacteria for the production of important compounds, including lactic and other acids, flavor compounds, and exopolysaccharides.
Collapse
Affiliation(s)
- W M de Vos
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| |
Collapse
|
22
|
Narumi I, Watanabe H. Sequence analysis of the L-lactate dehydrogenase-encoding gene of Deinococcus radiodurans, a suitable mesophilic counterpart for Thermus. Gene X 1996; 172:117-9. [PMID: 8654970 DOI: 10.1016/0378-1119(96)00108-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A gene encoding L-lactate dehydrogenase (LDH; EC 1.1.1.27) from Deinococcus radiodurans (Dr) was cloned and sequenced. The deduced amino acid (aa) sequence was compared to those of the Thermus aquaticus (Ta) and T. caldophilus (Tc) LDH. The similarity of the G + C contents between the Dr and Thermus genes permits the comparison of the aa sequences of LDH without considering the difference in the G + C contents. Compared to the mesophilic Dr LDH, increased numbers of hydrophobic aa, together with hydrophilic Arg, were found in the LDH from Ta and Tc, suggesting that these features would contribute to protein thermostability in part via hydrophobic and electrostatic interactions in the protein globule. Deinococcus would be a suitable mesophilic counterpart for Thermus to investigate the thermostability of proteins.
Collapse
Affiliation(s)
- I Narumi
- Biotechnology Laboratory, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Japan.
| | | |
Collapse
|
23
|
Dairi T, Asano Y. Cloning, nucleotide sequencing, and expression of an opine dehydrogenase gene from Arthrobacter sp. strain 1C. Appl Environ Microbiol 1995; 61:3169-71. [PMID: 7487048 PMCID: PMC167592 DOI: 10.1128/aem.61.8.3169-3171.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene coding for opine dehydrogenase from Arthrobacter sp. strain 1C was cloned onto plasmid pBluescript KS(-), and the nucleotide sequence of the 1,077-bp open reading frame consisting of 359 codons was identified as the odh gene. Transformed Escherichia coli cells overproduced NAD+-dependent opine dehydrogenase under control of the promoter of the lac gene on pBluescript KS(-).
Collapse
Affiliation(s)
- T Dairi
- Biotechnology Research Center, Toyama Prefectural University, Japan
| | | |
Collapse
|
24
|
Garmyn D, Ferain T, Bernard N, Hols P, Delplace B, Delcour J. Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis. J Bacteriol 1995; 177:3427-37. [PMID: 7539419 PMCID: PMC177045 DOI: 10.1128/jb.177.12.3427-3437.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene encoding D-lactate dehydrogenase was isolated on a 2.9-kb insert from a library of Pediococcus acidilactici DNA by complementation for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase and pyruvate-formate lyase double mutant. The nucleotide sequence of ldhD encodes a protein of 331 amino acids (predicted molecular mass of 37,210 Da) which shows similarity to the family of D-2-hydroxyacid dehydrogenases. The enzyme encoded by the cloned fragment is equally active on pyruvate and hydroxypyruvate, indicating that the enzyme has both D-lactate and D-glycerate dehydrogenase activities. Three other open reading frames were found in the 2.9-kb insert, one of which (rpsB) is highly similar to bacterial genes coding for ribosomal protein S2. Northern (RNA) blotting analyses indicated the presence of a 2-kb dicistronic transcript of ldhD (a metabolic gene) and rpsB (a putative ribosomal protein gene) together with a 1-kb monocistronic rpsB mRNA. These transcripts are abundant in the early phase of exponential growth but steadily fade away to disappear in the stationary phase. Primer extension analysis identified two distinct promoters driving either cotranscription of ldhD and rpsB or transcription of rpsB alone.
Collapse
Affiliation(s)
- D Garmyn
- Laboratoire de Génétique Moléculaire, Université Catholique, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
|