1
|
Armenta-Leyva B, Munguía-Ramírez B, Giménez-Lirola LG, Lin X, Ye F, Zimmerman J. Critical evaluation of strategies to achieve direct real-time PCR detection of swine pathogens in oral fluids. J Vet Diagn Invest 2023; 35:521-527. [PMID: 37337714 PMCID: PMC10467463 DOI: 10.1177/10406387231182102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Based on publications reporting improvements in real-time PCR (rtPCR) performance, we compared protocols based on heat treatment or dilution followed by direct rtPCR to standard extraction and amplification methods for the detection of porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), porcine epidemic diarrhea virus (PEDV), or Mycoplasma hyopneumoniae (MHP) in swine oral fluids (OFs). In part A, we subjected aliquots of positive OF samples to 1 of 4 protocols: protocol 1: heat (95°C × 30 min) followed by direct rtPCR; protocol 2: heat and cool (25°C × 20 min) followed by direct rtPCR; protocol 3: heat, cool, extraction, and rtPCR; protocol 4 (control): extraction and then rtPCR. In part B, positive OF samples were split into 3, diluted (D1 = 1:2 with Tris-borate-EDTA (TBE); D2 = 1:2 with negative OF; D3 = not diluted), and then tested by rtPCR using the best-performing protocol from part A (protocol 4). In part A, with occasional exceptions, heat treatment resulted in marked reduction in the detection of target and internal sample control (ISC) nucleic acids. In part B, sample dilution with TBE or OF produced no improvement in the detection of targets and ISCs. Thus, standard extraction and amplification methods provided superior detection of PRRSV, IAV, PEDV, and MHP nucleic acids in OFs.
Collapse
Affiliation(s)
- Betsy Armenta-Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Berenice Munguía-Ramírez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Xue Lin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Fangshu Ye
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Arnaboldi S, Benevenia R, Bertasi B, Galuppini E, Mangeri L, Tilola M, Bassi D, Cocconcelli PS, Stroppa A, Varisco G. Validation of a real-time PCR method on pta gene for Clostridium tyrobutyricum quantification in milk. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Cecere P, Gatto F, Cortimiglia C, Bassi D, Lucchini F, Cocconcelli PS, Pompa PP. Colorimetric Point-of-Care Detection of Clostridium tyrobutyricum Spores in Milk Samples. BIOSENSORS 2021; 11:bios11090293. [PMID: 34562883 PMCID: PMC8469627 DOI: 10.3390/bios11090293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 05/12/2023]
Abstract
Clostridium tyrobutyricum represents the main spoiling agent responsible for late blowing defects (LBD) in hard and semi-hard cheeses. Its spores are resistant to manufacturing procedures and can germinate during the long ripening process, causing the burst of the cheese paste with a consequent undesirable taste. The lower quality of blown cheeses leads to considerable financial losses for the producers. The early identification of spore contaminations in raw milk samples thus assumes a pivotal role in industrial quality control. Herein, we developed a point of care (POC) testing method for the sensitive detection of C. tyrobutyricum in milk samples, combining fast DNA extraction (with no purification steps) with a robust colorimetric loop-mediated isothermal amplification (LAMP) technique. Our approach allows for the sensitive and specific detection of C. tyrobutyricum spores (limit of detection, LoD: ~2 spores/mL), with the advantage of a clear naked-eye visualization of the results and a potential semi-quantitative discrimination of the contamination level. In addition, we demonstrated the feasibility of this strategy using a portable battery-operated device that allowed both DNA extraction and amplification steps, proving its potential for on-site quality control applications without the requirement of sophisticated instrumentation and trained personnel.
Collapse
Affiliation(s)
- Paola Cecere
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (P.C.); (F.G.)
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (P.C.); (F.G.)
| | - Claudia Cortimiglia
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza-Cremona, Italy; (C.C.); (D.B.); (F.L.); (P.S.C.)
| | - Daniela Bassi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza-Cremona, Italy; (C.C.); (D.B.); (F.L.); (P.S.C.)
| | - Franco Lucchini
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza-Cremona, Italy; (C.C.); (D.B.); (F.L.); (P.S.C.)
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza-Cremona, Italy; (C.C.); (D.B.); (F.L.); (P.S.C.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (P.C.); (F.G.)
- Correspondence:
| |
Collapse
|
4
|
Komori K, Ohkubo Y, Katano N, Motoshima H. One year investigation of the prevalence and diversity of clostridial spores in raw milk from the Tokachi area of Hokkaido. Anim Sci J 2018; 90:135-139. [PMID: 30472781 DOI: 10.1111/asj.13135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
We investigated the seasonal prevalence and diversity of clostridial spores in raw milk from the Tokachi area of Hokkaido. Samples of raw milk were collected quarterly from May 2013 through February 2014. The mean clostridial spore count for the raw milk from 336 milk tankers was 27.6 CFU/100 ml. The clostridial species isolated most frequently from raw milk samples was Clostridium tyrobutyricum. The dominant species was C. tyrobutyricum regardless of the season. The percentage of samples with low spore counts (<10 CFU/100 ml) was highest (60.9%) during winter (February) and lowest (34.5%) in autumn (November). In comparison, the percentage of samples with high spore counts (>100 CFU/100 ml) was highest (5.7%) in autumn (November) and lowest (1.1%) during spring (May).
Collapse
Affiliation(s)
- Kazuhiro Komori
- Research Center, Yotsuba Milk Products Company, Limited, Kitahiroshima, Japan
| | - Yoshiaki Ohkubo
- Research Center, Yotsuba Milk Products Company, Limited, Kitahiroshima, Japan
| | - Naoya Katano
- Research Center, Yotsuba Milk Products Company, Limited, Kitahiroshima, Japan
| | - Hidemasa Motoshima
- Research Center, Yotsuba Milk Products Company, Limited, Kitahiroshima, Japan
| |
Collapse
|
5
|
Gómez‐Torres N, Dunne M, Garde S, Meijers R, Narbad A, Ávila M, Mayer MJ. Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associated with cheese spoilage. Microb Biotechnol 2018; 11:332-345. [PMID: 29160025 PMCID: PMC5812242 DOI: 10.1111/1751-7915.12883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Late blowing defect (LBD) is a major cause of spoilage in cheeses, caused by the growth of Clostridium spp. in the cheese matrix. We investigated the application of CTP1L, a bacteriophage endolysin active against Clostridium tyrobutyricum, and its enzymatically active and cell wall-binding domains (EAD and CBD) attached to green fluorescent protein (GFP) to detect dairy-related Clostridium species by fluorescence microscopy. GFP-CTP1L and GFP-CBD demonstrated specificity for Clostridium spp. by labelling 15 and 17 of 20 Clostridium strains, respectively, but neither bound to other members of the cheese microbiota. However, GFP-EAD did not label any Clostridium strain tested. Unexpectedly, GFP-CTP1L and GFP-CBD were also able to bind to clostridial spores. In addition, GFP-CBD allowed us to visualize the vegetative cells of C. tyrobutyricum directly in the matrix of a LBD cheese. Site-directed mutants of GFP-CTP1L and GFP-CBD were made to examine the amino acids involved in binding and oligomer formation. Oligomerization was not essential for binding, but specific mutations in the CBD which affected oligomer formation also affected binding and lytic activity. We conclude that GFP-CTP1L and GFP-CBD could be good biomarkers for rapid detection of Clostridium spores in milk, so measures can be taken for the prevention of LBD in cheese, and also provide effective tools to study the development of Clostridium populations during cheese ripening.
Collapse
Affiliation(s)
- Natalia Gómez‐Torres
- Departamento de Tecnología de AlimentosInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Carretera de La Coruña km 728040MadridSpain
| | - Matthew Dunne
- European Molecular Biology Laboratory (EMBL) Hamburg OutstationNotkestrasse 8522607HamburgGermany
- Present address:
Institute of Food, Nutrition and HealthETH ZurichLFV B36, Schmelzbergstr. 78092ZurichSwitzerland
| | - Sonia Garde
- Departamento de Tecnología de AlimentosInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Carretera de La Coruña km 728040MadridSpain
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL) Hamburg OutstationNotkestrasse 8522607HamburgGermany
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic ProgrammeQuadram Institute BioscienceColneyNorwichNR4 7UAUK
| | - Marta Ávila
- Departamento de Tecnología de AlimentosInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Carretera de La Coruña km 728040MadridSpain
| | - Melinda J. Mayer
- Gut Health and Food Safety Institute Strategic ProgrammeQuadram Institute BioscienceColneyNorwichNR4 7UAUK
| |
Collapse
|
6
|
Hernández M, López-Enríquez L, Rodríguez-Lázaro D. Quantitative Detection of Clostridium perfringens by Real-Time PCR in Raw Milk. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
|
8
|
Burdychová R, Sládková P. Detection of Clostridium tyrobutyricum using cultivation and biochemical methods and polymerase chain reaction. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200755050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Nishihara M, Takahashi H, Sudo T, Kyoi D, Kawahara T, Ikeuchi Y, Fujita T, Kuda T, Kimura B, Yanahira S. Multilocus variable-number of tandem repeat analysis (MLVA) for Clostridium tyrobutyricum strains isolated from cheese production environment. Int J Food Microbiol 2014; 190:61-5. [PMID: 25190602 DOI: 10.1016/j.ijfoodmicro.2014.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 11/16/2022]
Abstract
Clostridium tyrobutyricum is a gram-positive spore-forming anaerobe that is considered as the main causative agent for late blowing in cheese due to butyric acid fermentation. In this study, multilocus variable-number of tandem repeat (VNTR) analysis (MLVA) for C. tyrobutyricum was developed to identify the source of contamination by C. tyrobutyricum spores in the cheese production environment. For each contig constructed from the results of a whole genome draft sequence of C. tyrobutyricum JCM11008(T) based on next-generation sequencing, VNTR loci that were effective for typing were searched using the Tandem Repeat Finder program. Five VNTR loci were amplified by polymerase chain reaction (PCR) to determine their number of repeats by sequencing, and MLVA was conducted. 25 strains of C. tyrobutyricum isolated from the environment, raw milk, and silage were classified into 18 MLVA types (DI=0.963). Of the C. tyrobutyricum strains isolated from raw milk, natural cheese, and blown processed cheese, strains with identical MLVA type were detected, which suggested that these strains might have shifted from natural cheese to blown processed cheese. MLVA could be an effective tool for monitoring contamination of natural cheese with C. tyrobutyricum in the processed cheese production environment because of its high discriminability, thereby allowing the analyst to trace the source of contamination.
Collapse
Affiliation(s)
- Masaharu Nishihara
- Institute of Food Hygiene, Quality Assurance Department, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Tomoko Sudo
- Institute of Food Hygiene, Quality Assurance Department, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan
| | - Daisuke Kyoi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Toshio Kawahara
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yoshihiro Ikeuchi
- Central Food Analysis Laboratory, Quality Assurance Department, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan
| | - Takashi Fujita
- Institute of Food Hygiene, Quality Assurance Department, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Shuichi Yanahira
- Institute of Food Hygiene, Quality Assurance Department, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi, Saitama 350-1165, Japan
| |
Collapse
|
10
|
Panelli S, Brambati E, Bonacina C, Feligini M. Detection of Clostridium tyrobutyricum in milk to prevent late blowing in cheese by automated ribosomal intergenic spacer analysis. J Food Sci 2014; 78:M1569-M1574. [PMID: 24106762 DOI: 10.1111/1750-3841.12229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
Clostridium tyrobutyricum has been identified as the main causal agent of the late blowing defect in cheese, with major effects on quality and commercial value. In this work, for the first time, we applied automated ribosomal intergenic spacer analysis (ARISA) approach to diagnose the presence of C. tyrobutyricum in raw milk before cheesemaking. A species-specific primer set was designed and used for this original application of the ARISA. Sensitivity of detection, reproducibility of the fluorescent PCR assay, and repeatability of the capillary electrophoretic analysis of amplicons were evaluated using DNA extracted from milk added with known amounts of C. tyrobutyricum genome copies, ranging from 3 × 10(6) to 3. Results indicated that the sensitivity of the technique permits to detect the bacterium in all the samples. The reproducibility, evaluated by analyzing 3 sets of serial dilutions, resulted satisfactory, with little deviation within PCR reactions amplifying the same starting amount of template (standard deviations ≤ 0.1, coefficients of variation ≤ 3%). The peaks' fluorescence displayed an evident correspondence with the number of genome copies contained in each dilution. The capillary electrophoretic analysis, tested by running a single PCR product per dilution point in 10 repeats, resulted efficient and highly repeatable, with excellent coefficients of variation ≤ 2% and standard deviations ≤ 0.1 in all the sample sets. This application of ARISA gives good estimates of the total C. tyrobutyricum DNA content allowing a specific, fine-scale resolution of this pollutant species in a complex system as milk. A further advantage linked to the automatization of the process.
Collapse
Affiliation(s)
- Simona Panelli
- Laboratorio Qualità dei Prodotti, Ist. Sperimentale Italiano "Lazzaro Spallanzani," Località La Quercia, Rivolta d'Adda, (Cremona), 26027, Italy
| | - Eva Brambati
- Laboratorio Qualità dei Prodotti, Ist. Sperimentale Italiano "Lazzaro Spallanzani," Località La Quercia, Rivolta d'Adda, (Cremona), 26027, Italy
| | - Cesare Bonacina
- Laboratorio Qualità dei Prodotti, Ist. Sperimentale Italiano "Lazzaro Spallanzani," Località La Quercia, Rivolta d'Adda, (Cremona), 26027, Italy
| | - Maria Feligini
- Laboratorio Qualità dei Prodotti, Ist. Sperimentale Italiano "Lazzaro Spallanzani," Località La Quercia, Rivolta d'Adda, (Cremona), 26027, Italy
| |
Collapse
|
11
|
TaqMan real time-quantitative PCR targeting the phosphotransacetylase gene for Clostridium tyrobutyricum quantification in animal feed, faeces, milk and cheese. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Abstract
The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment.
Collapse
Affiliation(s)
- Jonathan Black
- Microbiology Department, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
13
|
Draft Genome Sequence of Clostridium tyrobutyricum Strain UC7086, Isolated from Grana Padano Cheese with Late-Blowing Defect. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00614-13. [PMID: 23950123 PMCID: PMC3744679 DOI: 10.1128/genomea.00614-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Clostridium tyrobutyricum is considered the main agent of late-blowing defect in the production of hard cheese. Here, we described the draft genome sequences and annotation of C. tyrobutyricum strain UC7086, which was isolated from Grana Padano cheese with blowing defect, and C. tyrobutyricum DSM 2637 type strain in a comparative study.
Collapse
|
14
|
Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. The complex microbiota of raw milk. FEMS Microbiol Rev 2013; 37:664-98. [PMID: 23808865 DOI: 10.1111/1574-6976.12030] [Citation(s) in RCA: 479] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022] Open
Abstract
Here, we review what is known about the microorganisms present in raw milk, including milk from cows, sheep, goats and humans. Milk, due to its high nutritional content, can support a rich microbiota. These microorganisms enter milk from a variety of sources and, once in milk, can play a number of roles, such as facilitating dairy fermentations (e.g. Lactococcus, Lactobacillus, Streptococcus, Propionibacterium and fungal populations), causing spoilage (e.g. Pseudomonas, Clostridium, Bacillus and other spore-forming or thermoduric microorganisms), promoting health (e.g. lactobacilli and bifidobacteria) or causing disease (e.g. Listeria, Salmonella, Escherichia coli, Campylobacter and mycotoxin-producing fungi). There is also concern that the presence of antibiotic residues in milk leads to the development of resistance, particularly among pathogenic bacteria. Here, we comprehensively review these topics, while comparing the approaches, both culture-dependent and culture-independent, which can be taken to investigate the microbial composition of milk.
Collapse
Affiliation(s)
- Lisa Quigley
- Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Yang X, Balamurugan S, Gill CO. Effects on the development of blown pack spoilage of the initial numbers of Clostridium estertheticum spores and Leuconostoc mesenteroides on vacuum packed beef. Meat Sci 2011; 88:361-7. [PMID: 21316870 DOI: 10.1016/j.meatsci.2011.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Beef steaks were inoculated with Clostridium estertheticum spores and Leuconostoc mesenteroides cells at all combinations of numbers of 0, 10, 100 or 1000/cm(2) for each organism. After vacuum packaging the steaks were stored at 4, 1, or -1.5°C. Pack volumes were determined by water displacement at suitable intervals. Irrespective of L. mesenteroides numbers, for packs containing meat inoculated with 0, 10, 100 or 1000 spores/cm(2), 60, 16, 3 and 1 of 60 packs did not swell. The times of onset of swelling were twice as long at -1.5 as at 4°C, but they were not affected by the inoculated numbers of L. mesenteroides. Rates of pack swelling increased with increasing storage temperature and number of spores, but decreased with increasing numbers of inoculated L. mesenteroides. Lactic acid bacteria can apparently prevent development of blown pack spoilage of vacuum packs containing meat contaminated with low numbers of C. estertheticum.
Collapse
Affiliation(s)
- X Yang
- Agriculture and Agri-Food Canada Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta, Canada T4L 1W1
| | | | | |
Collapse
|
16
|
Němečková I, Rohacká H, Kučerová K, Tůma Š, Roubal P, Pechačová M, Cicvárek J, Plocková M. Inhibition ofClostridium Tyrobutyricumin cheese-slurry. ACTA ALIMENTARIA 2010. [DOI: 10.1556/aalim.39.2010.3.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Mayrl E, Roeder B, Mester P, Wagner M, Rossmanith P. Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of foodborne pathogens by nucleic acids technologies. J Food Prot 2009; 72:1225-33. [PMID: 19610333 DOI: 10.4315/0362-028x-72.6.1225] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A previously published rapid (<5 h) proof-of-concept protocol for the concentration of the foodborne pathogen Listeria monocytogenes from milk, based on the solubilization of the food matrix, was further evaluated. The original protocol was modified to detect gram-negative and other gram-positive bacteria and to broaden the range of food matrices by using Lutensol instead of sodium dodecyl sulfate as the main detergent in the buffer. A new protocol using a protease and sucrose buffer was established for the analysis of meat and fish. Matrix lysis was used for dairy products, ice cream, milk, fish, meat, eggs, and blood. Solubilization of the foodstuffs resulted in bacterial pellets of reasonable size for further quantification. Using L. monocytogenes, Staphylococccus aureus, Bacillus cereus, Escherichia coli, and Salmonella Typhimurium as model organisms, microscopic analysis of the remaining bacterial pellets revealed that the recovered bacteria remained physically intact, albeit their viability was compromised. In model experiments using free DNA, the free target DNA was reduced by 5 log units. The compatibility of matrix lysis with subsequent real-time PCR analysis has been demonstrated with salmon, chicken, egg, ice cream, cheese, and blood samples that were artificially contaminated with L. monocytogenes, S. aureus, and Salmonella Typhimurium. These experiments resulted in an average recovery of 48.7% (relative standard error, 83.4%) of the inoculated bacterial cells with the real-time PCR assay. The average detection limit of the method was 7.3 CFU/ml for all examined foodstuffs and bacterial target organisms.
Collapse
Affiliation(s)
- Eva Mayrl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | | | |
Collapse
|
18
|
Julien MC, Dion P, Lafrenière C, Antoun H, Drouin P. Sources of clostridia in raw milk on farms. Appl Environ Microbiol 2008; 74:6348-57. [PMID: 18757576 PMCID: PMC2570301 DOI: 10.1128/aem.00913-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/19/2008] [Indexed: 11/20/2022] Open
Abstract
A PCR-denaturing gradient gel electrophoresis (DGGE) method was used to examine on-farm sources of Clostridium cluster I strains in four dairy farms over 2 years. Conventional microbiological analysis was used in parallel to monitor size of clostridial populations present in various components of the milk production chain (soil, forage, grass silage, maize silage, dry hay, and raw milk). PCR amplification with Clostridium cluster I-specific 16S rRNA gene primers followed by DGGE separation yielded a total of 47 operational taxonomic units (OTUs), which varied greatly with respect to frequency of occurrence. Some OTUs were found only in forage, and forage profiles differed according to farm location (southern or northern Québec). More clostridial contamination was found in maize silage than in grass silage. Milk represented a potential environment for certain OTUs. No OTU was milk specific, indicating that OTUs originated from other environments. Most (83%) of the OTUs detected in raw milk were also found in grass or maize silage. Milk DGGE profiles differed according to farm and sampling year and fit into two distinct categories. One milk profile category was characterized by the presence of a few dominant OTUs, the presence of which appeared to be more related to farm management than to feed contamination. OTUs were more varied in the second profile category. The identities of certain OTUs frequently found in milk were resolved by cloning and sequencing. Clostridium disporicum was identified as an important member of clostridial populations transmitted to milk. Clostridium tyrobutyricum was consistently found in milk and was widespread in the other farm environments examined.
Collapse
MESH Headings
- Animals
- Clostridium/classification
- Clostridium/isolation & purification
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel/methods
- Environmental Microbiology
- Food Contamination
- Genes, rRNA
- Milk/microbiology
- Molecular Epidemiology
- Molecular Sequence Data
- Nucleic Acid Denaturation
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Marie-Claude Julien
- Département de phytologie, Pavillon Charles-Eugène Marchand, Université Laval, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
19
|
Rossmanith P, Süss B, Wagner M, Hein I. Development of matrix lysis for concentration of gram positive bacteria from food and blood. J Microbiol Methods 2007; 69:504-11. [PMID: 17462766 DOI: 10.1016/j.mimet.2007.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 11/15/2022]
Abstract
The development of a fast, reliable and inexpensive protocol for the concentration of bacteria from food by the removal of fat, carbohydrates and proteins that is compatible with downstream alternative DNA-based quantification methods is described. The protocol was used for dairy products, cooked and smoked fish and meat, carbohydrate-rich cooked products, ready-to-eat sauces, egg and blood. Lysis resulted in pellets of reasonable size for further processing. Starch, plant materials, fungi, tissues such as sinew, and chalaza could not be dissolved. Using L. monocytogenes, S. aureus and B. cereus as model organisms, microscopic analysis of the remaining bacterial pellets revealed that the recovered bacteria remained physically intact, albeit that the viability of the cells was compromised. Using real-time PCR, 7.3 CFU of L. monocytogenes were detected in artificially contaminated ultra-high temperature treated (UHT) milk and raw milk.
Collapse
Affiliation(s)
- Peter Rossmanith
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | | | | | | |
Collapse
|
20
|
López-Enríquez L, Rodríguez-Lázaro D, Hernández M. Quantitative detection of Clostridium tyrobutyricum in milk by real-time PCR. Appl Environ Microbiol 2007; 73:3747-51. [PMID: 17449705 PMCID: PMC1932699 DOI: 10.1128/aem.02642-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a real-time PCR assay for the quantitative detection of Clostridium tyrobutyricum, which has been identified as the major causal agent of late blowing in cheese. The assay was 100% specific, with an analytical sensitivity of 1 genome equivalent in 40% of the reactions. The quantification was linear (R(2) > 0.9995) over a 5-log dynamic range, down to 10 genome equivalents, with a PCR efficiency of >0.946. With optimized detergent treatment and enzymatic pretreatment of the sample before centrifugation and nucleic acid extraction, the assay counted down to 300 C. tyrobutyricum spores, with a relative accuracy of 82.98 to 107.68, and detected as few as 25 spores in 25 ml of artificially contaminated raw or ultrahigh-temperature-treated whole milk.
Collapse
Affiliation(s)
- Lorena López-Enríquez
- Instituto Tecnológico Agrario de Castilla y León, Carretera de Burgos, km. 119, 47071 Valladolid, Spain
| | | | | |
Collapse
|
21
|
Bogovič Matijašić B, Koman Rajšp M, Perko B, Rogelj I. Inhibition of Clostridium tyrobutyricum in cheese by Lactobacillus gasseri. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2006.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl Environ Microbiol 2004; 70:4216-21. [PMID: 15240304 PMCID: PMC444826 DOI: 10.1128/aem.70.7.4216-4221.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.
Collapse
Affiliation(s)
- Adelaide E Warsen
- Department of Veterinary Microbiology and Pathology, 490 Bustad Hall, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
23
|
Priha O, Hallamaa K, Saarela M, Raaska L. Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. J Ind Microbiol Biotechnol 2004; 31:161-9. [PMID: 15064974 DOI: 10.1007/s10295-004-0125-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 02/15/2004] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop a PCR-based rapid method to detect Bacillus cereus group cells from paper and cardboard. Primers targeting the 16S rDNA and real-time PCR with SYBR green I detection were used in order to be able to also quantify the target. Both autoclaved cardboard samples spiked with B. cereus vegetative cells or spores and naturally contaminated paper and cardboard samples were studied. Results were compared with culturing verified by commercial (API) tests. Several different methods were tested for DNA isolation from the paper and cardboard samples. Two commercial kits intended for soils, the UltraClean soil DNA kit and the FastDNA spin kit for soil, gave the most reproducible results. In spiked samples, the average yield was 50% of added vegetative cells, but spore yield was only about 10%. PCR results from adding vegetative cells correlated with added colony-forming unit (cfu) values ( r=0.93, P <0.001) in the range 100-10,000 cfu g(-1). Three out of nine studied paper and cardboard samples contained B. cereus group bacteria, based both on culturing and real-time PCR. The numbers were 10(2)-10(3) bacteria g(-1); and PCR gave somewhat higher results than culturing. Thus, real-time PCR can be used as a rapid semi-quantitative method to screen paper and cardboard samples for contamination with B. cereus group bacteria.
Collapse
Affiliation(s)
- Outi Priha
- VTT Biotechnology, PO Box 1500, 02044 VTT, Espoo, Finland.
| | | | | | | |
Collapse
|
24
|
Cocolin L, Innocente N, Biasutti M, Comi G. The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int J Food Microbiol 2004; 90:83-91. [PMID: 14672833 DOI: 10.1016/s0168-1605(03)00296-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular biology method based on polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) was developed to detect Clostridium spp. in cheese samples suspected of late blowing. Strains of Clostridium spp. and different Lactic Acid Bacteria species, obtained from international collections, were used to determine the experimental conditions for the PCR amplification and DGGE differentiation. DNA extracted directly from cheeses with late blowing symptoms was subjected to PCR and DGGE analysis and traditional agar plating was performed for samples pasteurized and enriched overnight. Moreover, volatile fatty acids were determined for comparison purposes. The PCR-DGGE results were in agreement with the plating performed, and only samples presenting DGGE bands migrating at the same position as Clostridium spp. bands, showed the presence of Clostridium colonies on Reinforced Clostridial Medium plates. Butyric acid contents were high (>100 mg/kg) in the cases of positive DGGE results, underlining the suitability of the protocol for the study of cheese spoilage. The sensitivity of the method is estimated to be 10(4) CFU/g.
Collapse
Affiliation(s)
- Luca Cocolin
- Dipartimento Scienze degli Alimenti, Università degli studi di Udine, via Marangoni 97, 33100, Udine, Italy.
| | | | | | | |
Collapse
|
25
|
Hara-Kudo Y, Kasuga Y, Kiuchi A, Horisaka T, Kawasumi T, Kumagai S. Increased sensitivity in PCR detection of tdh-positive Vibrio parahaemolyticus in seafood with purified template DNA. J Food Prot 2003; 66:1675-80. [PMID: 14503724 DOI: 10.4315/0362-028x-66.9.1675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PCR is an important method for the detection of thermostable direct hemolysin gene (tdh)-positive (pathogenic hemolysin-producing) strains of Vibrio parahaemolyticus in seafood because tdh-negative (nonpathogenic) V. parahaemolyticus strains often contaminate seafood and interfere with the direct isolation of tdh-positive V. parahaemolyticus. In this study, the use of PCR to detect the tdh gene of V. parahaemolyticus in various seafoods artificially contaminated with tdh-positive V. parahaemolyticus was examined. PCR was inhibited by substances in oysters, squid, mackerel, and yellowtail but not by cod, sea bream, scallop, short-necked clam, and shrimp. To improve detection, DNA was purified by either the silica membrane method, the glass fiber method, or the magnetic separation method, and the purified DNA was used as the PCR primer template. For all samples, the use of the silica membrane method and the glass fiber method increased detection sensitivity. The results of this study demonstrate that the use of properly purified template DNA for PCR markedly increases the effectiveness of the method in detecting pathogenic tdh-positive V. parahaemolyticus in contaminated seafood.
Collapse
Affiliation(s)
- Y Hara-Kudo
- Department of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyouga, Setagaya-ku, 158-8501 Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
FONTANA MAURO, BUSIELLO STEFANO, BISOTTI STEFANO, DALLORTO GIUSTO, UNGER GABRIELE, SCHWAMEIS GERLINDE, JUTERSCHNIG UDO, UNGER BRIGITTE, MASANIGER HERBERT, SCHINKINGER MANFRED. RAPID ENUMERATION OF CLOSTRIDIAL SPORES IN RAW MILK SAMPLES USING AN IMPEDIMETRIC METHOD. ACTA ACUST UNITED AC 2002. [DOI: 10.1111/j.1745-4581.2002.tb00016.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Lucore LA, Cullison MA, Jaykus LA. Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. Appl Environ Microbiol 2000; 66:1769-76. [PMID: 10788338 PMCID: PMC101411 DOI: 10.1128/aem.66.5.1769-1776.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of nucleic acid amplification methods to the detection of food-borne pathogens could be facilitated by concentrating the organisms from the food matrix before detection. This study evaluated the utility of metal hydroxide immobilization for the concentration of bacterial cells from dairy foods prior to detection by cultural and molecular methods. Using reconstituted nonfat dry milk (NFDM) as a model, two food-borne pathogens (Listeria monocytogenes and Salmonella enterica serovar Enteritidis) were concentrated from 25-ml samples by the sequential steps of clarification and high-speed centrifugation (designated primary concentration) and immobilization with zirconium hydroxide and low-speed centrifugation (designated secondary concentration). Sample volume reduction after immobilization with zirconium hydroxide was 50-fold, with total bacterial recoveries ranging from 78 to 96% of input for serovar Enteritidis and 65 to 96% of input for L. monocytogenes. Immobilized bacteria remained viable and could be enumerated by standard cultural procedures. When followed by RNA extraction and subsequent detection by reverse transcription (RT)-PCR, detection limits of 10(1) to 10(2) CFU/25 ml of reconstituted NFDM were achieved for both organisms. The bacterial-immobilization step was relatively nonspecific, resulting in recovery of >50% of the input cells when evaluated on a panel of representative bacterial strains of significance to foods. The method could be adapted to more complex dairy products, such as whole milk and ice cream, for which bacterial recoveries after immobilization ranged from 64 to >100%, with subsequent RT-PCR detection limits of >/=10(2) CFU/ml for whole milk and >/=10(1) CFU for ice cream for both serovar Enteritidis and L. monocytogenes. The bacterial-immobilization method is easy, rapid, and inexpensive and may have applications for the concentration of a wide variety of food-borne bacteria prior to detection by both conventional and alternative methods.
Collapse
Affiliation(s)
- L A Lucore
- Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695-7624, USA
| | | | | |
Collapse
|
28
|
von Stetten F, Francis KP, Lechner S, Neuhaus K, Scherer S. Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00077-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Affiliation(s)
- I G Wilson
- Northern Ireland Public Health Laboratory, Bacteriology Department, Belfast City Hospital, United Kingdom
| |
Collapse
|
30
|
Batina P, Arnold F, Bedouet L, Robreau G, Talbot F, Malcoste R. Monoclonal antibody detection of Clostridium microcolonies directly on membrane used for milk filtration. J Appl Microbiol 1997. [DOI: 10.1111/j.1365-2672.1997.tb02871.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
van der Vossen JM, Hofstra H. DNA based typing, identification and detection systems for food spoilage microorganisms: development and implementation. Int J Food Microbiol 1996; 33:35-49. [PMID: 8913808 DOI: 10.1016/0168-1605(96)01136-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The rapid identification of spoilage microorganisms is of eminent importance to the food industry. It provides the food industry with the opportunity to reduce economical losses by designing adequate intervention measures. The use of identification systems based on biochemical and physiological characteristics resulted often in disappointing identification results and misidentifications. This will inevitably lead to inappropriate strategies to prevent spoilage. This review discusses the potential of the DNA based identification technology including the polymerase chain reaction (PCR) for the identification and specific detection of microorganisms. Fingerprinting methods based on the DNA-probe technology enable a clear insight in the identity of microorganisms on different levels, varying from genus to strain level depending on the systems used. Discrimination between subspecies and strain level is shown to be helpful for investigating routes and sources of contamination. Differentiation at the species level is demonstrated to be essential in order to design a highly specific detection system enabling to signalize a microorganism that belongs to a particular species. Also indicated in this review is the necessity and the technical approach to detect microorganisms that display a particular undesirable trait.
Collapse
Affiliation(s)
- J M van der Vossen
- TNO Nutrition and Food Research, Department of Bioprocessing and Biomonitoring, Zeist, Netherlands.
| | | |
Collapse
|