1
|
Luchnikova NA, Ivanova KM, Tarasova EV, Grishko VV, Ivshina IB. Microbial Conversion of Toxic Resin Acids. Molecules 2019; 24:molecules24224121. [PMID: 31739575 PMCID: PMC6891630 DOI: 10.3390/molecules24224121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022] Open
Abstract
Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion.
Collapse
Affiliation(s)
- Natalia A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Kseniya M. Ivanova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Ekaterina V. Tarasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russia;
| | - Irina B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia; (N.A.L.); (K.M.I.); (E.V.T.)
- Department of Microbiology and Immunology, Perm State National Research University, 614990 Perm, Russia
- Correspondence: ; Tel.: +7-342-2808114
| |
Collapse
|
2
|
Cheremnykh KM, Grishko VV, Ivshin IB. Bacterial degradation of ecotoxic dehydroabietic acid. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s207005041704002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. J Microbiol Methods 2010; 82:19-27. [DOI: 10.1016/j.mimet.2010.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/21/2022]
|
4
|
Mohn WW, Stewart GR. Bacterial metabolism of chlorinated dehydroabietic acids occurring in pulp and paper mill effluents. Appl Environ Microbiol 2010; 63:3014-20. [PMID: 16535663 PMCID: PMC1389218 DOI: 10.1128/aem.63.8.3014-3020.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorinated dehydroabietic acids are formed during the chlorine bleaching of wood pulp and are very toxic to fish. Thus, destruction of these compounds is an important function of biological treatment systems for pulp and paper mill effluents. In this study, 12 strains of diverse, aerobic resin acid-degrading bacteria were screened for the ability to grow on chlorinated dehydroabietic acids as sole organic substrates. All seven strains of the class Proteobacteria able to use dehydroabietic acid were also able to use a mixture of 12- and 14-chlorodehydroabietic acid (Cl-DhA). None of the strains used 12,14-dichlorodehydroabietic acid. Sphingomonas sp. strain DhA-33 grew best on Cl-DhA and simultaneously removed both Cl-DhA isomers. Ralstonia sp. strain BKME-6 was typical of most of the strains tested, growing more slowly on Cl-DhA and leaving higher residual concentrations of Cl-DhA than DhA-33 did. Strains DhA-33 and BKME-6 mineralized (converted to CO(inf2) plus biomass) 32 and 43%, respectively, of carbon in Cl-DhA consumed. Strain DhA-33 produced a metabolite from Cl-DhA, tentatively identified as 3-oxo-14-chlorodehydroabietin, and both strains produced dissolved organic carbon which may include unidentified metabolites. Cl-DhA removal was inducible in both DhA-33 and BKME-6, and induced DhA-33 cells also removed 12,14-dichlorodehydroabietic acid. Based on activities of strains DhA-33 and BKME-6, chlorinated DhAs, and potentially toxic metabolite(s) of these compounds, are relatively persistent in biological treatment systems and in the environment.
Collapse
|
5
|
Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026. J Ind Microbiol Biotechnol 2009; 36:1391-400. [DOI: 10.1007/s10295-009-0625-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
6
|
Bruland N, Bathe S, Willems A, Steinbüchel A. Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int J Syst Evol Microbiol 2009; 59:2702-7. [PMID: 19625429 DOI: 10.1099/ijs.0.006791-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel betaproteobacterium, strain TBEA3(T), was isolated from soil using enrichment cultures with the organic thioether 3,3'-thiodipropionic acid as sole carbon and energy source. Analysis of the 16S rRNA gene sequence revealed 99.1 % sequence similarities to a poorly characterized member of the family Comamonadaceae, strain SB1(T), which had been previously isolated from activated sludge. Both strains showed highest gene sequence similarities (up to 96.9 %) to members of the genera Rhodoferax and Curvibacter. The DNA G+C contents of strains TBEA3(T) and SB1(T) were 69.1 and 70.1 mol%, respectively, and the DNA-DNA hybridization value between these two strains was 45.3 %. The predominant cellular fatty acids in both strains were C(16 : 0), C(18 : 1)omega7c and summed feature 3 (C(16 : 1)omega7c and/or C(15 : 0) iso 2-OH). The major 3-hydroxy fatty acid was C(10 : 0) 3-OH. Based on the genetic and chemotaxonomic data, strains TBEA3(T) and SB1(T) represent two novel species of a new genus within the family Comamonadaceae, for which the name Pseudorhodoferax gen. nov. is proposed. Strain TBEA3(T) (=LMG 24555(T)=DSM 21634(T)) is assigned to Pseudorhodoferax soli sp. nov., as the type strain of the type species of the genus. Strain SB1(T) (=LMG 24543(T)=DSM 21598(T)) is the type strain of Pseudorhodoferax caeni sp. nov.
Collapse
Affiliation(s)
- Nadine Bruland
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Correnstrasse 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
7
|
Distinct roles for two CYP226 family cytochromes P450 in abietane diterpenoid catabolism by Burkholderia xenovorans LB400. J Bacteriol 2007; 190:1575-83. [PMID: 18156276 DOI: 10.1128/jb.01530-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 80-kb dit cluster of Burkholderia xenovorans LB400 encodes the catabolism of abietane diterpenoids. This cluster includes ditQ and ditU, predicted to encode cytochromes P450 (P450s) belonging to the poorly characterized CYP226A subfamily. Using proteomics, we identified 16 dit-encoded proteins that were significantly more abundant in LB400 cells grown on dehydroabietic acid (DhA) or abietic acid (AbA) than in succinate-grown cells. A key difference in the catabolism of DhA and AbA lies in the differential expression of the P450s; DitU was detected only in the AbA-grown cells, whereas DitQ was expressed both during growth on DhA and during growth on AbA. Analyses of insertion mutants showed that ditQ was required for growth on DhA, ditU was required for growth on AbA, and neither gene was required for growth on the central intermediate, 7-oxo-DhA. In cell suspension assays, patterns of substrate removal and metabolite accumulation confirmed the role of DitU in AbA transformation and the role of DitQ in DhA transformation. Spectral assays revealed that DitQ binds both DhA (dissociation constant, 0.98 +/- 0.01 microM) and palustric acid. Finally, DitQ transformed DhA to 7-hydroxy-DhA in vitro. These results demonstrate the distinct roles of the P450s DitQ and DitU in the transformation of DhA and AbA, respectively, to 7-oxo-DhA in a convergent degradation pathway.
Collapse
|
8
|
Smith DJ, Park J, Tiedje JM, Mohn WW. A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J Bacteriol 2007; 189:6195-204. [PMID: 17586638 PMCID: PMC1951937 DOI: 10.1128/jb.00179-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 06/14/2007] [Indexed: 11/20/2022] Open
Abstract
Abietane diterpenoids are defense compounds synthesized by trees that are abundant in natural environments and occur as significant pollutants from pulp and paper production. Burkholderia xenovorans LB400 has diverse catabolic capabilities and represents an important group of heterotrophic bacteria in soil environments. The genome sequence of LB400 revealed homologs of the dit genes of Pseudomonas abietaniphila BKME-9, which encode abietane diterpenoid degradation. LB400 grew on abietic acid (AbA), dehydroabietic acid (DhA), palustric acid (PaA), and 7-oxo-DhA. A Xeotron microarray set, with probes for 8450 of the estimated 9000 LB400 genes, was used to compare the transcriptomes of LB400 growing on DhA versus on succinate. On DhA, 97 genes were upregulated, 43 of which were within an 80-kb cluster located on the 1.47-Mbp megaplasmid of LB400. Upregulated genes in this cluster encode a permease, a ring-hydroxylating dioxygenase system (DitA), a ring-cleavage dioxygenase (DitC), a P450 monooxygenase (DitQ), and enzymes catalyzing beta-oxidation-type reactions. Disruption of the ditA1 gene, encoding the alpha-subunit of DitA, abolished growth on these abietanes. Analyses of the metabolism of abietanes by cell suspensions of wild-type LB400 and the ditA1 mutant indicate a convergent pathway, with 7-oxo-DhA as a common intermediate for ring hydroxylation by DitA. Also, 7-oxo-PaA was identified as a metabolite of both AbA and PaA. Sequence analysis indicates that genes encoding this pathway have been horizontally transferred among Betaproteobacteria and Gammaproteobacteria.
Collapse
Affiliation(s)
- Daryl J Smith
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
9
|
Wübbeler JH, Lütke-Eversloh T, Van Trappen S, Vandamme P, Steinbüchel A. Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3'-dithiodipropionic acid. Int J Syst Evol Microbiol 2006; 56:1305-1310. [PMID: 16738107 DOI: 10.1099/ijs.0.64126-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, a novel betaproteobacterium, strain DPN7(T), was isolated under mesophilic conditions from compost because of its capacity to utilize the organic disulfide 3,3'-dithiodipropionic acid. Analysis of the 16S rRNA gene sequence of strain DPN7(T) revealed 98.5 % similarity to that of Tetrathiobacter kashmirensis LMG 22695(T). Values for sequence similarity to members of the genera Alcaligenes, Castellaniella and Taylorella, the nearest neighbours of the genus Tetrathiobacter, were about 95 % or less. The DNA G + C content of strain DPN7(T) was 55.1 mol%. The level of DNA-DNA hybridization between strain DPN7(T) and T. kashmirensis LMG 22695(T) was 41 %, whereas it was much lower between strain DPN7(T) and Alcaligenes faecalis LMG 1229(T) (7 %) or Castellaniella defragrans LMG 18538(T) (5 %). This genotypic divergence was supported by differences in biochemical and chemotaxonomic characteristics. For this reason, and because of the differences in the protein and fatty acid profiles, strain DPN7(T) should be classified within a novel species of Tetrathiobacter, for which the name Tetrathiobacter mimigardefordensis sp. nov. is proposed. The type strain is strain DPN7(T) (=DSM 17166(T) = LMG 22922(T)).
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Tina Lütke-Eversloh
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Stefanie Van Trappen
- Laboratory of Microbiology, Department of Biochemistry, Physiology and Microbiology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry, Physiology and Microbiology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
10
|
Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C. Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobío River, Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 359:194-208. [PMID: 15923023 DOI: 10.1016/j.scitotenv.2005.03.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 03/22/2005] [Indexed: 05/02/2023]
Abstract
Most studies focus on the ecotoxicity of pulp and paper mill effluents, rather than on how they affect the physicochemical and biological structure and the intrinsic ecological capabilities of the receiving watercourses. We investigated the impact of such effluents on the water quality, microplankton system and microbial self-purification capacity (degradation of polymeric organic compounds via extracellular enzymes) of the Biobío River in Chile. The physicochemical impact on the water quality was indicated by raised conductivity, by the pollution of the water body with nitrate, nitrite and soluble reactive phosphorus, by the appearance of tannin and lignin, and by the steady accumulation of inorganic and organic suspended matter (SPM) along the river. From the biological structure of the microplankton system, very low and declining concentrations of chlorophyll a and heterotrophic flagellate densities were determined. The pulp and paper mill effluents introduced high bacterial abundances and biomass concentrations into the river water. This reflects the effective use made of the abundantly available inorganic and organic nutrients within this industrial and municipal process water by bacteria adapted to these extreme environments, additionally supported by concomitant low grazing pressure derivable from low heterotrophic flagellate abundances. Indeed, in one section of the river affected by a pulp mill, the plant was found to significantly contribute to the self-cleaning capacity of the river. However, this elevated degradation capacity was not enough to compensate for the additionally discharged organic material which, together with the toxic effects of the paper plant effluents, significantly interferes with the ecological status of the Biobío River.
Collapse
Affiliation(s)
- B Karrasch
- UFZ-Centre for Environmental Research, Brückstrasse 3a, D-39114 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith DJ, Martin VJJ, Mohn WW. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol 2004; 186:3631-9. [PMID: 15150251 PMCID: PMC415779 DOI: 10.1128/jb.186.11.3631-3639.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022] Open
Abstract
Diterpenoids are naturally occurring plant compounds which have pharmaceutical properties. We have sequenced a 10.4-kbp extension of the dit cluster in Pseudomonas abietaniphila BKME-9, containing genes involved in abietane diterpenoid biodegradation. The ditQ gene was found to encode a cytochrome P450 monooxygenase, P450dit, and to be homologous to the tdtD gene of Pseudomonas diterpeniphila A19-6a. Knocking out ditQ had little effect on growth of BKME-9 on abietic acid but severely impaired growth on dehydroabietic acid (DhA) and palustric acid (PaA), increasing doubling times from 3.8 to 15 h on DhA and from 5.6 to 18.5 h on PaA. A xylE transcriptional fusion showed that transcription of ditQ was induced by a range of diterpenoids. Substrate binding assays of P450dit expressed in Escherichia coli revealed that DhA binds to the enzyme and yields a type I binding spectrum with a Kd of 0.4 microM. These results indicate that P450dit is involved in the metabolism of DhA and PaA and are consistent with its putative role in converting DhA to 7-hydroxy-DhA. Finally, an amino acid sequence identity of greater than 72% and conserved gene arrangement support the hypothesis that the dit gene cluster of P. abietaniphila BKME-9 and the tdt cluster of P. diterpeniphila A19-6a contain functional homologues.
Collapse
Affiliation(s)
- Daryl J Smith
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
12
|
Elbanna K, Lütke-Eversloh T, Van Trappen S, Mergaert J, Swings J, Steinbüchel A. Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol 2003; 53:1165-1168. [PMID: 12892145 DOI: 10.1099/ijs.0.02562-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic bacterium, strain K14T, capable of degrading poly(3-hydroxybutyrate) as well as copolymers containing 3-hydroxybutyrate and 3-mercaptopropionate linked by thioester bonds, was isolated. 16S rDNA sequence analysis showed that strain DhA-71, a dehydroabietic acid-degrading bacterium, was the nearest phylogenetic neighbour and that both strains should be placed as members of a newly created genus, Schlegelella gen. nov., in the Rubrivivax subgroup of the beta-Proteobacteria. Strain K14T (= LMG 21644T = DSM 15344T) is proposed as the type strain of Schlegelella thermodepolymerans gen. nov., sp. nov. Its phylogenetic, morphological, biochemical and chemotaxonomic characteristics are described in detail.
Collapse
Affiliation(s)
- Khaled Elbanna
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany
| | - Tina Lütke-Eversloh
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany
| | - Stefanie Van Trappen
- Laboratorium voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Joris Mergaert
- Laboratorium voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Jean Swings
- Laboratorium voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany
| |
Collapse
|
13
|
McMartin DW, Headley JV, Neu TR, Friesen DA. Photolysis and biodegradation of selected resin acids in River Saale water, Germany. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2003; 38:2727-2747. [PMID: 14672312 DOI: 10.1081/ese-120025827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The River Saale is the Elbe's major tributary flowing through the state of Thuringia, Germany and receives organics inputs from several industrial facilities including pulp and paper mills. Resin acids constitute a major class of polar organics and environmental toxins derived primarily from pulp and paper processing of softwoods. Since wastewater treatment methods at pulp and paper mills are not always capable of removing the persistent resin acids prior to effluent discharge, alternative or complementary degradation methods may be required. Here, the facile photodegradation of four resin acids--abietic, dehydroabietic, isopimaric, and pimaric--was observed with pseudo-first-order kinetics when exposed to broad band and UV254-radiation. Further experimentation in rotating annular biofilm reactors with UV-exposed and unexposed River Saale water spiked with abietic and dehydroabietic acids indicated that photolysis is an effective pretreatment method for resin acid biodegradation. The bacterial toxicity of the aqueous resin acids solutions as measured with Microtox luminescence assays decreased with exposure time. Consequently, photo- and biodegradation of the resin acids did not generate any notable amounts of toxic intermediates and/or the intermediates formed were further degraded into compounds of lower toxicity than the parents. With tandem photo- and biological treatment at pulp and paper mills, as well as in-situ degradation by solar radiation and natural biofilms within the River Saale, resin acid inputs can be reduced in both concentration and toxicity to near undetectable levels with little or no ecological significance.
Collapse
Affiliation(s)
- Dena W McMartin
- Division of Environmental Engineering, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
14
|
McMartin DW, Peru KM, Headley JV, Winkler M, Gillies JA. Evaluation of liquid chromatography-negative ion electrospray mass spectrometry for the determination of selected resin acids in river water. J Chromatogr A 2002; 952:289-93. [PMID: 12064541 DOI: 10.1016/s0021-9673(02)00106-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A liquid chromatography-negative ion electrospray mass spectrometric (LC-ESI-MS) method was evaluated for detection of four prevalent softwood-derived resin acids in natural water. Method detection limits based on a signal-to-noise ratio of 3:1 in river water samples of 0.40, 0.40, 0.30 and 0.25 microg l(-1) for abietic, dehydroabietic, isopimaric and pimaric acids, respectively, are comparable or lower than reported GC methods. Unlike the majority of GC methods, however, the three structural resin acid isomers (abietic, isopimaric and pimaric acids) do not separate sufficiently under the various LC conditions evaluated in this work. Therefore, LC-ESI-MS may not be suitable for instances where measurement of individual isomeric resin acids is required. However, the method is suitable for trace analysis of resin acids in natural waters where isomeric speciation is not required.
Collapse
Affiliation(s)
- Dena W McMartin
- University of Saskatchewan, Division of Environmental Engineering, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
15
|
Morgan CA, Wyndham RC. Characterization of tdt genes for the degradation of tricyclic diterpenes by Pseudomonas diterpeniphila A19-6a. Can J Microbiol 2002; 48:49-59. [PMID: 11888163 DOI: 10.1139/w01-127] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resin acids are tricyclic diterpenes that are toxic to aquatic life when released in high concentrations in pulp mill effluents. These naturally formed organic acids are readily degraded by bacteria and fungi; nevertheless, many of the mechanisms involved are still unknown. We report the localization, cloning, and sequencing of genes for abietane degradation (9.18 kb; designated tdt (tricyclic diterpene) LRSABCD) from the gamma-Proteobacterium Pseudomonas diterpeniphila A19-6a. Using gene knockout mutants, we demonstrate that tdtL, encoding a putative CoA ligase, is required for growth on abietic and dehydroabietic acids. A second gene knockout in tdtD, encoding a putative cytochrome P450 monooxygenase, reduced the growth of strain A19-6a on abietic and dehydroabietic acids as sole sources of carbon and energy, but did not eliminate growth. The degree of homology between P450TdtD and P450TerpC, the closest known P450 homologue to TdtD, identifies TdtD as a new member of the P450 superfamily. Hybridization of six of the tdt genes to genomic DNA of a related resin acid degrading bacterium Pseudomonas abietaniphila BKME-9 identified tdt homologues in this strain that utilizes aromatic ring dioxygenase genes (dit) to open the ring structure of abietic and dehydroabietic acids. These results suggest the tdt and dit genes may function in concert to allow these Pseudomonas strains to degrade resin acids. Homologues of several of the tdt genes were detected in resin acid degrading Ralstonia and Comamonas species within the beta- and gamma-Proteobacteria.
Collapse
Affiliation(s)
- C A Morgan
- Ottawa Carleton Institute of Biology, College of Natural Sciences, Carleton University, ON, Canada
| | | |
Collapse
|
16
|
Muttray AF, Yu Z, Mohn WW. Population dynamics and metabolic activity of Pseudomonas abietaniphila BKME-9 within pulp mill wastewater microbial communities assayed by competitive PCR and RT-PCR. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00878.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
|
18
|
Schweitzer B, Huber I, Amann R, Ludwig W, Simon M. Alpha- and beta-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 2001; 67:632-45. [PMID: 11157226 PMCID: PMC92630 DOI: 10.1128/aem.67.2.632-645.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 11/05/2000] [Indexed: 11/20/2022] Open
Abstract
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4',6'-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% +/- 7.9% and 14.2% +/- 10.2% of the DAPI cell counts were detected by probes specific for alpha- and beta-Proteobacteria. These proportions increased to 12.0% +/- 3.3% and 54.0% +/- 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% +/- 1.4% and 41.1% +/- 8.4%, indicating a clear dominance of beta-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. gamma-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the alpha-Proteobacteria. In addition, with three probes highly specific for close relatives of the beta-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the beta-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of beta-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of alpha- and beta-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.
Collapse
Affiliation(s)
- B Schweitzer
- Limnological Institute, University of Constance, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
19
|
Yu Z, Stewart GR, Mohn WW. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 2000; 66:5148-54. [PMID: 11097882 PMCID: PMC92436 DOI: 10.1128/aem.66.12.5148-5154.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents.
Collapse
Affiliation(s)
- Z Yu
- Department of Microbiology and Immunology and Pulp and Paper Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | | | | |
Collapse
|
20
|
Martin VJ, Mohn WW. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol 2000; 182:3784-93. [PMID: 10850995 PMCID: PMC94551 DOI: 10.1128/jb.182.13.3784-3793.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9. The dit gene cluster is located on a 16.7-kb DNA fragment containing 13 complete open reading frames (ORFs) and 1 partial ORF. The genes ditA1A2A3 encode the alpha and beta subunits and the ferredoxin of the dioxygenase which hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8, 13-abietadien acid. The dioxygenase mutant strain BKME-941 (ditA1::Tn5) did not grow on nonaromatic abietanes, and transformed palustric and abietic acids to 7-oxodehydroabietic acid in cell suspension assays. Thus, nonaromatic abietanes are aromatized prior to further degradation. Catechol 2,3-dioxygenase activity of xylE transcriptional fusion strains showed induction of ditA1 and ditA3 by abietic, dehydroabietic, and 7-oxodehydroabietic acids, which support the growth of strain BKME-9, as well as by isopimaric and 12, 14-dichlorodehydroabietic acids, which are diterpenoids that do not support the growth of strain BKME-9. In addition to the aromatic-ring-hydroxylating dioxygenase genes, the dit cluster includes ditC, encoding an extradiol ring cleavage dioxygenase, and ditR, encoding an IclR-type transcriptional regulator. Although ditR is not strictly required for the growth of strain BKME-9 on abietanes, a ditR::Km(r) mutation in a ditA3::xylE reporter strain demonstrated that it encodes an inducer-dependent transcriptional activator of ditA3. An ORF with sequence similarity to genes encoding permeases (ditE) is linked with genes involved in abietane degradation.
Collapse
Affiliation(s)
- V J Martin
- Department of Microbiology and Immunology and Pulp and Paper Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
21
|
Plant terpenes and lignin as natural cosubstrates in biodegradation of polyclorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02936588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Busse HJ, Kainz A, Tsitko IV, Salkinoja-Salonen M. Riboprints as a tool for rapid preliminary identification of sphingomonads. Syst Appl Microbiol 2000; 23:115-23. [PMID: 10879985 DOI: 10.1016/s0723-2020(00)80052-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fourtythree strains of the genus Sphingomonas and close relatives were subjected to riboprint analyses generated after digestion of genomic DNA with the restriction enzyme EcoRI and hybridization with E. coli rrnB operon. The majority of strains were characterized by a complex banding pattern in the riboprints. High degrees of similarities in the riboprints were only observed among strains of the same species such as S. yanoikuyae, S. aromaticivorans, S. subarctica and S. chlorophenolica. Strains of different species including close phylogenetic relatives such as S. asaccharolytica, S. mali and S. pruni were easily distinguished by the differences in the riboprints even after visual evaluation. Thus, our data demonstrate that riboprint analysis is useful for preliminary identification of new sphingomonad isolates at the species level.
Collapse
Affiliation(s)
- H J Busse
- Institut für Mikrobiologie und Genetik, Universität Wien, Austria.
| | | | | | | |
Collapse
|
23
|
Yu Z, Mohn WW. Isolation and characterization of thermophilic bacteria capable of degrading dehydroabietic acid. Can J Microbiol 1999; 45:513-9. [PMID: 10453478 DOI: 10.1139/w99-028] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a semi-continuous enrichment method, we isolated two thermophilic bacterial strains, which could completely degrade abietane resin acids, including dehydroabietic acid (DhA). Strain DhA-73, isolated from a laboratory-scale bioreactor treating bleached kraft mill effluent at 55 degrees C, grew on DhA as sole carbon source; while DhA-71, isolated from municipal compost, required dilute tryptic soy broth for growth on DhA. DhA-71 grew on DhA from 30 degrees C to 60 degrees C with maximum growth at 50 degrees C; while, DhA-73 grew on DhA from 37 degrees C to 60 degrees C with maximum growth at 55 degrees C. At 55 degrees C, the doubling times for DhA-71 and DhA-73 were 3.3 and 3.7 h, respectively. DhA-71 and DhA-73 had growth yields of 0.26 and 0.19 g of protein per g of DhA, respectively. During growth on DhA, both strains converted DhA to CO2, biomass, and dissolved organic carbon. Analyses of the 16S-rDNA sequences of these two strains suggest that they belong to two new genera in the Rubrivivax subgroup of the beta subclass of the Proteobacteria. Strains DhA-71 and DhA-73 are the first two bacteria isolated and characterized that are capable of biodegradation of resin acids at high temperatures. This study provided direct evidence for biodegradation of resin acids and feasibility for biotreatment of pulp mill effluent at elevated temperatures.
Collapse
Affiliation(s)
- Z Yu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
24
|
Martin VJ, Mohn WW. A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid-degrading bacterium Pseudomonas abietaniphila BKME-9. J Bacteriol 1999; 181:2675-82. [PMID: 10217753 PMCID: PMC93704 DOI: 10.1128/jb.181.9.2675-2682.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas abietaniphila BKME-9 is able to degrade dehydroabietic acid (DhA) via ring hydroxylation by a novel dioxygenase. The ditA1, ditA2, and ditA3 genes, which encode the alpha and beta subunits of the oxygenase and the ferredoxin of the diterpenoid dioxygenase, respectively, were isolated and sequenced. The ferredoxin gene is 9. 2 kb upstream of the oxygenase genes and 872 bp upstream of a putative meta ring cleavage dioxygenase gene, ditC. A Tn5 insertion in the alpha subunit gene, ditA1, resulted in the accumulation by the mutant strain BKME-941 of the pathway intermediate, 7-oxoDhA. Disruption of the ferredoxin gene, ditA3, in wild-type BKME-9 by mutant-allele exchange resulted in a strain (BKME-91) with a phenotype identical to that of the mutant strain BKME-941. Sequence analysis of the putative ferredoxin indicated that it is likely to be a [4Fe-4S]- or [3Fe-4S]-type ferredoxin and not a [2Fe-2S]-type ferredoxin, as found in all previously described ring-hydroxylating dioxygenases. Expression in Escherichia coli of ditA1A2A3, encoding the diterpenoid dioxygenase without its putative reductase component, resulted in a functional enzyme. The diterpenoid dioxygenase attacks 7-oxoDhA, and not DhA, at C-11 and C-12, producing 7-oxo-11, 12-dihydroxy-8,13-abietadien acid, which was identified by 1H nuclear magnetic resonance, UV-visible light, and high-resolution mass spectrometry. The organization of the genes encoding the various components of the diterpenoid dioxygenase, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual Fe-S cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases.
Collapse
Affiliation(s)
- V J Martin
- Department of Microbiology and Immunology and Pulp and Paper Center, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
25
|
Martin VJ, Mohn WW. An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions. J Microbiol Methods 1999; 35:163-6. [PMID: 10192049 DOI: 10.1016/s0167-7012(98)00115-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have developed an alternative method to amplify DNA sequences flanking Tn5 transposon insertions. This method relies on the identical sequences of inverted terminal repeats, located at the 5' and 3' ends of Tn5, to determine the location and orientation of a transposon insertion within a restriction endonuclease fragment. From this information, PCR primers can be designed to selectively amplify by inverse PCR the DNA flanking one side of the transposon. This method avoids the problem of amplifying or cloning long sequences flanking Tn5. To demonstrate the applicability of this method, we generated Tn5 transposon mutants of Pseudomonas abietaniphila BKME-9 which no longer grew on dehydroabietic acid (DhA). The flanking sequence of one of the mutant (strain BKME-941) which accumulated 7-oxoDhA, was amplified.
Collapse
Affiliation(s)
- V J Martin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
26
|
Mohn WW, Wilson AE, Bicho P, Moore ER. Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst Appl Microbiol 1999; 22:68-78. [PMID: 10188280 DOI: 10.1016/s0723-2020(99)80029-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resin acids are tricyclic diterpenes which are synthesized by trees and are a major cause of toxicity of pulp mill effluents. Bacterial strains isolated from three different sources and which grow on resin acids were physiologically characterized. Eleven strains, representating distinct groups, were further characterized physiologically and phylogenetically. The isolates had distinct specificities for use, as growth substrates, of the different resin acids tested. The isolates also used fatty acids but were generally limited in use of other diverse substrates tested. According to their 16S rDNA sequences, the representative isolates are related to members of the genera, Sphingomonas, Zoogloea, Ralstonia, Burkholderia, Pseudomonas and Mycobacterium. Analysis of whole-cell fatty acid profiles generally supported those phylogenetic relationships. However, most of the isolated did not have high similarities to reference strains in the Microbial Identification System database of fatty acid profiles or in the Biolog database of substrate oxidation patterns. Described species of Sphingomonas, Zoolgoea, Burkholderia Pseudomonas, most closely related to the isolates we characterized, failed to grow on, or degrade, resin acids. We propose recognition of Zoogloea resiniphila sp. nov., Pseudomonas vancouverensis sp. nov., P. abietaniphila sp. nov. and P. multiresinivorans sp. nov.
Collapse
Affiliation(s)
- W W Mohn
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
27
|
Kortekaas S, Vidal G, Yan-Ling H, Lettinga G, Field JA. Anaerobic-aerobic treatment of toxic pulping black liquor with upfront effluent recirculation. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Liss SN, Bicho PA, Saddler JN. Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview. Can J Microbiol 1997; 43:599-611. [PMID: 9246738 DOI: 10.1139/m97-086] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Resin acids, a group of diterpenoid carboxylic acids present mainly in softwood species, are present in many pulp mill effluents and toxic to fish in recipient waters. They are considered to be readily biodegradable. However, their removal across biological treatment systems has been shown to vary. Recent studies indicate that natural resin acids and transformation products may accumulate in sediments and pose acute and chronic toxicity to fish. Several resin acid biotransformation compounds have also been shown to bioaccumulate and to be more resistant to biodegradation than the original material. Until recently, the microbiology of resin-acid degradation has received only scant attention. Although wood-inhabiting fungi have been shown to decrease the level of resin present in wood, there is no conclusive evidence that fungi can completely degrade these compounds. In contrast, a number of bacterial isolates have recently been described which are able to utilize dehydroabietic or isopimaric acids as their sole carbon source. There appears to be an unusually high degree of substrate specificity with respect of the utilization of abietane congeners and the presence of substituents. Pimaranes do not appear to be attacked to the same extent as the abietanes. This paper reviews the occurrence, chemistry, toxicity, and biodegradation of resin acids in relation to the biological treatment of pulp and paper mill effluents.
Collapse
Affiliation(s)
- S N Liss
- Department of Applied Chemical and Biological Sciences, Ryerson Polytechnic University, Toronto, ON, Canada
| | | | | |
Collapse
|
29
|
Wilson AE, Moore ER, Mohn WW. Isolation and characterization of isopimaric acid-degrading bacteria from a sequencing batch reactor. Appl Environ Microbiol 1996; 62:3146-51. [PMID: 8795202 PMCID: PMC168108 DOI: 10.1128/aem.62.9.3146-3151.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We isolated two aerobic, gram-negative bacteria which grew on the diterpene resin acid isopimaric acid (IpA) as the sole carbon source and electron donor. The source of the isolates was a sequencing batch reactor treating a high-strength process stream from a paper mill. The isolates, IpA-1 and IpA-2, also grew on pimaric and dehydroabietic acids, and IpA-1 grew on abietic acid. Both strains used fatty acids, but neither strain used camphor, sitosterol, or betulin. Strain IpA-1 grew anaerobically with nitrate as an electron acceptor. Strains IpA-1 and IpA-2 had growth yields of 0.19 and 0.23 g of protein per g of IpA, respectively. During growth, both strains transformed IpA carbon to approximately equal amounts of biomass, carbon dioxide, and dissolved organic carbon. In both strains, growth on IpA induced an enzymatic system which caused cell suspensions to transform all four of the above resin acids. Cell suspensions of IpA-1 and IpA-2 removed IpA at rates of 0.56 and 0.13 mumol mg of protein-1 h-1, respectively. Cultures and cell suspensions of both strains failed to completely consume pimaric acid and yielded small amounts of an apparent metabolite from this acid. Cultures and cell suspensions of both strains yielded large amounts of three apparent metabolites from dehydroabietic acid. Analysis of 16S rDNA sequences indicated that the isolates are distinct members of the genus Pseudomonas sensu stricto.
Collapse
Affiliation(s)
- A E Wilson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
30
|
Morgan CA, Wyndham RC. Isolation and characterization of resin acid degrading bacteria found in effluent from a bleached kraft pulp mill. Can J Microbiol 1996; 42:423-30. [PMID: 8640603 DOI: 10.1139/m96-058] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thirteen resin acid degrading bacteria enriched on abietic or dehydroabietic acids were isolated from waste water from the aerated stabilization basin of a bleached kraft pulp mill. Standard biochemical tests were used to characterize each isolate. Each isolate was tested for its ability to degrade six abietane- and pimarane-type resin acids. Resin acid concentrations were determined by high pressure liquid chromatography and UV absorbance. Cluster analysis based on phenotypic characteristics identified two distinct clusters of degraders that differed in their ability to utilize carbohydrates as carbon sources. Fatty acid methyl ester analysis of representative isolates from each cluster identified A19-6a and D11-13 as Comamonas and Alcaligenes species, respectively. To determine genotypic relatedness, enterobacterial repetitive intergenic consensus sequences were used to amplify genomic DNA fragments from 10 isolates. These results supported the phenotypic analysis for all isolates tested except A19-5 and A19-6b. These two organisms were clustered closely together based on phenotype but had distinctly different banding patterns, suggesting that they are not related genotypically. All isolates degraded a subset of the six resin acid congeners. Isolates A19-3, A19-6a, A19-6b, and D11-37 were the most effective at degrading all six congeners.
Collapse
Affiliation(s)
- C A Morgan
- Institute of Biology, Carleton University, Ottawa, ON, Canada.
| | | |
Collapse
|