1
|
Harding KJ, Nagarkar M, Wang M, Ramsing K, Anidjar N, Giddings S, Brahamsha B, Palenik B. Temporal and Spatial Dynamics of Synechococcus Clade II and Other Microbes in the Eutrophic Subtropical San Diego Bay. Environ Microbiol 2025; 27:e70043. [PMID: 39900485 PMCID: PMC11790421 DOI: 10.1111/1462-2920.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 02/05/2025]
Abstract
The diversity of the marine cyanobacterium Synechococcus can be broadly separated into clades, with clade II typically present in warm oligotrophic water, and clades I and IV found in cooler coastal water. We found amplicon sequence variants (ASVs) belonging to clade II in the nutrient-replete waters of San Diego Bay (SDB). Using the 16S rRNA gene, 18S rRNA gene and internal transcribed spacer region sequencing, we analysed multiple locations in SDB monthly for over a year, with additional samples dating back to 2015. Synechococcus community composition differed from the nearby coast into SDB in terms of dominant clade and ASVs. Specific clade II ASVs became relatively more abundant towards the back of the bay and showed seasonality, with higher relative abundance in the warm months. Select ASVs group phylogenetically and show similar seasonal and spatial distribution patterns, indicating these ASVs have adapted to SDB. Isolates matching clade II ASVs from SDB show pigment composition that is better adapted to the green light available in SDB, further supporting our findings. Other microbial taxa also show SDB enrichment, providing evidence that SDB is a chemostat-like environment where circulation, temperature, light and other environmental conditions create a zone for microbial evolution and diversification.
Collapse
Affiliation(s)
- Katie J. Harding
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maitreyi Nagarkar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maggie Wang
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Kailey Ramsing
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Niv Anidjar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Sarah Giddings
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Bianca Brahamsha
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Brian Palenik
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
3
|
Panwar P, Williams TJ, Allen MA, Cavicchioli R. Population structure of an Antarctic aquatic cyanobacterium. MICROBIOME 2022; 10:207. [PMID: 36457105 PMCID: PMC9716671 DOI: 10.1186/s40168-022-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ace Lake is a marine-derived, stratified lake in the Vestfold Hills of East Antarctica with an upper oxic and lower anoxic zone. Cyanobacteria are known to reside throughout the water column. A Synechococcus-like species becomes the most abundant member in the upper sunlit waters during summer while persisting annually even in the absence of sunlight and at depth in the anoxic zone. Here, we analysed ~ 300 Gb of Ace Lake metagenome data including 59 Synechococcus-like metagenome-assembled genomes (MAGs) to determine depth-related variation in cyanobacterial population structure. Metagenome data were also analysed to investigate viruses associated with this cyanobacterium and the host's capacity to defend against or evade viruses. RESULTS A single Synechococcus-like species was found to exist in Ace Lake, Candidatus Regnicoccus frigidus sp. nov., consisting of one phylotype more abundant in the oxic zone and a second phylotype prevalent in the oxic-anoxic interface and surrounding depths. An important aspect of genomic variation pertained to nitrogen utilisation, with the capacity to perform cyanide assimilation and asparagine synthesis reflecting the depth distribution of available sources of nitrogen. Both specialist (host specific) and generalist (broad host range) viruses were identified with a predicted ability to infect Ca. Regnicoccus frigidus. Host-virus interactions were characterised by a depth-dependent distribution of virus type (e.g. highest abundance of specialist viruses in the oxic zone) and host phylotype capacity to defend against (e.g. restriction-modification, retron and BREX systems) and evade viruses (cell surface proteins and cell wall biosynthesis and modification enzymes). CONCLUSION In Ace Lake, specific environmental factors such as the seasonal availability of sunlight affects microbial abundances and the associated processes that the microbial community performs. Here, we find that the population structure for Ca. Regnicoccus frigidus has evolved differently to the other dominant phototroph in the lake, Candidatus Chlorobium antarcticum. The geography (i.e. Antarctica), limnology (e.g. stratification) and abiotic (e.g. sunlight) and biotic (e.g. microbial interactions) factors determine the types of niches that develop in the lake. While the lake community has become increasingly well studied, metagenome-based studies are revealing that niche adaptation can take many paths; these paths need to be determined in order to make reasonable predictions about the consequences of future ecosystem perturbations. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
4
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Sarker I, Moore LR, Tetu SG. Investigating zinc toxicity responses in marine Prochlorococcus and Synechococcus. MICROBIOLOGY-SGM 2021; 167. [PMID: 34170816 PMCID: PMC8374608 DOI: 10.1099/mic.0.001064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l-1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l-1 Zn, respectively. Differences were also observed in each strain's capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.
Collapse
Affiliation(s)
- Indrani Sarker
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Lisa R Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
6
|
Fucich D, Chen F. Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications. ISME JOURNAL 2020; 14:2843-2850. [PMID: 32814864 DOI: 10.1038/s41396-020-00746-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly to ocean's primary production. Toxin-Antitoxin (TA) systems present in bacteria and archaea are known to regulate cell growth in response to environmental stresses. However, little is known about the presence of TA systems in picocyanobacteria. This study investigated complete genomes of Synechococcus and Prochlorococcus to understand the prevalence of TA systems in picocyanobacteria. Using the TAfinder software, Type II TA systems were predicted in 27 of 33 (81%) Synechococcus strains, but none of 38 Prochlorococcus strains contain TA genes. Synechococcus strains with larger genomes tend to contain more putative type II TA systems. The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from various environments. A linear correlation between the genome size and the number of putative TA systems in both coastal and freshwater Synechococcus was established. In general, open ocean Synechococcus contain no or few TA systems, while coastal and freshwater Synechococcus contain more TA systems. The type II TA systems inhibit microbial translation via ribonucleases and allow cells to enter the "dormant" stage in adverse environments. Inheritance of TA genes in freshwater and coastal Synechococcus could confer a recoverable persister mechanism important to survive in variable environments.
Collapse
Affiliation(s)
- Daniel Fucich
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA.
| |
Collapse
|
7
|
Shilova IN, Magasin JD, Mills MM, Robidart JC, Turk-Kubo KA, Zehr JP. Phytoplankton transcriptomic and physiological responses to fixed nitrogen in the California current system. PLoS One 2020; 15:e0231771. [PMID: 32310982 PMCID: PMC7170224 DOI: 10.1371/journal.pone.0231771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| | - Jonathan D. Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew M. Mills
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Julie C. Robidart
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, England, United Kingdom
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| |
Collapse
|
8
|
Lee MD, Ahlgren NA, Kling JD, Walworth NG, Rocap G, Saito MA, Hutchins DA, Webb EA. Marine
Synechococcus
isolates representing globally abundant genomic lineages demonstrate a unique evolutionary path of genome reduction without a decrease in GC content. Environ Microbiol 2019; 21:1677-1686. [DOI: 10.1111/1462-2920.14552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Michael D. Lee
- Department of Biological Sciences University of Southern California Los Angeles CA USA
- Exobiology, Ames Research Center Moffett Field CA USA
| | | | - Joshua D. Kling
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Nathan G. Walworth
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Gabrielle Rocap
- School of Oceanography University of Washington Seattle WA USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institute Woods Hole MA USA
| | - David A. Hutchins
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Eric A. Webb
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| |
Collapse
|
9
|
Xia X, Cheung S, Endo H, Suzuki K, Liu H. Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean. MICROBIAL ECOLOGY 2019; 77:333-342. [PMID: 30610255 DOI: 10.1007/s00248-018-1308-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Synechococcus is one of the most widely distributed and abundant picocyanobacteria in the global oceans. Although latitudinal variation of Synechococcus assemblage in marine surface waters has been observed, few studies compared Synechococcus assemblage composition in surface and subsurface waters at the basin scale. Here, we report marine Synechococcus diversity in the surface and deep chlorophyll maximum (DCM) layers along 170° W from the South Pacific to the Arctic Ocean in summer. Along the transect, spatial niche partitioning of Synechococcus lineages in the surface waters was clearly observed. Species richness of surface Synechococcus assemblage was positively correlated with water temperature. Clade CRD1 was dominant in the areas (15° S-10° N and 35-40° N) associated with upwelling, and there were 3 different subclades with distinct distribution. CRD1-A was restricted in the North Equatorial Current (5-10° N), CRD1-B dominated in the equatorial upwelling region (15° S-0.17° N), and CRD1-C was only distributed in the North Pacific Current (35-40° N). Similarities between the Synechococcus assemblages in the surface and DCM layers were high at the upwelling regions and areas where the mixed layer was deep, while low in the Subtropical Gyres with strong stratification. Clade I, CRD1-B, and CRD1-C were major Synechococcus lineages in the DCM layer. In particular, clade I, which is composed of 7 subclades with distinct thermal niches, was widely distributed in the DCM layer. Overall, our results provide new insights into not only the latitudinal distribution of Synechococcus assemblages, but also their vertical variation in the central Pacific.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Shunyuan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hisashi Endo
- Faculty of Environmental Earth Science, Hokkaido University/JST-CREST, North 10 West 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University/JST-CREST, North 10 West 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan.
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Parallel phylogeography of Prochlorococcus and Synechococcus. ISME JOURNAL 2018; 13:430-441. [PMID: 30283146 DOI: 10.1038/s41396-018-0287-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022]
Abstract
The globally abundant marine Cyanobacteria Prochlorococcus and Synechococcus share many physiological traits but presumably have different evolutionary histories and associated phylogeography. In Prochlorococcus, there is a clear phylogenetic hierarchy of ecotypes, whereas multiple Synechococcus clades have overlapping physiologies and environmental distributions. However, microbial traits are associated with different phylogenetic depths. Using this principle, we reclassified diversity at different phylogenetic levels and compared the phylogeography. We sequenced the genetic diversity of Prochlorococcus and Synechococcus from 339 samples across the tropical Pacific Ocean and North Atlantic Ocean using a highly variable phylogenetic marker gene (rpoC1). We observed clear parallel niche distributions of ecotypes leading to high Pianka's Index values driven by distinct shifts at two transition points. The first transition point at 6°N distinguished ecotypes adapted to warm waters but separated by macronutrient content. At 39°N, ecotypes adapted to warm, low macronutrient vs. colder, high macronutrient waters shifted. Finally, we detected parallel vertical and regional single-nucleotide polymorphism microdiversity within clades from both Prochlorococcus and Synechococcus, suggesting uniquely adapted populations at very specific depths, as well as between the Atlantic and Pacific Oceans. Overall, this study demonstrates that Prochlorococcus and Synechococcus have shared phylogenetic organization of traits and associated phylogeography.
Collapse
|
11
|
Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Yan Cheung S, Liu H. Phylogeography and pigment type diversity ofSynechococcuscyanobacteria in surface waters of the northwestern pacific ocean. Environ Microbiol 2016; 19:142-158. [DOI: 10.1111/1462-2920.13541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaomin Xia
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Frédéric Partensky
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Laurence Garczarek
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Koji Suzuki
- Faculty of Environmental Earth ScienceHokkaido University/JST‐ CREST Japan
| | - Cui Guo
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Shun Yan Cheung
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Hongbin Liu
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
12
|
Hanson CA, Marston MF, Martiny JBH. Biogeographic Variation in Host Range Phenotypes and Taxonomic Composition of Marine Cyanophage Isolates. Front Microbiol 2016; 7:983. [PMID: 27446023 PMCID: PMC4919323 DOI: 10.3389/fmicb.2016.00983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Despite the important role of phages in marine systems, little is understood about how their diversity is distributed in space. Biogeographic patterns of marine phages may be difficult to detect due to their vast genetic diversity, which may not be accurately represented by conserved marker genes. To investigate the spatial biogeographic structure of marine phages, we isolated over 400 cyanophages on Synechococcus host strain WH7803 at three coastal locations in the United States (Rhode Island, Washington, and southern California). Approximately 90% of the cyanophage isolates were myoviruses, while the other 10% were podoviruses. The diversity of isolates was further characterized in two ways: (i) taxonomically, using conserved marker genes and (ii) phenotypically, by testing isolates for their ability to infect a suite of hosts, or their "host range." Because host range is a highly variable trait even among closely related isolates, we hypothesized that host range phenotypes of cyanophage isolates would vary more strongly among locations than would taxonomic composition. Instead, we found evidence for strong biogeographic variation both in taxonomic composition and host range phenotypes, with little taxonomic overlap among the three coastal regions. For both taxonomic composition and host range phenotypes, cyanophage communities from California and Rhode Island were the most dissimilar, while Washington communities exhibited similarity to each of the other two locations. These results suggest that selection imposed by spatial variation in host dynamics influence the biogeographic distribution of cyanophages.
Collapse
Affiliation(s)
- China A Hanson
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonUK; Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CAUSA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI USA
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
13
|
Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME JOURNAL 2015. [PMID: 26208139 DOI: 10.1038/ismej.2015.115] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.
Collapse
|
14
|
Sudek S, Everroad RC, Gehman ALM, Smith JM, Poirier CL, Chavez FP, Worden AZ. Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean. Environ Microbiol 2015; 17:3692-707. [PMID: 25522910 DOI: 10.1111/1462-2920.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
Abstract
The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.
Collapse
Affiliation(s)
- Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, MS 239-4, Moffett Field, CA, 94035, USA
| | - Alyssa-Lois M Gehman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Camille L Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| |
Collapse
|
15
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Reistetter EN, Krumhardt K, Callnan K, Roache-Johnson K, Saunders JK, Moore LR, Rocap G. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II: gene expression. Environ Microbiol 2013; 15:2129-43. [PMID: 23647921 DOI: 10.1111/1462-2920.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/15/2023]
Abstract
Phosphorus (P) availability drives niche differentiation in the most abundant phytoplankter in the oceans, the marine cyanobacterium Prochlorococcus. We compared the molecular response of Prochlorococcus strain MED4 to P starvation in batch culture to P-limited growth in chemostat culture. We also identified an outer membrane porin, PMM0709, which may allow transport of organic phosphorous compounds, rather than phosphate as previously suggested. The expression of three P uptake genes, pstS, the high-affinity phosphate-binding component of the phosphate transporter, phoA, an alkaline phosphatase, and porin PMM0709, were strongly upregulated (between 10- and 700-fold) under both P starvation and limitation. pstS exhibits high basal expression under P-replete conditions and is likely necessary for P uptake regardless of P availability. A P-stress regulatory gene, ptrA, was upregulated in response to both P starvation and limitation although a second regulatory gene, phoB, was not. Elevated expression levels (> 10-fold) of phoR, a P-sensing histidine kinase, were only observed under conditions of P limitation. We suggest Prochlorococcus in P-limited systems are physiologically distinct from cells subjected to abrupt P depletion. Detection of expression of both pstS and phoR in field populations will enable discernment of the present P status of Prochlorococcus in the oligotrophic oceans.
Collapse
Affiliation(s)
- Emily Nahas Reistetter
- School of Oceanography, Center for Environmental Genomics, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Scanlan DJ, West NJ. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 2012; 40:1-12. [PMID: 19709205 DOI: 10.1111/j.1574-6941.2002.tb00930.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxygenic photoautotrophs of the genera Synechococcus and Prochlorococcus contribute significantly to primary production and are now widely accepted as the most abundant members of the picophytoplankton in the world's oceans. Since they represent one of the few cultured and representative groups of marine microorganisms, study of their physiology and biochemistry has progressed rapidly since their discovery. The recent and on-going sequencing of the complete genomes of representative strains will further hasten our understanding, and allow a complete interrogation, of the metabolism of these organisms. Moreover, since they inhabit a relatively simple environment they provide an excellent model system to begin to identify the underlying molecular mechanisms which allow their success in water columns with large vertical gradients of light and nutrients. Such work should provide novel insights into the genetic adaptations of these important marine microbes to their environment. We review here molecular ecological methods that are already available or which are currently being developed for these organisms. Such methods allow community structure, growth rate and nutrient status analysis, potentially at the single cell level, and can be used to define the niches, or identify the biotic or abiotic factors, which might control the productivity of specific genotypes. These techniques will undoubtedly provide the tools for answering more discerning questions concerning their ecology. How the complete genome sequence information is providing insights, and can further facilitate our understanding, of the ecology of these organisms is also discussed.
Collapse
Affiliation(s)
- David J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
18
|
Ahlgren NA, Rocap G. Diversity and Distribution of Marine Synechococcus: Multiple Gene Phylogenies for Consensus Classification and Development of qPCR Assays for Sensitive Measurement of Clades in the Ocean. Front Microbiol 2012; 3:213. [PMID: 22723796 PMCID: PMC3377940 DOI: 10.3389/fmicb.2012.00213] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Marine Synechococcus is a globally significant genus of cyanobacteria that is comprised of multiple genetic lineages or clades. These clades are thought to represent ecologically distinct units, or ecotypes. Because multiple clades often co-occur together in the oceans, Synechococcus are ideal microbes to explore how closely related bacterial taxa within the same functional guild of organisms co-exist and partition marine habitats. Here we sequenced multiple gene loci from cultured strains to confirm the congruency of clade classifications between the 16S-23S rDNA internally transcribed spacer (ITS), 16S rDNA, narB, ntcA, and rpoC1 loci commonly used in Synechococcus diversity studies. We designed quantitative PCR (qPCR) assays that target the ITS for 10 Synechococcus clades, including four clades, XV, XVI, CRD1, and CRD2, not covered by previous assays employing other loci. Our new qPCR assays are very sensitive and specific, detecting down to tens of cells per ml. Application of these qPCR assays to field samples from the northwest Atlantic showed clear shifts in Synechococcus community composition across a coastal to open-ocean transect. Consistent with previous studies, clades I and IV dominated cold, coastal Synechococcus communities. Clades II and X were abundant at the two warmer, off-shore stations, and at all stations multiple Synechococcus clades co-occurred. qPCR assays developed here provide valuable tools to further explore the dynamics of microbial community structure and the mechanisms of co-existence.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- School of Oceanography, Center for Environmental Genomics, University of Washington Seattle, WA, USA
| | | |
Collapse
|
19
|
Mackey KRM, Mioni CE, Ryan JP, Paytan A. Phosphorus cycling in the red tide incubator region of monterey bay in response to upwelling. Front Microbiol 2012; 3:33. [PMID: 22347222 PMCID: PMC3273705 DOI: 10.3389/fmicb.2012.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/18/2012] [Indexed: 11/13/2022] Open
Abstract
This study explores the cycling of phosphorus (P) in the euphotic zone following upwelling in northeastern Monterey Bay (the Red Tide Incubator region) of coastal California, with particular emphasis on how bacteria and phytoplankton that form harmful algal blooms mediate and respond to changes in P availability. In situ measurements of nutrient concentrations, phytoplankton community composition, and cell-specific alkaline phosphatase (AP) activity (determined via enzyme-labeled fluorescence assay) were measured during three cruises. Upwelling led to a 10-fold increase in dissolved inorganic (DIP) in surface waters, reaching ∼0.5 μmol L−1. This DIP was drawn down rapidly as upwelling relaxed over a period of 1 week. Ratios of nitrate to DIP drawdown (∼5:1, calculated as the change in nitrate divided by the change in DIP) were lower than the Redfield ratio of 16:1, suggesting that luxury P uptake was occurring as phytoplankton bloomed. Dissolved organic (DOP) remained relatively constant (∼0.3 μmol L−1) before and immediately following upwelling, but doubled as upwelling relaxed, likely due to phytoplankton excretion and release during grazing. This transition from a relatively high DIP:DOP ratio to lower DIP:DOP ratio was accompanied by a decline in the abundance of diatoms, which had low AP activity, toward localized, spatially heterogeneous blooms of dinoflagellates in the genera Prorocentrum, Ceratium, Dinophysis, Alexandrium, and Scrippsiella that showed high AP activity regardless of ambient DIP levels. A nutrient addition incubation experiment showed that phytoplankton growth was primarily limited by nitrate, followed by DIP and DOP, suggesting that P regulates phytoplankton physiology and competition, but is not a limiting nutrient in this region. AP activity was observed in bacteria associated with lysed cell debris and aggregates of particulate organic material, where it may serve to facilitate P regeneration, as well as affixed to the surfaces of intact phytoplankton cells, possibly indicative of close, beneficial phytoplankton–bacteria interactions.
Collapse
Affiliation(s)
- Katherine R M Mackey
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | | | | | | |
Collapse
|
20
|
Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME JOURNAL 2012; 6:1403-14. [PMID: 22278668 PMCID: PMC3379637 DOI: 10.1038/ismej.2011.201] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.
Collapse
|
21
|
Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I. Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 2011; 28:357-374. [DOI: 10.1111/j.1096-0031.2011.00386.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation. ISME JOURNAL 2011; 6:513-23. [PMID: 21975596 DOI: 10.1038/ismej.2011.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monterey Bay, CA is an Eastern boundary upwelling system that is nitrogen limited much of the year. In order to resolve population dynamics of microorganisms important for nutrient cycling in this region, we deployed the Environmental Sample Processor with quantitative PCR assays targeting both ribosomal RNA genes and functional genes for subclades of cyanobacteria (Synechococcus) and ammonia-oxidizing Archaea (Thaumarchaeota) populations. Results showed a strong correlation between Thaumarchaea abundances and nitrate during the spring upwelling but not the fall sampling period. In relatively stratified fall waters, the Thaumarchaeota community reached higher numbers than in the spring, and an unexpected positive correlation with chlorophyll concentration was observed. Further, we detected drops in Synechococcus abundance that occurred on short (that is, daily) time scales. Upwelling intensity and blooms of eukaryotic phytoplankton strongly influenced Synechococcus distributions in the spring and fall, revealing what appear to be the environmental limitations of Synechococcus populations in this region. Each of these findings has implications for Monterey Bay biogeochemistry. High-resolution sampling provides a better-resolved framework within which to observe changes in the plankton community. We conclude that controls on these ecosystems change on smaller scales than are routinely assessed, and that more predictable trends will be uncovered if they are evaluated within seasonal (monthly), rather than on annual or interannual scales.
Collapse
|
23
|
Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME JOURNAL 2011; 6:285-97. [PMID: 21955990 DOI: 10.1038/ismej.2011.106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
Collapse
|
24
|
Tai V, Poon AFY, Paulsen IT, Palenik B. Selection in coastal Synechococcus (cyanobacteria) populations evaluated from environmental metagenomes. PLoS One 2011; 6:e24249. [PMID: 21931665 PMCID: PMC3170327 DOI: 10.1371/journal.pone.0024249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/05/2011] [Indexed: 11/19/2022] Open
Abstract
Environmental metagenomics provides snippets of genomic sequences from all organisms in an environmental sample and are an unprecedented resource of information for investigating microbial population genetics. Current analytical methods, however, are poorly equipped to handle metagenomic data, particularly of short, unlinked sequences. A custom analytical pipeline was developed to calculate dN/dS ratios, a common metric to evaluate the role of selection in the evolution of a gene, from environmental metagenomes sequenced using 454 technology of flow-sorted populations of marine Synechococcus, the dominant cyanobacteria in coastal environments. The large majority of genes (98%) have evolved under purifying selection (dN/dS<1). The metagenome sequence coverage of the reference genomes was not uniform and genes that were highly represented in the environment (i.e. high read coverage) tended to be more evolutionarily conserved. Of the genes that may have evolved under positive selection (dN/dS>1), 77 out of 83 (93%) were hypothetical. Notable among annotated genes, ribosomal protein L35 appears to be under positive selection in one Synechococcus population. Other annotated genes, in particular a possible porin, a large-conductance mechanosensitive channel, an ATP binding component of an ABC transporter, and a homologue of a pilus retraction protein had regions of the gene with elevated dN/dS. With the increasing use of next-generation sequencing in metagenomic investigations of microbial diversity and ecology, analytical methods need to accommodate the peculiarities of these data streams. By developing a means to analyze population diversity data from these environmental metagenomes, we have provided the first insight into the role of selection in the evolution of Synechococcus, a globally significant primary producer.
Collapse
Affiliation(s)
- Vera Tai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Art F. Y. Poon
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
25
|
Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, Wu M. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch Microbiol 2011; 194:207-14. [PMID: 21861153 DOI: 10.1007/s00203-011-0745-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/21/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
A deep-sea sediment metagenomic library was constructed and screened for lipolytic enzymes by activity-based approach. Nine novel lipolytic enzymes were identified, and the amino acid sequences shared 56% to 84% identity to other lipolytic enzymes in the database. Phylogenetic analysis showed that these enzymes belonged to family IV lipolytic enzymes. One of the lipolytic enzymes, Est6, was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form. The recombinant protein was purified by Ni-nitrilotriacetic affinity chromatography column and characterized using p-nitrophenyl esters with various chain lengths. The est6 gene consisted of 909 bp that encoded 302 amino acid residues. Est6 was most similar to a lipolytic enzyme from uncultured bacterium (ACL67845, 61% identity) isolated from the South China Sea marine sediment metagenome. The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.
Collapse
Affiliation(s)
- Xiawei Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Post AF, Penno S, Zandbank K, Paytan A, Huse SM, Welch DM. Long term seasonal dynamics of synechococcus population structure in the gulf of aqaba, northern red sea. Front Microbiol 2011; 2:131. [PMID: 21734910 PMCID: PMC3122069 DOI: 10.3389/fmicb.2011.00131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/27/2011] [Indexed: 11/13/2022] Open
Abstract
Spatial patterns of marine Synechococcus diversity across ocean domains have been reported on extensively. However, much less is known of seasonal and multiannual patterns of change in Synechococcus community composition. Here we report on the genotypic diversity of Synechococcus populations in the Gulf of Aqaba, Northern Red Sea, over seven annual cycles of deep mixing and stabile stratification, using ntcA as a phylogenetic marker. Synechococcus clone libraries were dominated by clade II and XII genotypes and a total of eight different clades were identified. Inclusion of ntcA sequences from the Global Ocean Sampling database in our analyses identified members of clade XII from beyond the Gulf of Aqaba, extending its known distribution. Most of the Synechococcus diversity was attributed to members of clade II during the spring bloom, while clade III contributed significantly to diversity during summer stratification. Clade XII diversity was most prevalent in fall and winter. Clade abundances were estimated from pyrosequencing of the V6 hypervariable region of 16S rRNA. Members of clade II dominated Synechococcus communities throughout the year, whereas the less frequent genotypes showed a pattern of seasonal succession. Based on the prevailing nutritional conditions we observed that clade I members thrive at higher nutrient concentrations during winter mixing. Clades V, VI and X became apparent during the transition periods between mixing and stratification. Clade III became prominent during sumeer stratification. We propose that members of clades V, VI, and X, and clade III are Synechococcus ecotypes that are adapted to intermediate and low nutrient levels respectively. This is the first time that molecular analyses have correlated population dynamics of Synechococcus genotypes with temporal fluctuations in nutrient regimes. Since these Synechococcus genotypes are routinely observed in the Gulf of Aqaba we suggest that seasonal fluctuations in nutrient levels create temporal niches that sustain their coexistence.
Collapse
Affiliation(s)
- Anton F Post
- Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution Woods Hole, MA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mazard S, Ostrowski M, Partensky F, Scanlan DJ. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol 2011; 14:372-86. [PMID: 21651684 DOI: 10.1111/j.1462-2920.2011.02514.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conserved markers such as the 16S rRNA gene do not provide sufficient molecular resolution to identify spatially structured populations of marine Synechococcus, or 'ecotypes' adapted to distinct ecological niches. Multi-locus sequence analysis targeting seven 'core' genes was employed to taxonomically resolve Synechococcus isolates and correlate previous phylogenetic analyses encompassing a range of markers. Despite the recognized importance of lateral gene transfer in shaping the genomes of marine cyanobacteria, multi-locus sequence analysis of more than 120 isolates reflects a clonal population structure of major lineages and subgroups. A single core genome locus, petB, encoding the cytochrome b(6) subunit of the cytochrome b(6) f complex, was selected to expand our understanding of the diversity and ecology of marine Synechococcus populations. Environmental petB sequences cloned from contrasting sites highlight numerous genetically and ecologically distinct clusters, some of which represent novel, environmentally abundant clades without cultured representatives. With a view to scaling ecological analyses, the short sequence, taxonomic resolution and accurate automated alignment of petB is ideally suited to high-throughput and high-resolution sequencing projects to explore links between the ecology, evolution and biology of marine Synechococcus.
Collapse
Affiliation(s)
- Sophie Mazard
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | | | | | | |
Collapse
|
28
|
Rapid differentiation of phenotypically and genotypically similar Synechococcus elongatus strains by PCR fingerprinting. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Rynearson TA, Palenik B. Learning to read the oceans genomics of marine phytoplankton. ADVANCES IN MARINE BIOLOGY 2011; 60:1-39. [PMID: 21962749 DOI: 10.1016/b978-0-12-385529-9.00001-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The phytoplankton are key members of marine ecosystems, generating about half of global primary productivity, supporting valuable fisheries and regulating global biogeochemical cycles. Marine phytoplankton are phylogenetically diverse and are comprised of both prokaryotic and eukaryotic species. In the last decade, new insights have been gained into the ecology and evolution of these important organisms through whole genome sequencing projects and more recently, through both transcriptomics and targeted metagenomics approaches. Sequenced genomes of cyanobacteria are generally small, ranging in size from 1.8 to 9 million base pairs (Mbp). Eukaryotic genomes, in general, have a much larger size range and those that have been sequenced range from 12 to 57 Mbp. Whole genome sequencing projects have revealed key features of the evolutionary history of marine phytoplankton, their varied responses to environmental stress, their ability to scavenge and store nutrients and their unique ability to form elaborate cellular coverings. We have begun to learn how to read the 'language' of marine phytoplankton, as written in their DNA. Here, we review the ecological and evolutionary insights gained from whole genome sequencing projects, illustrate how these genomes are yielding information on marine natural products and informing nanotechnology as well as make suggestions for future directions in the field of marine phytoplankton genomics.
Collapse
Affiliation(s)
- Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| | | |
Collapse
|
30
|
Choi DH, Noh JH. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 2009; 69:439-48. [PMID: 19624741 DOI: 10.1111/j.1574-6941.2009.00729.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic relationships among 33 Synechococcus strains isolated from the East China Sea (ECS) and the East Sea (ES) were studied based on 16S rRNA gene sequences and 16S-23S rRNA gene internal transcribed spacer (ITS) sequences. Pigment patterns of the culture strains were also examined. Based on 16S rRNA gene and ITS sequence phylogenies, the Synechococcus isolates were clustered into 10 clades, among which eight were previously identified and two were novel. Half of the culture strains belonged to clade V or VI. All strains that clustered into novel clades exhibited both phycoerythrobilin and phycourobilin. Interestingly, the pigment compositions of isolates belonging to clades V and VI differed from those reported for other oceanic regions. None of the isolates in clade V showed phycourobilin, whereas strains in clade VI exhibited both phycourobilin and phycoerythrobilin, which is in contrast to previous studies. The presence of novel lineages and the different pigment patterns in the ECS and the ES suggests the possibility that some Synechococcus lineages are distributed only in geographically restricted areas and have evolved in these regions. Therefore, further elucidation of the physiological, ecological, and genetic characteristics of the diverse Synechococcus strains is required to understand their spatial and geographical distribution.
Collapse
Affiliation(s)
- Dong Han Choi
- Marine Living Resources Research Department, Korea Ocean Research and Development Institute, Ansan 426-744, Korea
| | | |
Collapse
|
31
|
Tai V, Palenik B. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME JOURNAL 2009; 3:903-15. [PMID: 19360028 DOI: 10.1038/ismej.2009.35] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marine cyanobacteria from the genus Synechococcus are found throughout the world's oceans and are important contributors to global primary productivity and carbon cycling. Cultured isolates and environmental DNA clone libraries of Synechococcus have demonstrated the diversity of these microbes. However, the natural distribution of this diversity through space and time and the ecological significance of their distribution are still poorly understood. To understand the seasonal dynamics of Synechococcus diversity, we have developed a quantitative PCR strategy using the gene encoding as a subunit of DNA-dependent RNA polymerase (rpoC1) and applied it to a 3-year time series of surface samples from the Scripps Institution of Oceanography pier (La Jolla, CA, USA), a coastal site in the northeastern Pacific Ocean. Synechococcus from clades I and IV were dominant throughout the time series and correlated with total Synechococcus abundance. The relative abundance of these two dominant clades showed evidence of a seasonal cycle. Synechococcus from clade IV were typically more abundant, but those from clade I dominated during periods just before the annual spring bloom of Synechococcus. Synechococcus from clades II and III were absent during spring and early summer, but appeared at low abundances in late summer and winter possibly due to changes in circulation in the Southern California Bight. As the first long-term time series describing Synechococcus population diversity, these temporal dynamics were used to interpret the genetic/genomic diversity observed in the environment and the potential factors regulating their distribution.
Collapse
Affiliation(s)
- Vera Tai
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0202, USA
| | | |
Collapse
|
32
|
Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol 2008; 74:3269-73. [PMID: 18344338 DOI: 10.1128/aem.02240-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The abundance of potentially Microcystis aeruginosa-infectious cyanophages in freshwater was studied using g91 real-time PCR. A clear increase in cyanophage abundance was observed when M. aeruginosa numbers declined, showing that these factors were significantly negatively correlated. Furthermore, our data suggested that cyanophage dynamics may also affect shifts in microcystin-producing and non-microcystin-producing populations.
Collapse
|
33
|
Jenkins BD, Zehr JP, Gibson A, Campbell L. Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. Environ Microbiol 2006; 8:2083-95. [PMID: 17107550 DOI: 10.1111/j.1462-2920.2006.01084.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene.
Collapse
Affiliation(s)
- Bethany D Jenkins
- Department of Cell and Molecular Biology and Graduate School of Oceanography, University of Rhode Island, 45 Lower College Road, Kingston, RI 02881, USA.
| | | | | | | |
Collapse
|
34
|
Foster RA, Zehr JP. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ Microbiol 2006; 8:1913-25. [PMID: 17014491 DOI: 10.1111/j.1462-2920.2006.01068.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Richelia intracellularis is a symbiotic heterocystous cyanobacterium that is capable of forming associations with several genera of diatoms. nifH, 16S rRNA and hetR sequences were amplified and cloned from field populations of Richelia associated with Hemiaulus hauckii (N. Atlantic), with Rhizosolenia clevei (N. Pacific), and from a cultivated isolate of Calothrix associated with Chaetoceros from station ALOHA (N. Pacific). Sequence identity was highest (98.2%) among the 16S rRNA sequences, and more divergent for the hetR (83.8%) and nifH (91.1%) sequences. The hetR and nifH DNA and amino acid sequences obtained from the symbionts associated with the three different diatom genera diverged into three separate lineages supported by high bootstrap values. The data indicate that symbionts in the different hosts are distinct species or strains. Furthermore, three previously unidentified heterocystous-like nifH sequence groups recently reported from station ALOHA in the subtropical Pacific, het-1, het-2 and het-3, were linked to Richelia associated with R. clevei, H. hauckii and the Calothrix symbiont of Chaetoceros sp. respectively.
Collapse
Affiliation(s)
- Rachel A Foster
- Institute of Marine Science, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
35
|
Crosby LD, Criddle CS. Gene capture and random amplification for quantitative recovery of homologous genes. Mol Cell Probes 2006; 21:140-7. [PMID: 17088045 DOI: 10.1016/j.mcp.2006.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 11/16/2022]
Abstract
The polymerase chain reaction (PCR) is instrumental in molecular analysis of microorganisms, allowing for the selective amplification of nucleic acids directly from clinical and environmental samples. However, the principles that allow for targeted amplification of DNA become a hindrance when attempting to simultaneously discriminate and quantify complex mixtures of homologous genes. Here we present a simple solution to the quantitative problem by separating the enrichment and amplification aspects of a conventional PCR reaction. In this assay, genes are enriched using a DNA oligonucleotide capture probe and subsequently amplified in a two-step random amplification protocol. In order to evaluate the quantitative aspects of the gene capture assay, we used real-time quantitative-PCR to measure initial and final concentrations of homologous genes from constructed mixtures of genomes. Upon sampling for the universal DNA-dependent RNA polymerase gene, rpoC, we were able to demonstrate quantitative recoveries from a mixed DNA sample despite differences in gene copy number ranging up to 4 orders of magnitude. This suggests that minority populations as low as 0.01% of the total community are represented as accurately as populations at higher abundance. These results offer new possibilities for accurately and quantitatively monitoring diverse mixtures of microorganisms.
Collapse
Affiliation(s)
- Laurel D Crosby
- Environmental Engineering & Science Program, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
36
|
Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci U S A 2006; 103:13555-9. [PMID: 16938853 PMCID: PMC1569201 DOI: 10.1073/pnas.0602963103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Indexed: 11/18/2022] Open
Abstract
Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp. strain CC9311, has significant differences from an open ocean strain, Synechococcus sp. strain WH8102, and these are consistent with the differences between their respective environments. CC9311 has a greater capacity to sense and respond to changes in its (coastal) environment. It has a much larger capacity to transport, store, use, or export metals, especially iron and copper. In contrast, phosphate acquisition seems less important, consistent with the higher concentration of phosphate in coastal environments. CC9311 is predicted to have differences in its outer membrane lipopolysaccharide, and this may be characteristic of the speciation of some cyanobacterial groups. In addition, the types of potentially horizontally transferred genes are markedly different between the coastal and open ocean genomes and suggest a more prominent role for phages in horizontal gene transfer in oligotrophic environments.
Collapse
Affiliation(s)
- Brian Palenik
- *Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093; and
| | - Qinghu Ren
- The Institute for Genomic Research, Rockville, MD 20850
| | - Chris L. Dupont
- *Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093; and
| | | | | | | | - Ramana Madupu
- The Institute for Genomic Research, Rockville, MD 20850
| | | | | | | | | | | | | | - Hoda Khouri
- The Institute for Genomic Research, Rockville, MD 20850
| | | | | | | |
Collapse
|
37
|
Ahlgren NA, Rocap G. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 2006; 72:7193-204. [PMID: 16936060 PMCID: PMC1636174 DOI: 10.1128/aem.00358-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microbial communities often contain multiple closely related phylogenetic clades, but in many cases, it is still unclear what physiological traits differentiate these putative ecotypes. The numerically abundant marine cyanobacterium Synechococcus can be divided into at least 14 clades. In order to better understand ecotype differentiation in this genus, we assessed the diversity of a Synechococcus community from a well-mixed water column in the Sargasso Sea during March 2002, a time of year when this genus typically reaches its annual peak in abundance. Diversity was estimated from water sampled at three depths (approximately 5, 70, and 170 m) using both culture isolation and construction of cyanobacterial 16S-23S rRNA internal transcribed sequence clone libraries. Clonal isolates were obtained by enrichment with ammonium, nitrite, or nitrate as the sole N source, followed by pour plating. Each method sampled the in situ diversity differently. The combined methods revealed a total of seven Synechococcus phylotypes including two new putative ecotypes, labeled XV and XVI. Although most other isolates grow on nitrate, clade XV exhibited a reduced efficiency in nitrate utilization, and both clade XV and XVI are capable of chromatic adaptation, demonstrating that this trait is more widely distributed among Synechococcus strains than previously known. Thus, as in its sister genus Prochlorococcus, light and nitrogen utilization are important factors in ecotype differentiation in the marine Synechococcus lineage.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | | |
Collapse
|
38
|
Penno S, Lindell D, Post AF. Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ Microbiol 2006; 8:1200-11. [PMID: 16817928 DOI: 10.1111/j.1462-2920.2006.01010.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacteria Synechococcus and Prochlorococcus are abundant primary producers in the nitrogen-poor waters of the Gulf of Aqaba, northern Red Sea. Expression of the nitrogen regulatory gene ntcA is a useful indicator for determining the N-status of cyanobacteria, and preliminary work with this gene suggests that it may also serve as a useful biodiversity marker. Here we investigated the genotypic diversity of ntcA among the full spectrum of cultured Synechococcus and Prochlorococcus lineages and assessed cyanobacterial genotypic composition in environmental samples from the Gulf of Aqaba. The high level of ntcA diversification established this gene as an excellent biodiversity marker capable of distinguishing between numerous clades within each genus with high resolution. An unexpected large diversity was observed among Synechococcus populations, including the detection of four novel clades for which culture representatives have yet to be isolated. In addition, extensive microdiversity within a number of Synechococcus clades was revealed. Temporal differences in the detection of the various Synechococcus clades suggest seasonal fluctuations in the genotypic make-up of Synechococcus populations. In contrast, virtually all Prochlorococcus sequences fell within a single high-light adapted clade that was detected year round. We suggest that the limited genotypic diversity among Prochlorococcus in combination with a limited capacity for acclimation to environmental changes resulting from its small genome size led to the dramatic rise and demise of Prochlorococcus populations over the yearly cycle in the Gulf of Aqaba.
Collapse
Affiliation(s)
- Sigrid Penno
- H. Steinitz Marine Biology Laboratory, Interuniversity Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | | | | |
Collapse
|
39
|
Jones H, Ostrowski M, Scanlan DJ. A suppression subtractive hybridization approach reveals niche-specific genes that may be involved in predator avoidance in marine Synechococcus isolates. Appl Environ Microbiol 2006; 72:2730-7. [PMID: 16597977 PMCID: PMC1449036 DOI: 10.1128/aem.72.4.2730-2737.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus are important contributors to marine primary production and are ubiquitous in the world's oceans. This genus is genetically diverse, and at least 10 discrete lineages or clades have been identified phylogenetically. However, little if anything is known about the genetic attributes which characterize particular lineages or are unique to specific strains. Here, we used a suppression subtractive hybridization (SSH) approach to identify strain- and clade-specific genes in two well-characterized laboratory strains, Synechococcus sp. strain WH8103 (clade III) and Synechococcus sp. strain WH7803 (clade V). Among the genes that were identified as potentially unique to each strain were genes encoding proteins that may be involved in specific predator avoidance, including a glycosyltransferase in strain WH8103 and a permease component of an ABC-type polysaccharide/polyol phosphate export system in WH7803. During this work the genome of one of these strains, WH7803, became available. This allowed assessment of the number of false-positive sequences (i.e., sequences present in the tester genome) present among the SSH-enriched sequences. We found that approximately 9% of the WH8103 sequences were potential false-positive sequences, which demonstrated that caution should be used when this technology is used to assess genomic differences in genetically similar bacterial strains.
Collapse
Affiliation(s)
- H Jones
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
40
|
Gibson AH, Jenkins BD, Wilkerson FP, Short SM, Zehr JP. Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiol Ecol 2006; 55:391-402. [PMID: 16466378 DOI: 10.1111/j.1574-6941.2005.00050.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PCR primers were designed and used to amplify glnA, the gene that encodes glutamine synthetase, from pure cultures of cyanobacteria and four samples from different marine environments. The glnA phylogeny was similar to that of the 16S rRNA gene, indicating that glnA gene sequences can be used to identify cyanobacteria expressing the glnA gene. Diverse unicellular cyanobacteria glnA genes were recovered from the North Pacific Subtropical Gyre, Monterey Bay, Chesapeake Bay and waters off the New Jersey coast. The majority of sequences were closely related to sequences from Synechococcus strains (78-88% identical DNA sequences). A few sequences that clustered with Prochlorococcus glnA genes were recovered from Monterey Bay and the North Pacific Subtropical Gyre. The expression of glnA was assayed by reverse transcriptase PCR to determine if there was a daily pattern in gene expression of samples collected from New Jersey's Longterm Environmental Observatory site (LEO-15). glnA expression varied over the day, with different glnA sequence types exhibiting different daily cycles. Results showed that the glnA gene can be used to characterize the diversity of natural populations of cyanobacteria, and to characterize gene expression patterns of individual species or strains.
Collapse
Affiliation(s)
- Angela H Gibson
- Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
| | | | | | | | | |
Collapse
|
41
|
Innok S, Matsumura M, Boonkerd N, Teaumroong N. Detection of Microcystis in Lake Sediment using Molecular Genetic Techniques. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-7893-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint I, Mann NH. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol 2005; 7:499-508. [PMID: 15816927 DOI: 10.1111/j.1462-2920.2005.00713.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unicellular cyanobacteria of the genus Synechococcus are a major component of the picophytoplankton and make a substantial contribution to primary productivity in the oceans. Here we provide evidence that supports the hypothesis that virus infection can play an important role in determining the success of different Synechococcus genotypes and hence of seasonal succession. In a study of the oligotrophic Gulf of Aqaba, Red Sea, we show a succession of Synechococcus genotypes over an annual cycle. There were large changes in the genetic diversity of Synechococcus, as determined by restriction fragment length polymorphism analysis of a 403- bp rpoC1 gene fragment, which was reduced to one dominant genotype in July. The abundance of co-occurring cyanophage capable of infecting marine Synechococcus was determined by plaque assays and their genetic diversity was determined by denaturing gradient gel electrophoresis analysis of a 118-bp g20 gene fragment. The results indicate that both abundance and genetic diversity of cyanophage covaried with that of Synechococcus. Multivariate statistical analyses show a significant relationship between cyanophage assemblage structure and that of Synechococcus. These observations are consistent with cyanophage infection being a major controlling factor in picophytoplankton succession.
Collapse
Affiliation(s)
- Martin Mühling
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
García-Fernández JM, de Marsac NT, Diez J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 2005; 68:630-8. [PMID: 15590777 PMCID: PMC539009 DOI: 10.1128/mmbr.68.4.630-638.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein P(II) is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.
Collapse
Affiliation(s)
- Jose Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Planta 1, Campus de Rabanales, 14071-Córdoba, Spain.
| | | | | |
Collapse
|
44
|
Ma Y, Jiao NZ, Zeng YH. Natural community structure of cyanobacteria in the South China Sea as revealed by rpoC1 gene sequence analysis. Lett Appl Microbiol 2004; 39:353-8. [PMID: 15355538 DOI: 10.1111/j.1472-765x.2004.01588.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To examine the community structure of cyanobacterial populations of the South China Sea on the surface and at depth of 80 m. METHODS AND RESULTS Direct PCR amplification of RNA polymerase (rpoC1) genes from environmental DNAs extracted from seawater, and cloning of the fragments and sequence analysis were used. A great diversity of Prochlorococcus and Synechococcus were detected at the investigation site. Genetically related Prochlorococcus were found in both layers while Synechococcus were found only on the surface. Prochlorococcus were clustered with the known high-light adapted II genotypes, and further divided into seven groups. Synechococcus could be divided into two groups, and the second group could be further subdivided into several clades. CONCLUSION The dominant genotype of Prochlorococcus was high-light adapted II genotype, and Synechococcus were distributed basically on the surface. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report about the cyanobacterial community structure in the South China Sea, and an important supplement to the current understanding of the relationship between genetic and ecological diversity and environments.
Collapse
Affiliation(s)
- Y Ma
- Key Laboratory for Marine Environmental Science of the Ministry Education, Environmental Science Research Center, Xiamen University, Xiamen, China
| | | | | |
Collapse
|
45
|
Papke RT, Douady CJ, Doolittle WF, Rodríguez-Valera F. Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern. Environ Microbiol 2004; 5:1039-45. [PMID: 14641583 DOI: 10.1046/j.1462-2920.2003.00501.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haloarchaeal rhodopsins are a diverse group of transmembrane proteins that use light energy to drive several different cellular processes. Two rhodopsins, bacteriorhodopsin and halorhodopsins, are H+ and Cl- ion pumps, respectively, and two rhodopsins, sensory rhodopsin I and II, regulate phototaxis. Bacteriorhodopsin is of special interest as it is a non-chlorophyll-based type of phototrophy (i.e. generation of chemical energy from light energy). However, very little is known about the diversity and distribution of rhodopsin genes in hypersaline environments. Here, we have used environmental PCR and cloning techniques to directly retrieve rhodopsin genes from three different salinity ponds located in a sea salt manufacturing facility near Alicante, Spain. Our survey resulted in the discovery of previously concealed variation including what is hypothesized to be bacteriorhodopsin genes from the uncultivated square morphotype that dominates these environments. In some instances, identical genes were discovered in seemingly different habitats suggesting that some haloarchaea are present over widely varying concentrations of salt.
Collapse
Affiliation(s)
- R Thane Papke
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, NS B3H 4H7, Canada.
| | | | | | | |
Collapse
|
46
|
Katano T, Hirose M, Nakano SI. Discrimination of Two Phycoerythrin-Pigment Types of Synechococcus and Their Seasonal Succession in the Uwa Sea. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Toshiya Katano
- Center for Marine Environmental Studies, Ehime University
| | - Miho Hirose
- BD Bioscience, Nippon Becton Dickinson Company, Ltd
| | - Shin-ichi Nakano
- Center for Marine Environmental Studies, Ehime University
- Faculty of Agriculture, Ehime University
| |
Collapse
|
47
|
Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 2003; 69:4639-47. [PMID: 12902252 PMCID: PMC169111 DOI: 10.1128/aem.69.8.4639-4647.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.
Collapse
Affiliation(s)
- Marcia F Marston
- Department of Biology, Roger Williams University, Bristol, Rhode Island 02809, USA.
| | | |
Collapse
|
48
|
Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 2003; 69:2430-43. [PMID: 12732508 PMCID: PMC154553 DOI: 10.1128/aem.69.5.2430-2443.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.
Collapse
Affiliation(s)
- Nicholas J Fuller
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
During the twenty years or so since the discovery of tiny photosynthetic cells of the genus Synechococcus in marine oceanic systems, a tremendous expansion of interest has been seen in the literature pertaining to these organisms. The fact that they are ubiquitous and abundant in major oceanic regimes underlies their ecological importance as significant contributors to marine C fixation. Recent advances in the physiology and biochemistry of these organisms are presented here, focusing on strains of the MC-A and MC-B clusters; it is stressed that the data contained herein should be put into the context of the ecological niche occupied by particular genotypes in situ. This system is ripe for joining the often separate disciplines of molecular ecology and microbial physiology and provides a great opportunity to tease out the underlying processes that both mediate organism evolution and also the environmental factors that dictate this.
Collapse
Affiliation(s)
- David J Scanlan
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
50
|
Zhong Y, Chen F, Wilhelm SW, Poorvin L, Hodson RE. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol 2002; 68:1576-84. [PMID: 11916671 PMCID: PMC123904 DOI: 10.1128/aem.68.4.1576-1584.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|