1
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
2
|
Domanska B, Fortea E, West MJ, Schwartz JL, Crickmore N. The role of membrane-bound metal ions in toxicity of a human cancer cell-active pore-forming toxin Cry41Aa from Bacillus thuringiensis. Toxicon 2019; 167:123-133. [PMID: 31181295 DOI: 10.1016/j.toxicon.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Abstract
Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxins and yet is toxic to the human hepatic cancer cell line HepG2, disrupting membranes of susceptible cells, similar to its insecticidal counterparts. In this study, we explore the protective effect that the common divalent metal chelator EGTA exerts on Cry41Aa's activity on HepG2 cells. Our results indicate that rather than interfering with a signalling pathway as a result of chelating cations in the medium, the chelator prevented the toxin's interaction with the membrane, and thus the subsequent steps of membrane damage and p38 phosphorylation, by removing cations bound to plasma membrane components. BAPTA and DTPA also inhibited Cry41Aa toxicity but at higher concentrations. We also show for the first time that Cry41Aa induces pore formation in planar lipid bilayers. This activity is not altered by EGTA, consistent with a biological context of chelation. Salt supplementation assays identified Ca2+, Mn2+ and Zn2+ as being able to reinstate Cry41Aa activity. Our data suggest the existence of one or more metal cation-dependent receptors in the Cry41Aa mechanism of action.
Collapse
Affiliation(s)
- Barbara Domanska
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Eva Fortea
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Jean-Louis Schwartz
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
3
|
Castella C, Pauron D, Hilliou F, Trang VT, Zucchini-Pascal N, Gallet A, Barbero P. Transcriptomic analysis of Spodoptera frugiperda Sf9 cells resistant to Bacillus thuringiensis Cry1Ca toxin reveals that extracellular Ca 2+, Mg 2+ and production of cAMP are involved in toxicity. Biol Open 2019; 8:bio.037085. [PMID: 30926594 PMCID: PMC6503997 DOI: 10.1242/bio.037085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) produces pore forming toxins that have been used for pest control in agriculture for many years. However, their molecular and cellular mode of action is still unclear. While a first model - referred to as the pore forming model - is the most widely accepted scenario, a second model proposed that toxins could trigger an Mg2+-dependent intracellular signalling pathway leading to cell death. Although Cry1Ca has been shown to form ionic pores in the plasma membrane leading to cell swelling and death, we investigated the existence of other cellular or molecular events involved in Cry1Ca toxicity. The Sf9 insect cell line, derived from Spodoptera frugiperda, is highly and specifically sensitive to Cry1Ca. Through a selection program we developed various levels of laboratory-evolved Cry1Ca-resistant Sf9 cell lines. Using a specific S. frugiperda microarray we performed a comparative transcriptomic analysis between sensitive and resistant cells and revealed genes differentially expressed in resistant cells and related to cation-dependent signalling pathways. Ion chelators protected sensitive cells from Cry1Ca toxicity suggesting the necessity of both Ca2+ and/or Mg2+ for toxin action. Selected cells were highly resistant to Cry1Ca while toxin binding onto their plasma membrane was not affected. This suggested a resistance mechanism different from the classical 'loss of toxin binding'. We observed a correlation between Cry1Ca cytotoxicity and the increase of intracellular cAMP levels. Indeed, Sf9 sensitive cells produced high levels of cAMP upon toxin stimulation, while Sf9 resistant cells were unable to increase their intracellular cAMP. Together, these results provide new information about the mechanism of Cry1Ca toxicity and clues to potential resistance factors yet to discover.
Collapse
|
4
|
Soberón M, Portugal L, Garcia-Gómez BI, Sánchez J, Onofre J, Gómez I, Pacheco S, Bravo A. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:66-78. [PMID: 29269111 DOI: 10.1016/j.ibmb.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Cell lines have been use extensively for the study of the mode of action of different pore forming toxins produced by different bacterial species. Bacillus thuringiensis Cry toxins are not the exception and their mechanism of action has been analyzed in different cell lines. Here we review the data obtained with different cell lines, including those that are naturally susceptible to the three domain Cry toxins (3d-Cry) and other non-susceptible cell lines that have been transformed with 3d-Cry toxin binding molecules cloned from the susceptible insects. The effects on Cry toxin action after expressing different insect gut proteins, such as glycosyl-phosphatidyl-inositol (GPI) anchored proteins (like alkaline phosphatase (ALP) aminopeptidase (APN)), or trans-membrane proteins (like cadherin (CAD) or ATP-binding cassette subfamily C member 2 (ABCC2) transporter) in cell lines showed that, with few exceptions, expression of GPI-anchored proteins do not correlated with increased susceptibility to the toxin, while the expression of CAD or ABCC2 proteins correlated with induced susceptibility to Cry toxins in the transformed cells lines. Also, that the co-expression of CAD and ABCC2 transporter induced a synergistic effect in the toxicity of 3d-Cry toxins. Overall the data show that in susceptible cell lines, the 3d-Cry toxins induce pore formation that correlates with toxicity. However, the intracellular responses remain controversial since it was shown that the same 3d-Cry toxin in different cell lines activated different responses such as adenylate cyclase-PKA death response or apoptosis. Parasporins are Cry toxins that are toxic to cancer cell lines that have structural similarities with the insecticidal Cry toxins. They belong to the 3d-Cry toxin or to MTX-like Cry toxin families but also show important differences with the insecticidal Cry proteins. Some parasporins are pore-forming toxins, and some activate apoptosis. In this review we summarized the results of the different studies about the Cry toxins mode of action using cultured cell lines and discuss their relation with the studies performed in insect larvae.
Collapse
Affiliation(s)
- Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Blanca-Ines Garcia-Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Jorge Sánchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Janette Onofre
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Isabel Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Sabino Pacheco
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| |
Collapse
|
5
|
Angka L, Lee EA, Rota SG, Hanlon T, Sukhai M, Minden M, McMillan EM, Quadrilatero J, Spagnuolo PA. Glucopsychosine increases cytosolic calcium to induce calpain-mediated apoptosis of acute myeloid leukemia cells. Cancer Lett 2014; 348:29-37. [DOI: 10.1016/j.canlet.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
|
6
|
Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Peptides 2014; 53:292-9. [PMID: 24189038 DOI: 10.1016/j.peptides.2013.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023]
Abstract
Bacillus thuringiensis Cry toxins are insecticidal proteins used to control insect pests. The interaction of Cry toxins with the midgut of susceptible insects is a dynamic process involving activation of the toxin, binding to midgut receptors in the apical epithelium and conformational changes in the toxin molecule, leading to pore formation and cell lysis. An understanding of the molecular events underlying toxin mode of action is essential for the continued use of Cry toxins. In this work, we examined the mechanism of action of Cry1A toxins in the lepidopteran cell line CF-1, using native Cry1Ab and mutant forms of this protein that interfer with different steps in the mechanism of action, specifically, receptor binding, oligomerization or pore formation. These mutants lost activity against both Manduca sexta larvae and CF-1 cells. We also analyzed a mutation created in domain I of Cry1Ab, in which helix α-1 and part of helix α-2 were deleted (Cry1AbMod). Cry1AbMod is able to oligomerize in the absence of toxin receptors, and although it shows reduced activity against some susceptible insects, it kills insect pests that have developed resistance to native Cry1Ab. Cry1AbMod showed enhanced toxicity to CF-1, suggesting that oligomerization of native Cry1Ab may be a limiting step in its activity against CF-1 cells. The toxicity of Cry1Ac and Cry1AcMod were also analyzed. Our results suggest that some of the steps in the mode of action of Cry1A toxins are conserved in vivo in insect midgut cells and in vitro in an established cell line, CF-1.
Collapse
Affiliation(s)
- Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - J Lawrence Gringorten
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Guido F Caputo
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Carlos Muñoz-Garay
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| |
Collapse
|
7
|
Ochoa-Campuzano C, Sánchez J, García-Robles I, Real MD, Rausell C, Sánchez J. Identification of a calmodulin-binding site within the domain I of Bacillus thuringiensis Cry3Aa toxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:53-62. [PMID: 22836907 DOI: 10.1002/arch.21044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bacillus thuringiensis Cry3Aa toxin is a coleopteran specific toxin highly active against Colorado Potato Beetle (CPB).We have recently shown that Cry3Aa toxin is proteolytically cleaved by CPB midgut membrane associated metalloproteases and that this cleavage is inhibited by ADAM metalloprotease inhibitors. In the present study, we investigated whether the Cry3Aa toxin is a calmodulin (CaM) binding protein, as it is the case of several different ADAM shedding substrates. In pull-down assays using agarose beads conjugated with CaM, we demonstrated that Cry3Aa toxin specifically binds to CaM in a calcium-independent manner. Furthermore, we used gel shift assays and (1)H NMR spectra to demonstrate that CaM binds to a 16-amino acid synthetic peptide corresponding to residues N256-V271 within the domain I of Cry3Aa toxin. Finally, to investigate whether CaM has any effect on Cry3Aa toxin CPB midgut membrane associated proteolysis, cleavage assays were performed in the presence of the CaM-specific inhibitor trifluoperazine. We showed that trifluoperazine significantly increased Cry3Aa toxin proteolysis and also decreased Cry3Aa larval toxicity.
Collapse
Affiliation(s)
- Camila Ochoa-Campuzano
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J Invertebr Pathol 2012; 111:1-12. [DOI: 10.1016/j.jip.2012.05.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
|
9
|
Andreev IM, Bulushova NV, Zalunin IA, Chestukhina GG. Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium. BIOCHEMISTRY (MOSCOW) 2009; 74:1096-103. [PMID: 19916922 DOI: 10.1134/s0006297909100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of entomocidal Cry-type proteins, delta-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and DeltapH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of delta-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of delta-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.
Collapse
Affiliation(s)
- I M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | | | | | | |
Collapse
|
10
|
Fortier M, Vachon V, Kirouac M, Schwartz JL, Laprade R. Differential Effects of Ionic Strength, Divalent Cations and pH on the Pore-forming Activity of Bacillus thuringiensis Insecticidal Toxins. J Membr Biol 2005; 208:77-87. [PMID: 16596448 DOI: 10.1007/s00232-005-0820-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/30/2005] [Indexed: 10/24/2022]
Abstract
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.
Collapse
Affiliation(s)
- M Fortier
- Groupe d'Etude des Protéines Membranaires, Université de Montréal and Biocontrol Network, Centre Ville Station, Montreal, P.O. Box 6128, Quebec, H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
11
|
Guihard G, Laprade R, Schwartz JL. Unfolding affects insect cell permeabilization by Bacillus thuringiensis Cry1C toxin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:110-9. [PMID: 11718667 DOI: 10.1016/s0005-2736(01)00403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis Cry toxins are efficient, environment-friendly biological insecticides. Their molecular mode of action on target insect cells remains largely unknown. The aim of this study was to investigate the relation between the conformational state of the Cry1C toxin and its ionophoric activity on live Sf9 cells of Spodoptera frugiperda, a target insect for this protein. Potassium ion movement induced by Cry1C across the cell membrane was measured with a fluorescent assay developed previously and the conformation of the toxin was studied using tryptophan spectroscopy. Following treatment with 4 M guanidinium hydrochloride, which resulted in the unfolding of its N-terminal half, the toxin retained its full capacity to permeabilize the cells while the fully unfolded toxin did not induce potassium leakage. Therefore, permeabilization of Sf9 cells by Cry1C requires the integrity of the C-terminal half of the toxin and may depend on an initial unfolding step provided by the acidic environment of the cells.
Collapse
Affiliation(s)
- G Guihard
- INSERM U533, Hôtel-Dieu, Faculté de Médecine, Nantes, France
| | | | | |
Collapse
|
12
|
Gijón MA, Spencer DM, Kaiser AL, Leslie CC. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 1999; 145:1219-32. [PMID: 10366595 PMCID: PMC2133140 DOI: 10.1083/jcb.145.6.1219] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Revised: 04/09/1999] [Indexed: 11/24/2022] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.
Collapse
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|