1
|
Quantification of Marine Picocyanobacteria on Water Column Particles and in Sediments Using Real-Time PCR Reveals Their Role in Carbon Export. mSphere 2022; 7:e0049922. [PMID: 36472446 PMCID: PMC9769826 DOI: 10.1128/msphere.00499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria are the most abundant primary producers in the ocean and play a fundamental role in marine carbon cycling. Quantification of picocyanobacteria on sinking particles and in sediments is essential to understanding their contribution to the biological carbon pump. We designed a primer set targeting the 16S-23S rRNA internal transcribed spacer (ITS) sequence of cyanobacteria and established a quantitative PCR (qPCR) method for quantifying the ITS sequence abundance. High-throughput sequencing confirmed that this primer set can cover broad diversities of marine picocyanobacteria and avoid amplification of other marine cyanobacteria such as Trichodesmium and Crocosphaera. Amplification efficiencies were slightly different when seven marine Synechococcus and Prochlorococcus strains were assayed. The qPCR results were comparable with flow cytometry for water samples. Using this method, we found that, in the dark ocean, picocyanobacterial ITS sequence abundances were 10 to 100 copies/mL in the size fraction of 0.2 to 3 μm, which were 1 to 3 orders of magnitude more abundant than on the >3-μm particles. We also found that picocyanobacterial ITS abundance in sediment ranged from 105 to 107 copies/g along two nearshore-to-offshore transects in the northern South China Sea. These results further explain the important role of picocyanobacteria in carbon export. Collectively, we provide a qPCR method quantifying the total abundance of marine picocyanobacteria on water column particles and in sediments. Moreover, this newly designed primer set can be also applied to investigate the community of picocyanobacteria via high-throughput sequencing. IMPORTANCE Picocyanobacteria are the most abundant primary producers in the ocean. However, quantification of picocyanobacteria on the sinking particles and in sediments remains challenging using flow cytometry or epifluorescence microscopy. Here, we developed a real-time PCR method to quantify picocyanobacteria using a newly designed primer set specifically targeting the 16S-23S rRNA ITS sequence of cyanobacteria. We showed that in the dark ocean, picocyanobacteria are 1 to 3 orders of magnitude more abundant in small particles (0.2 to 3 μm) than in larger particles (>3 μm). This result supports the important role of direct sinking free-living picocyanobacteria cells in the carbon export to deep ocean. We also found that the picocyanobacterial ITS sequence abundance were 105 to 107 copies per gram in sediments, suggesting significant accumulation of sinking picocyanobacteria in the benthic ecosystem. This qPCR method can be used to quantify the contribution of picocyanobacteria to the biological carbon pump.
Collapse
|
2
|
Xie B, Pu Y, Yang F, Chen W, Yue W, Ma J, Zhang N, Jiang Y, Wu J, Lin Y, Liang X, Wang C, Zou P, Li M. Proteomic Mapping and Targeting of Mitotic Pericentriolar Material in Tumors Bearing Centrosome Amplification. Cancer Res 2022; 82:2576-2592. [PMID: 35648393 DOI: 10.1158/0008-5472.can-22-0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Recent work has made it clear that pericentriolar material (PCM), the matrix of proteins surrounding centrioles, contributes to most functions of centrosomes. Given the occurrence of centrosome amplification in most solid tumors and the unconventional survival of these tumor cells, it is tempting to hypothesize that gel-like mitotic PCM would cluster extra centrosomes to defend against mitotic errors and increase tumor cell survival. However, because PCM lacks an encompassing membrane, is highly dynamic, and is physically connected to centrioles, few methods can decode the components of this microscale matrix. In this study, we took advantage of differential labeling between two sets of APEX2-centrosome reactions to design a strategy for acquiring the PCM proteome in living undisturbed cells without synchronization treatment, which identified 392 PCM proteins. Localization of ubiquitination promotion proteins away from PCM was a predominant mechanism to maintain the large size of PCM for centrosome clustering during mitosis in cancer cells. Depletion of PCM gene kinesin family member 20A (KIF20A) caused centrosome clustering failure and apoptosis in cancer cells in vitro and in vivo. Thus, our study suggests a strategy for targeting a wide range of tumors exhibiting centrosome amplification and provides a proteomic resource for future mining of PCM proteins. SIGNIFICANCE This study identifies the proteome of pericentriolar material and reveals therapeutic vulnerabilities in tumors bearing centrosome amplification.
Collapse
Affiliation(s)
- Bingteng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| | - Yang Pu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Fan Yang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China
| | - Wei Chen
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Wei Yue
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| | - Jihong Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| | - Na Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| | - Yuening Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| | - Jiegen Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, P.R. China.,Chinese Institute for Brain Research (CIBR), Beijing, P.R. China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, P.R. China
| |
Collapse
|
3
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
4
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
5
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
6
|
Kamperman T, Henke S, Crispim JF, Willemen NGA, Dijkstra PJ, Lee W, Offerhaus HL, Neubauer M, Smink AM, de Vos P, de Haan BJ, Karperien M, Shin SR, Leijten J. Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non-Cell-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102660. [PMID: 34476848 PMCID: PMC8530967 DOI: 10.1002/adma.202102660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/10/2021] [Indexed: 05/14/2023]
Abstract
Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Sieger Henke
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - João F. Crispim
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Pieter J. Dijkstra
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Wooje Lee
- Optical SciencesMESA+ Institute for NanotechnologyUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Herman L. Offerhaus
- Optical SciencesMESA+ Institute for NanotechnologyUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Martin Neubauer
- Physical Chemistry IIUniversity of BayreuthUniversitätsstrasse 30D‐95447BayreuthGermany
| | - Alexandra M. Smink
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Paul de Vos
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical BiologySection of ImmunoendocrinologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1 (EA11)Groningen9713 GZThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Su Ryon Shin
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
7
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Abstract
FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.
Collapse
Affiliation(s)
- Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Thompson HF, Summers S, Yuecel R, Gutierrez T. Hydrocarbon-Degrading Bacteria Found Tightly Associated with the 50-70 μm Cell-Size Population of Eukaryotic Phytoplankton in Surface Waters of a Northeast Atlantic Region. Microorganisms 2020; 8:microorganisms8121955. [PMID: 33317100 PMCID: PMC7763645 DOI: 10.3390/microorganisms8121955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The surface of marine eukaryotic phytoplankton can harbour communities of hydrocarbon-degrading bacteria; however, this algal–bacterial association has, hitherto, been only examined with non-axenic laboratory cultures of micro-algae. In this study, we isolated an operationally-defined community of phytoplankton, of cell size 50–70 μm, from a natural community in sea surface waters of a subarctic region in the northeast Atlantic. Using MiSeq 16S rRNA sequencing, we identified several recognized (Alcanivorax, Marinobacter, Oleispira, Porticoccus, Thalassospira) and putative hydrocarbon degraders (Colwelliaceae, Vibrionaceae) tightly associated with the phytoplankton population. We combined fluorescence in situ hybridisation with flow-cytometry (FISH-Flow) to examine the association of Marinobacter with this natural eukaryotic phytoplankton population. About 1.5% of the phytoplankton population contained tightly associated Marinobacter. The remaining Marinobacter population were loosely associated with either eukaryotic phytoplankton cells or non-chlorophyll particulate material. This work is the first to show the presence of obligate, generalist and putative hydrocarbonoclastic bacteria associated with natural populations of eukaryotic phytoplankton directly from sea surface water samples. It also highlights the suitability of FISH-Flow for future studies to examine the spatial and temporal structure and dynamics of these and other algal–bacterial associations in natural seawater samples.
Collapse
Affiliation(s)
- Haydn Frank Thompson
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
| | - Stephen Summers
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences IMS, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- Exeter Centre for Cytomics (EXCC), College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
- Correspondence:
| |
Collapse
|
10
|
Wu LR, Fang JZ, Khodakov D, Zhang DY. Nucleic Acid Quantitation with Log-Linear Response Hybridization Probe Sets. ACS Sens 2020; 5:1604-1614. [PMID: 32475109 DOI: 10.1021/acssensors.0c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Concentrations of different nucleic acid species in biological samples span many orders of magnitude. A real-time polymerase chain reaction maps the concentration of a target nucleic acid sequence log-linearly into cycle threshold to enable quantitation with a wide dynamic range but suffers from enzymatic biases. Here, we present a general design for constructing hybridization probe sets with highly log-linear response curves to enable accurate enzyme-free quantitation across large ranges (more than 6 logs) of target DNA concentrations. The sensitivity of each component probe is accurately adjusted via formulation stoichiometry to reduce the standard error of target quantitation down to 7%. As a proof of concept, we show multiplexed quantitation of three microRNA species in total RNA of the human brain and liver.
Collapse
Affiliation(s)
- Lucia R. Wu
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - John Z. Fang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Dmitriy Khodakov
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Takahashi H, Horio K, Kato S, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci Rep 2020; 10:9588. [PMID: 32541674 PMCID: PMC7295810 DOI: 10.1038/s41598-020-65864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Meta-analyses using next generation sequencing is a powerful strategy for studying microbiota; however, it cannot clarify the role of individual microbes within microbiota. To know which cell expresses what gene is important for elucidation of the individual cell’s function in microbiota. In this report, we developed novel fluorescence in situ hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to visualize mRNA of interest in microbial cells without reverse transcription. Our results show that this method is applicable to both Gram-negative and Gram-positive microbes without any noise from DNA, and it is possible to visualize the target mRNA expression directly at the single-cell level. Therefore, our procedure, when combined with data of meta-analyses, can help to understand the role of individual microbes in the microbiota.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.
| | - Kyohei Horio
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan. .,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
12
|
Cisneros BT, Devaraj NK. Laccase-Mediated Catalyzed Fluorescent Reporter Deposition for Live-Cell Imaging. Chembiochem 2020; 21:98-102. [PMID: 31556173 DOI: 10.1002/cbic.201900593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 11/12/2022]
Abstract
Catalyzed reporter deposition (CARD) is a widely established method for labeling biological samples analyzed using microscopy. Horseradish peroxidase, commonly used in CARD to amplify reporter signals, requires the addition of hydrogen peroxide, which may perturb samples used in live-cell microscopy. Herein we describe an alternative method of performing CARD using a laccase enzyme, which does not require exogenous hydrogen peroxide. Laccase is an oxidative enzyme which can carry out single-electron oxidations of phenols and related compounds by reducing molecular oxygen. We demonstrate proof-of-concept for this technique through the nontargeted covalent labeling of bovine serum albumin using a fluorescently labeled ferulic acid derivative as the laccase reporter substrate. We further demonstrate the viability of this approach by performing live-cell CARD with an antibody-conjugated laccase against a surface-bound target. CARD using laccase produces an amplified fluorescence signal by labeling cells without the need for exogenous hydrogen peroxide.
Collapse
Affiliation(s)
- Brandon T Cisneros
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
13
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
14
|
Huang MS, Lin WC, Chang JH, Cheng CH, Wang HY, Mou KY. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications. Protein Sci 2019; 28:1703-1712. [PMID: 31306516 DOI: 10.1002/pro.3685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium-independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi-pass membrane proteins. In this study, we found that a cysteine-free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2C32S to four multi-transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2C32S (73%), other three SLC proteins showed significantly better expression when fusing to APEX2C32S (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC-APEX2C32S cells. Enzyme kinetic experiments revealed that APEX2 and APEX2C32S have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2C32S is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.
Collapse
Affiliation(s)
- Meng-Sen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Ching Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Hsuan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Hung Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han Ying Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Zhu Y, Wang Y, Yan Y, Xue H. Rapid and Sensitive Quantification of Anammox Bacteria by Flow Cytometric Analysis Based on Catalyzed Reporter Deposition Fluorescence In Situ Hybridization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6895-6905. [PMID: 31120737 DOI: 10.1021/acs.est.9b01017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The quantification of anammox bacteria is crucial to manipulation and management of anammox biosystems. In this study, we proposed a protocol specifically optimized for quantification of anammox bacteria abundance in anammox sludge samples using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and flow cytometry (FCM) in combination (Flow-CARD-FISH). We optimized the pretreatment procedures for FCM-compatibility, as well as the permeabilization, hybridization and staining protocols of the CARD-FISH. The developed method was compared with other methods for specific bacteria quantification (standard FISH, 16S rRNA sequencing and quantitative polymerase chain reaction). Anammox sludge samples could be disaggregated effectively by sonication (specific energy of 90 kJ·L-1 with MLVSS of 3-5 g·L-1) with the mixed ionic and nonionic dispersants Triton X-100 (5%) and sodium pyrophosphate (10 mM). Lysozyme treatment for permeabilizing bacterial cell walls and H2O2 incubation for completely quenching endogenous peroxidase of anammox sludges were essential to fluorescence enhancement and false positive signals control, respectively. Horseradish peroxidase molecules labeling at 20 °C for 12 h and the fluorescent tyramide labeling at 25 °C for 30 min with a fluorescent substrate concentration of 1:50 maintained the balance between increasing the signal and preventing nonspecific binding. Flow-CARD-FISH results showed that anammox bacteria absolute abundance in two different sludge samples were (2.31 ± 0.01) × 107 and (1.20 ± 0.06) × 107 cells·mL-1, respectively, with the relative abundances of 36.7 ± 4.1% and 26.5 ± 3.7%, respectively, comparable with those of qPCR and 16S rRNA sequencing analysis. The enhanced fluorescence signals induced by CARD-FISH combined with the high quantitative fluorescence sensitivity of FCM provide a rapid and sensitive method that yields accurate quantification results that will be valuable in future studies of microbial community determination.
Collapse
Affiliation(s)
- Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , Siping Road , Shanghai 200092 , P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , Siping Road , Shanghai 200092 , P. R. China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , Siping Road , Shanghai 200092 , P. R. China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , Siping Road , Shanghai 200092 , P. R. China
| |
Collapse
|
16
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
17
|
Mangot JF, Forn I, Obiol A, Massana R. Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ Microbiol 2018; 20:3876-3889. [PMID: 30209866 DOI: 10.1111/1462-2920.14408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Abstract
Protists have fundamental ecological roles in marine environments and their diversity is being increasingly explored, yet little is known about the quantitative importance of specific taxa in these ecosystems. Here we optimized a newly developed automated system of image acquisition and image analysis to enumerate minute uncultured cells of different sizes targeted by fluorescence in situ hybridization. The automated counting routine was highly reproducible, well correlated with manual counts, and was then applied on surface and deep chlorophyll maximum samples from the Malaspina 2010 circumnavigation. The three targeted uncultured taxa (MAST-4, MAST-7 and MAST-1C) were found in virtually all samples from several ocean basins (Atlantic, Indian and Pacific) in fairly constant cell abundances, following typical lognormal distributions. Their global abundances averaged 49, 23 and 7 cells ml-1 , respectively, and altogether the three groups accounted for about 10%-20% of heterotrophic picoeukaryotes. Our innovative high-throughput cell counting routine allows for the first time a direct assessment of the biogeographic distribution of small protists (< 5 μm) and shows the ubiquity in sunlit oceans of three bacterivorous taxa, suggesting their key roles in marine ecosystems.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), E-08003 Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat Methods 2018; 15:437-439. [PMID: 29735997 PMCID: PMC6202184 DOI: 10.1038/s41592-018-0007-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Regulation of gene expression is primarily controlled by changes in the proteins that occupy their regulatory elements. Chromatin immunoprecipitation can confirm a protein’s occupancy at a genomic locus but requires specific, high-quality, IP-competent antibodies against nominated proteins, limiting its utility. Here, we combine, genome targeting, proximity labeling, and quantitative proteomics to develop genomic locus proteomics, a method able to identify proteins associated a specific genomic locus in native cellular contexts.
Collapse
|
19
|
Methods for Collection and Characterization of Samples From Icy Environments. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bagheri G, Lehner JD, Zhong J. Enhanced detection of Rickettsia species in Ixodes pacificus using highly sensitive fluorescence in situ hybridization coupled with Tyramide Signal Amplification. Ticks Tick Borne Dis 2017; 8:915-921. [PMID: 28882513 DOI: 10.1016/j.ttbdis.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Ixodes pacificus is a host of many bacteria including Rickettsia species phylotypes G021 and G022. As part of the overall goal of understanding interactions of phylotypes with their tick host, this study focused on molecular detection of rickettsiae in ovarian and midgut tissue of I. pacificus by fluorescent in situ hybridization (FISH), PCR, and ultrastructural analysis. Of three embedding media (Technovit 8100, Unicryl, and paraffin) tested for generating thin sections, tissues embedded in paraffin resulted in the visualization of bacteria with low autofluorescence in FISH. Digoxigenin-labeled probes were used in FISH to intensify bacterial hybridization signals using Tyramide Signal Amplification reaction. Using this technique, rickettsiae were detected in the cytoplasm of oocytes of I. pacificus. The presence of rickettsiae in the ovary and midgut was further confirmed by PCR and transmission electron microscopic analysis. Overall, the methods in this study can be used to identify locations of tick-borne bacteria in tick tissues and understand transmission routes of bacterial species in ticks.
Collapse
Affiliation(s)
- Ghazaleh Bagheri
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jeremy D Lehner
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jianmin Zhong
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA.
| |
Collapse
|
21
|
Riou V, Périot M, Biegala IC. Specificity Re-evaluation of Oligonucleotide Probes for the Detection of Marine Picoplankton by Tyramide Signal Amplification-Fluorescent In Situ Hybridization. Front Microbiol 2017; 8:854. [PMID: 28611732 PMCID: PMC5446981 DOI: 10.3389/fmicb.2017.00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023] Open
Abstract
Oligonucleotide probes are increasingly being used to characterize natural microbial assemblages by Tyramide Signal Amplification-Fluorescent in situ Hybridization (TSA-FISH, or CAtalysed Reporter Deposition CARD-FISH). In view of the fast-growing rRNA databases, we re-evaluated the in silico specificity of eleven bacterial and eukaryotic probes and competitor frequently used for the quantification of marine picoplankton. We performed tests on cell cultures to decrease the risk for non-specific hybridization, before they are used on environmental samples. The probes were confronted to recent databases and hybridization conditions were tested against target strains matching perfectly with the probes, and against the closest non-target strains presenting one to four mismatches. We increased the hybridization stringency from 55 to 65% formamide for the Eub338+EubII+EubIII probe mix to be specific to the Eubacteria domain. In addition, we found that recent changes in the Gammaproteobacteria classification decreased the specificity of Gam42a probe, and that the Roseo536R and Ros537 probes were not specific to, and missed part of the Roseobacter clade. Changes in stringency conditions were important for bacterial probes; these induced, respectively, a significant increase, in Eubacteria and Roseobacter and no significant changes in Gammaproteobacteria concentrations from the investigated natural environment. We confirmed the eukaryotic probes original conditions, and propose the Euk1209+NChlo01+Chlo02 probe mix to target the largest picoeukaryotic diversity. Experiences acquired through these investigations leads us to propose the use of seven steps protocol for complete FISH probe specificity check-up to improve data quality in environmental studies.
Collapse
Affiliation(s)
- Virginie Riou
- Centre National de la Recherche Scientifique, Mediterranean Institute of Oceanography - Institut de Recherche pour le Développement, Aix Marseille Université - Université de ToulonMarseille, France
| | - Marine Périot
- Centre National de la Recherche Scientifique, Mediterranean Institute of Oceanography - Institut de Recherche pour le Développement, Aix Marseille Université - Université de ToulonMarseille, France
| | - Isabelle C Biegala
- Centre National de la Recherche Scientifique, Mediterranean Institute of Oceanography - Institut de Recherche pour le Développement, Aix Marseille Université - Université de ToulonMarseille, France
| |
Collapse
|
22
|
Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. SENSORS 2017; 17:s17051184. [PMID: 28531156 PMCID: PMC5470929 DOI: 10.3390/s17051184] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 02/08/2023]
Abstract
Molecular techniques to detect organisms in aquatic ecosystems are being gradually considered as an attractive alternative to standard laboratory methods. They offer faster and more accurate means of detecting and monitoring species, with respect to their traditional homologues based on culture and microscopic counting. Molecular techniques are particularly attractive when multiple species need to be detected and/or are in very low abundance. This paper reviews molecular techniques based on whole cells, such as microscope-based enumeration and Fluorescence In-Situ Hybridization (FISH) and molecular cell-free formats, such as sandwich hybridization assay (SHA), biosensors, microarrays, quantitative polymerase chain reaction (qPCR) and real time PCR (RT-PCR). Those that combine one or several laboratory functions into a single integrated system (lab-on-a-chip) and techniques that generate a much higher throughput data, such as next-generation systems (NGS), were also reviewed. We also included some other approaches that enhance the performance of molecular techniques. For instance, nano-bioengineered probes and platforms, pre-concentration and magnetic separation systems, and solid-phase hybridization offer highly pre-concentration capabilities. Isothermal amplification and hybridization chain reaction (HCR) improve hybridization and amplification techniques. Finally, we presented a study case of field remote sensing of harmful algal blooms (HABs), the only example of real time monitoring, and close the discussion with future directions and concluding remarks.
Collapse
|
23
|
Bruder LM, Dörkes M, Fuchs BM, Ludwig W, Liebl W. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes. Syst Appl Microbiol 2016; 39:464-475. [DOI: 10.1016/j.syapm.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
|
24
|
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 2016; 26:804-817. [PMID: 27667171 DOI: 10.1016/j.tcb.2016.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review we describe current methods for proximity-dependent labeling in living cells and discuss their applications and future use in the study of protein behavior.
Collapse
|
25
|
Oburger E, Schmidt H. New Methods To Unravel Rhizosphere Processes. TRENDS IN PLANT SCIENCE 2016; 21:243-255. [PMID: 26776474 DOI: 10.1016/j.tplants.2015.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 05/19/2023]
Abstract
Root-triggered processes (growth, uptake and release of solutes) vary in space and time, and interact with heterogeneous soil microenvironments that provide habitats for (micro)biota on various scales. Despite tremendous progress in method development in the past decades, finding a suitable experimental set-up to investigate processes occurring at the dynamic conjunction of biosphere, hydrosphere, and pedosphere in the close vicinity of active plant roots still represents a major challenge. We discuss recent methodological developments in rhizosphere research with a focus on imaging techniques. We further review established concepts that have been updated with novel techniques, highlighting the need for combinatorial approaches to disentangle rhizosphere processes on relevant scales.
Collapse
Affiliation(s)
- Eva Oburger
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Hannes Schmidt
- University of Vienna, Research Network 'Chemistry meets Microbiology', Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Noguera DR. Could in situ DNA-hybridization chain reaction enable simple and effective detection of identity and function in whole cell hybridizations? Environ Microbiol 2015; 17:2559-61. [PMID: 26239483 DOI: 10.1111/1462-2920.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Kaltenpoth M, Strupat K, Svatoš A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME JOURNAL 2015; 10:527-31. [PMID: 26172211 DOI: 10.1038/ismej.2015.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/06/2015] [Accepted: 06/10/2015] [Indexed: 11/09/2022]
Abstract
One of the greatest challenges in microbial ecology remains to link the metabolic activity of individual cells to their taxonomic identity and localization within environmental samples. Here we combined mass-spectrometric imaging (MSI) through (matrix-assisted) laser desorption ionization time-of-flight MSI ([MA]LDI-TOF/MSI) with fluorescence in situ hybridization (FISH) to monitor antibiotic production in the defensive symbiosis between beewolf wasps and 'Streptomyces philanthi' bacteria. Our results reveal similar distributions of the different symbiont-produced antibiotics across the surface of beewolf cocoons, which colocalize with the producing cell populations. Whereas FISH achieves single-cell resolution, MSI is currently limited to a step size of 20-50 μm in the combined approach because of the destructive effects of high laser intensities that are associated with tighter laser beam focus at higher lateral resolution. However, on the basis of the applicability of (MA)LDI-MSI to a broad range of small molecules, its combination with FISH provides a powerful tool for studying microbial interactions in situ, and further modifications of this technique could allow for linking metabolic profiling to gene expression.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Research Group Insect Symbiosis, Hans-Knöll-Strasse 8, Jena, Germany
| | - Kerstin Strupat
- Life Science Mass Spectrometry, Thermo Fisher Scientific, Hanna-Kunath-Strasse 11, Bremen, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Research Group Mass Spectrometry, Hans-Knöll-Strasse 8, Jena, Germany
| |
Collapse
|
28
|
Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH). Syst Appl Microbiol 2015. [PMID: 26215142 DOI: 10.1016/j.syapm.2015.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with rRNA-targeted oligonucleotide probes has significantly improved the identification of microorganisms in various environmental samples. However, one of the major constraints of CARD-FISH is the low probe penetration due to the high molecular weight of the horseradish peroxidase (HRP) label. Recently, this limitation has been overcome by a novel signal amplification approach termed in situ DNA-hybridization chain reaction (in situ DNA-HCR). In this study, we present an improved and accelerated in situ DNA-HCR protocol (quickHCR-FISH) with increased signal intensity, which was approximately 2 times higher than that of standard in situ DNA-HCR. In addition, the amplification time was only 15 min for the extension of amplifier probes from the initiator probe compared to 2h in the original protocol. The quickHCR-FISH was successfully tested for the quantification of marine bacteria with low rRNA contents in both seawater and sediment samples. It was possible to detect the same number of marine bacteria with quickHCR-FISH compared to CARD-FISH within only 3h. Thus, this newly developed protocol could be an attractive alternative to CARD-FISH for the detection and visualization of microorganisms in their environmental context.
Collapse
|
29
|
Almeida C, Constante D, Ferreira A, Cerqueira L, Vieira MJ, Azevedo NF. A new colorimetric peptide nucleic acid-based assay for the specific detection of bacteria. Future Microbiol 2015; 9:1131-42. [PMID: 25405883 DOI: 10.2217/fmb.14.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Developments on synthetic molecules, such as peptide nucleic acid (PNA), make FISH procedures more robust for microbial identification. Fluorochromes use might hinder a broader implementation of PNA-FISH, but colorimetric applications are inexistent so far. METHODS A biotin-labeled eubacteria probe was used to develop a colorimetric PNA-in situ hybridization (ISH) assay. An enzymatic-conjugate, targeting biotin, was introduced. The procedure was optimized and evaluated regarding sensitivity, specificity and detection limit. RESULTS RESULTS have shown strong ISH signals. The method was specific, but permeabilization problems were observed for Gram-positive bacteria. Detection limit was 5 × 10(7) CFU/ml, limiting current applications to pre-enriched samples. CONCLUSION The PNA-ISH procedure described here is a simple alternative to other detection methods, and is also the base for the development of other PNA colorimetric systems.
Collapse
Affiliation(s)
- Carina Almeida
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Nagarajan K, Loh KC. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 2014; 98:6907-19. [DOI: 10.1007/s00253-014-5870-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 02/07/2023]
|
31
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014; 16:2568-90. [PMID: 24571640 PMCID: PMC4122687 DOI: 10.1111/1462-2920.12436] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
32
|
Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae). Naturwissenschaften 2014; 101:373-83. [PMID: 24622961 DOI: 10.1007/s00114-014-1165-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/23/2023]
Abstract
Bacterial symbiont transmission is a key step in the renewal of the symbiotic interaction at each host generation, and different modes of transmission can be distinguished. Vesicomyidae are chemosynthetic bivalves from reducing habitats that rely on symbiosis with sulfur-oxidizing bacteria, in which two studies suggesting vertical transmission of symbionts have been published, both limited by the imaging techniques used. Using fluorescence in situ hybridization and transmission electron microscopy, we demonstrate that bacterial symbionts of Isorropodon bigoti, a gonochoristic Vesicomyidae from the Guiness cold seep site, occur intracellularly within female gametes at all stages of gametogenesis from germ cells to mature oocytes and in early postlarval stage. Symbionts are completely absent from the male gonad and gametes. This study confirms the transovarial transmission of symbionts in Vesicomyidae and extends it to the smaller species for which no data were previously available.
Collapse
|
33
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014. [PMID: 24571640 DOI: 10.1111/1462‐2920.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
34
|
de Faria AF, de Moraes ACM, Alves OL. Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Neu TR, Lawrence JR. Investigation of microbial biofilm structure by laser scanning microscopy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:1-51. [PMID: 24840778 DOI: 10.1007/10_2014_272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbial bioaggregates and biofilms are hydrated three-dimensional structures of cells and extracellular polymeric substances (EPS). Microbial communities associated with interfaces and the samples thereof may come from natural, technical, and medical habitats. For imaging such complex microbial communities confocal laser scanning microscopy (CLSM) is the method of choice. CLSM allows flexible mounting and noninvasive three-dimensional sectioning of hydrated, living, as well as fixed samples. For this purpose a broad range of objective lenses is available having different working distance and resolution. By means of CLSM the signals detected may originate from reflection, autofluorescence, reporter genes/fluorescence proteins, fluorochromes binding to specific targets, or other probes conjugated with fluorochromes. Recorded datasets can be used not only for visualization but also for semiquantitative analysis. As a result CLSM represents a very useful tool for imaging of microbiological samples in combination with other analytical techniques.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a, 39114, Magdeburg, Germany,
| | | |
Collapse
|
36
|
Schmidt H, Eickhorst T. Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescencein situhybridization. FEMS Microbiol Ecol 2013; 87:390-402. [DOI: 10.1111/1574-6941.12232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 09/21/2013] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hannes Schmidt
- Soil Microbial Ecology; University of Bremen; Bremen Germany
| | - Thilo Eickhorst
- Soil Microbial Ecology; University of Bremen; Bremen Germany
| |
Collapse
|
37
|
Toebe K. Whole cell hybridisation for monitoring harmful marine microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6816-6823. [PMID: 23835584 DOI: 10.1007/s11356-012-1416-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/09/2012] [Indexed: 06/02/2023]
Abstract
Fluorescence in situ hybridisation (FISH) is a powerful molecular biological tool to detect and enumerate harmful microorganism in the marine environment. Different FISH methods are available, and especially in combination with automated counting techniques, the potential for a routine monitoring of harmful marine microalgae is attainable. Various oligonucleotide probes are developed for detecting harmful microalgae. However, FISH-based methods are not yet regularly included in monitoring programmes tracking the presence of harmful marine microalgae. A limitation factor of the FISH technique is the currently available number of suited fluorochromes attached to the FISH probes to detect various harmful species in one environmental sample at a time. However, coupled automated techniques, like flow cytometry or solid-phase cytometry, can facilitate the analysis of numerous field samples and help to overcome this drawback. A great benefit of FISH in contrast to other molecular biological detection methods for harmful marine microalgae is the direct visualisation of the hybridised target cells, which are not permitted in cell free formats, like DNA depending analysis methods. Therefore, an additional validation of the FISH-generated results is simultaneously given.
Collapse
Affiliation(s)
- Kerstin Toebe
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany,
| |
Collapse
|
38
|
Gramlich PA, Remington MP, Amin J, Betenbaugh MJ, Fishman PS. Tat-tetanus toxin fragment C: a novel protein delivery vector and its use with photochemical internalization. J Drug Target 2013; 21:662-74. [PMID: 23697582 DOI: 10.3109/1061186x.2013.796954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein delivery vectors can be grouped into two classes, those with specific membrane receptors undergoing conventional endocytosis and cell penetrating peptides (CPP) that have the capacity to cross cell or endosomal membranes. For both forms of vectors, translocation across a membrane is usually an inefficient process. In the current study, a novel vector combining the widely used CPP, Tat and the non-toxic neuronal binding domain of tetanus toxin (fragment C or TTC) was assessed for its capacity to deliver GFP as a test cargo protein to human neural progenitor cells (NPCs). These two functional membrane interacting domains dramatically enhanced internalization of the conjugated cargo protein. Tat-TTC-GFP was found to be bound or internalized at least 83-fold more than Tat-GFP and 33-fold more than TTC-GFP in NPCs by direct fluorimetry, and showed enhanced internalization by quantitative microscopy of 18 - and 14-fold, respectively. This preferential internalization was observed to be specific to neuronal cell types. Photochemical internalization (PCI) was utilized to facilitate escape of the endosome-sequestered proteins. The combined use of the Tat-TTC delivery vector with PCI led to both enhancement of neural cell type specific delivery to an endosomal target, followed by the option of efficient release to the cytosol.
Collapse
Affiliation(s)
- Paul A Gramlich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
39
|
Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. J Microbiol Methods 2013; 93:177-84. [PMID: 23523967 DOI: 10.1016/j.mimet.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 11/22/2022]
Abstract
For anti-bioterrorism measures against the use of Bacillus anthracis, a double-color fluorescence in situ hybridization (FISH) is proposed, for the rapid and specific detection of B. anthracis. The probes were designed based on the differences in 16S and 23S rRNA genes of B. cereus group. A new permeabilization protocol was developed to enhance the permeability of FISH probes into B. anthracis spores. The highest detection rate (90.8 ± 0.69) of B. anthracis spores by FISH was obtained with successive incubation steps with 50% ethanol at 80 °C, a mixture of SDS/DTT solution (10mg/ml SDS, 50mM DTT) at 65 °C and finally in a lysozyme solution (20mg/ml) at 37 °C for 30 min each. This protocol was evaluated for the detection of B. anthracis spores in soil and air samples after adding formalin-fixed spores at different densities. The results have proven the success of double-color FISH in detecting B. anthracis spores in air samples in the range of 10(3) spores/m(3) and above. Conversely, for detecting B. anthracis spores in a soil sample, the lowest detection limit was found to be 10(7) spores/g dry soils. These results confirm the applicability of the developed permeabilization protocol, combined with the double-color FISH technique in specific detection of B. anthracis in soil and air samples.
Collapse
|
40
|
Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013; 339:1328-1331. [PMID: 23371551 DOI: 10.1126/science.1230593] [Citation(s) in RCA: 950] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microscopy and mass spectrometry (MS) are complementary techniques: The former provides spatiotemporal information in living cells, but only for a handful of recombinant proteins at a time, whereas the latter can detect thousands of endogenous proteins simultaneously, but only in lysed samples. Here, we introduce technology that combines these strengths by offering spatially and temporally resolved proteomic maps of endogenous proteins within living cells. Our method relies on a genetically targetable peroxidase enzyme that biotinylates nearby proteins, which are subsequently purified and identified by MS. We used this approach to identify 495 proteins within the human mitochondrial matrix, including 31 not previously linked to mitochondria. The labeling was exceptionally specific and distinguished between inner membrane proteins facing the matrix versus the intermembrane space (IMS). Several proteins previously thought to reside in the IMS or outer membrane, including protoporphyrinogen oxidase, were reassigned to the matrix by our proteomic data and confirmed by electron microscopy. The specificity of peroxidase-mediated proteomic mapping in live cells, combined with its ease of use, offers biologists a powerful tool for understanding the molecular composition of living cells.
Collapse
Affiliation(s)
- Hyun-Woo Rhee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Zou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey D Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Molecular Biology, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
41
|
Moraru C, Amann R. Crystal ball: Fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 2012; 35:549-52. [DOI: 10.1016/j.syapm.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
|
42
|
Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME JOURNAL 2012; 7:256-68. [PMID: 23151638 PMCID: PMC3554399 DOI: 10.1038/ismej.2012.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O2 concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O2 concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3–2.4% of total bacterial sequences and displayed strong correlations with decreasing O2 concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs.
Collapse
|
43
|
Kubota K. CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ 2012; 28:3-12. [PMID: 23124765 PMCID: PMC4070690 DOI: 10.1264/jsme2.me12107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has become a standard technique in environmental microbiology. More than 20 years have passed since this technique was first described, and it is currently used for the detection of ribosomal RNA, messenger RNA, and functional genes encoded on chromosomes. This review focuses on the advancement and applications of FISH combined with catalyzed reporter deposition (CARD, also known as tyramide signal amplification or TSA), in the detection of environmental microorganisms. Significant methodological improvements have been made in CARD-FISH technology, including its combination with other techniques and instruments.
Collapse
Affiliation(s)
- Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University, Miyagi, Japan.
| |
Collapse
|
44
|
Rapid and sensitive quantification of Vibrio cholerae and Vibrio mimicus cells in water samples by use of catalyzed reporter deposition fluorescence in situ hybridization combined with solid-phase cytometry. Appl Environ Microbiol 2012; 78:7369-75. [PMID: 22885749 DOI: 10.1128/aem.02190-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new protocol for rapid, specific, and sensitive cell-based quantification of Vibrio cholerae/Vibrio mimicus in water samples was developed. The protocol is based on catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with solid-phase cytometry. For pure cultures, we were able to quantify down to 6 V. cholerae cells on one membrane with a relative precision of 39% and down to 12 cells with a relative precision of 17% after hybridization with the horseradish peroxidase (HRP)-labeled probe Vchomim1276 (specific for V. cholerae and V. mimicus) and signal amplification. The corresponding position of the probe on the 16S rRNA is highly accessible even when labeled with HRP. For the first time, we were also able to successfully quantify V. cholerae/V. mimicus via solid-phase cytometry in extremely turbid environmental water samples collected in Austria. Cell numbers ranged from 4.5 × 10(1) cells ml(-1) in the large saline lake Neusiedler See to 5.6 × 10(4) cells ml(-1) in an extremely turbid shallow soda lake situated nearby. We therefore suggest CARD-FISH in combination with solid-phase cytometry as a powerful tool to quantify V. cholerae/V. mimicus in ecological studies as well as for risk assessment and monitoring programs.
Collapse
|
45
|
A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. Appl Environ Microbiol 2012; 78:5138-42. [PMID: 22582069 DOI: 10.1128/aem.00977-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is an essential tool for the cultivation-independent identification of microbes within environmental and clinical samples. However, one of the major constraints of conventional FISH is the very limited number of different target organisms that can be detected simultaneously with standard epifluorescence or confocal laser scanning microscopy. Recently, this limitation has been overcome via an elegant approach termed combinatorial labeling and spectral imaging FISH (CLASI-FISH) (23). This technique, however, suffers compared to conventional FISH from an inherent loss in sensitivity and potential probe binding biases caused by the competition of two differentially labeled oligonucleotide probes for the same target site. Here we demonstrate that the application of multicolored, double-labeled oligonucleotide probes enables the simultaneous detection of up to six microbial target populations in a straightforward and robust manner with higher sensitivity and less bias. Thus, this newly developed technique should be an attractive option for all researchers interested in applying conventional FISH methods for the study of microbial communities.
Collapse
|
46
|
Reliability of CARD-FISH Procedure for Enumeration of Archaea in Deep-Sea Surficial Sediments. Curr Microbiol 2011; 64:242-50. [DOI: 10.1007/s00284-011-0056-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022]
|
47
|
Manti A, Boi P, Amalfitano S, Puddu A, Papa S. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Methods 2011; 87:309-15. [PMID: 21963488 DOI: 10.1016/j.mimet.2011.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.
Collapse
Affiliation(s)
- Anita Manti
- Department of Earth, Life and Environmental Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | |
Collapse
|
48
|
Applications of Fluorescence In Situ Hybridization in Diagnostic Microbiology. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Kumar S, Dagar SS, Mohanty AK, Sirohi SK, Puniya M, Kuhad RC, Sangu KPS, Griffith GW, Puniya AK. Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 2011; 98:457-72. [PMID: 21475941 DOI: 10.1007/s00114-011-0791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.
Collapse
Affiliation(s)
- Sanjay Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Enhancement of deoxyribonucleic acid microarray performance using post-hybridization signal amplification. Anal Chim Acta 2010; 679:85-90. [PMID: 20951861 DOI: 10.1016/j.aca.2010.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 11/22/2022]
Abstract
Microarray performance depends upon the ability to screen samples against a vast array of probes with the appropriate sensitivity and selectivity. While these factors are significantly influenced by probe design, they are also subject to the particular detection methodology and reagents employed. Herein we describe the incorporation of super avidin-biotin system (SABS) and secondary enzymatic enhancement (SEE) as post-hybridization signal amplification techniques to improve the sensitivity of oligonucleotide microarrays. To these ends, we tested these methods on electrochemically interrogated arrays using both purified influenza A PCR products and randomly amplified genomic Francisella tularensis DNA as targets. While SABS treatment did not improve sensitivity for CombiMatrix ElectraSense(®) arrays using purified influenza A cDNA, chip sensitivity was improved 10-fold for randomly amplified targets. SEE improved performance to a greater degree and was able to lower the detection limits 10-fold for influenza A and 100-fold for F. tularensis DNA. These results indicate the promising capability of post-hybridization amplification techniques for enhancing microarray performance.
Collapse
|