1
|
Rosati G, Solidoro C, Laurent C, Alcázar LA, Umgiesser G, Canu D. Mercury cycling in contaminated coastal environments: modeling the benthic-pelagic coupling and microbial resistance in the Venice Lagoon. WATER RESEARCH 2024; 261:121965. [PMID: 38964216 DOI: 10.1016/j.watres.2024.121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities have been releasing mercury for centuries, and despite global efforts to control emissions, concentrations in environmental media remain high. Coastal sediments can be a long-term repository for mercury, but also a secondary source, and competing processes in marine ecosystems can lead to the conversion of mercury into the toxic and bioaccumulative species methylmercury, which threatens ecosystem and human health. We investigate the fate and transport of three mercury species in a coastal lagoon affected by historical pollution using a novel high-resolution finite element model that integrates mercury biogeochemistry, sediment dynamics and hydrodynamics. The model resolves mercury dynamics in the seawater and the seabed taking into account partitioning, transport driven by water and sediment, and photochemical and microbial transformations. We simulated three years (early 2000s, 2019, and 2020) to assess the spatio-temporal distribution of mercury species concentrations and performed a sensitivity analysis to account for uncertainties. The modeled mercury species concentrations show high temporal and spatial variability, with water concentrations in some areas of the lagoon exceeding those of the open Mediterranean Sea by two orders of magnitude, consistent with available observations from the early 2000s. The results support conclusions about the importance of different processes in shaping the environmental gradients of mercury species. Due to the past accumulation of mercury in the lagoon sediments, inorganic mercury in the water is closely related to the resuspension of contaminated sediments, which is significantly reduced by the presence of benthic vegetation. The gradients of methylmercury depend on the combination of several factors, of which sediment resuspension and mercury methylation are the most relevant. The results add insights into mercury dynamics at coastal sites characterized by a combination of past pollution (i.e. sediment enrichment) and erosive processes, and suggest possible nature-based mitigation strategies such as the preservation of the integrity of benthic vegetation and morphology.
Collapse
Affiliation(s)
- Ginevra Rosati
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy.
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy; International Centre for Theoretical Physic, ICTP, Trieste, 34010, Italy
| | - Célia Laurent
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| | | | | | - Donata Canu
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| |
Collapse
|
2
|
Chen Y, Guo Y, Liu Y, Xiang Y, Liu G, Zhang Q, Yin Y, Cai Y, Jiang G. Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161709. [PMID: 36682565 DOI: 10.1016/j.scitotenv.2023.161709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) and its organic compounds, especially monomethylmercury (MeHg), cause major damage to the ecosystem and human health. In surface water or sediments, microorganisms play a crucial role in the methylation and demethylation of Hg. Given that Hg transformation processes are intracellular reactions, accurate assessment of the bioavailability of Hg(II)/MeHg in the environment, particularly for microorganisms, is of major importance. Compared with traditional analytical methods, bacterial whole-cell biosensors (BWCBs) provide a more accurate, convenient, and cost-effective strategy to assess the environmental risks of Hg(II)/MeHg. This Review summarizes recent progress in the application of BWCBs in the detection of bioavailable Hg(II)/MeHg, providing insight on current challenges and strategies. The principle and components of BWCBs for Hg(II)/MeHg bioavailability analysis are introduced. Furthermore, the impact of water chemical factors on the bioavailability of Hg is discussed as are future perspectives of BWCBs in bioavailable Hg analysis and optimization of BWCBs.
Collapse
Affiliation(s)
- Yueqian Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
González-González RB, Flores-Contreras EA, González-González E, Torres Castillo NE, Parra-Saldívar R, Iqbal HMN. Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Ind Eng Chem Res 2023; 62:4503-4520. [DOI: 10.1021/acs.iecr.2c00421] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
4
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
5
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
6
|
Baya G, Muhindi S, Ngendahimana V, Caguiat J. Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. MICROMACHINES 2021; 12:mi12020142. [PMID: 33572806 PMCID: PMC7911910 DOI: 10.3390/mi12020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023]
Abstract
Cell-based biosensors harness a cell's ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multimetal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which appear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. In previous studies, genetic engineering replaced metal resistance genes with the reporter genes for β-galactosidase, luciferase or the green fluorescence protein (GFP). These produce a color change of a reagent, produce light, or fluoresce in the presence of ultraviolet (UV) light, respectively. Coupling these discovered operons with reporter genes has the potential to create whole-cell biosensors for HgCl2, ZnCl2, CuSO4 and HAuCl4·3H2O.
Collapse
Affiliation(s)
- Georgina Baya
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
| | - Stephen Muhindi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Valentine Ngendahimana
- Biology Department, Lone Star College-CyFair, 9191 Barker Cypress Rd, Cypress, TX 77433, USA;
| | - Jonathan Caguiat
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
- Correspondence: ; Tel.: +1-330-941-2063
| |
Collapse
|
7
|
Recent developments in environmental mercury bioremediation and its toxicity: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Elcin E, Öktem HA. Inorganic Cadmium Detection Using a Fluorescent Whole-Cell Bacterial Bioreporter. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1755867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Evrim Elcin
- Department of Agricultural Biotechnology, Adnan Menderes University, Aydın, Turkey
| | - Huseyin Avni Öktem
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Nanobiz Technology Inc, Ankara, Turkey
| |
Collapse
|
9
|
Fedik NS, Kletskii ME, Burov ON, Lisovin AV, Kurbatov SV, Chistyakov VA, Morozov PG. Comprehensive study of nitrofuroxanoquinolines. New perspective donors of NO molecules. Nitric Oxide 2019; 93:15-24. [DOI: 10.1016/j.niox.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
10
|
Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M. Bioremediation of mercury: not properly exploited in contaminated soils! Appl Microbiol Biotechnol 2017; 101:963-976. [DOI: 10.1007/s00253-016-8079-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
|
11
|
The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation 2015; 27:29-36. [DOI: 10.1007/s10532-015-9752-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
12
|
The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS One 2015; 10:e0138333. [PMID: 26371471 PMCID: PMC4570782 DOI: 10.1371/journal.pone.0138333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
As mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversion of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS)2) and Hg-glutathione (Hg(GSH)2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH)2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.
Collapse
|
13
|
Hynninen A, Virta M. Whole-cell bioreporters for the detection of bioavailable metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:31-63. [PMID: 19543702 DOI: 10.1007/10_2009_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 56, 00014, Helsinki, Finland
| | | |
Collapse
|
14
|
Hou QH, Ma AZ, Lv D, Bai ZH, Zhuang XL, Zhuang GQ. The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl Microbiol Biotechnol 2014; 98:6137-46. [DOI: 10.1007/s00253-014-5656-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
15
|
Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. J Biosci 2013; 38:251-8. [PMID: 23660659 DOI: 10.1007/s12038-013-9305-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study the most efficient R-factor controlling the ars operon was selected after screening of 39 Escherichia coli isolates by minimum inhibitory concentration test (MIC) studies from water samples of different geographical locations of India. Among all, strain isolated from Hooghly River (West Bengal) was found to have maximum tolerance towards arsenic and was further used for the development of bioreporter bacteria. Cloning of the ars regulatory element along with operator-promotor and luxCDABE from Photobacteria into expression vector has been accomplished by following recombinant DNA protocols. The bioreporter sensor system developed in this study can measure the estimated range of 0.74-60 mu g of As/L and is both specific and selective for sensing bioavailable As. The constructed bacterial biosensor was further used for the determination of arsenic ion concentration in different environmental samples of India.
Collapse
|
16
|
Liu P, Huang Q, Chen W. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:66-72. [PMID: 22336732 DOI: 10.1016/j.envpol.2012.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment.
Collapse
Affiliation(s)
- Pulin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
17
|
Mishra B, O'Loughlin EJ, Boyanov MI, Kemner KM. Binding of HgII to high-affinity sites on bacteria inhibits reduction to Hg0 by mixed FeII/III phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9597-603. [PMID: 21913727 DOI: 10.1021/es201820c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetite and green rust have been shown to reduce aqueous Hg(II) to Hg(0). In this study, we tested the ability of magnetite and green rust to reduce Hg(II) sorbed to 2 g · L(-1) of biomass (Bacillus subtilis), at high (50 μM) and low (5 μM) Hg loadings and at pH 6.5 and 5.0. At high Hg:biomass loading, where Hg(II) binding to biomass is predominantly through carboxyl functional groups, Hg L(III)-edge X-ray absorption spectroscopy showed reduction of Hg(II) to Hg(0) by magnetite. Reduction occurred within 2 h and 2 d at pH 6.5 and 5.0, respectively. At low Hg:biomass loading, where Hg(II) binds to biomass via sulfhydryl functional groups, Hg(II) was not reduced by magnetite at pH 6.5 or 5.0 after 2 months of reaction. Green rust, which is generally a stronger reductant than magnetite, reduced about 20% of the total Hg(II) bound to biomass via sulfhydryl groups to Hg(0) in 2 d. These results suggest that Hg(II) binding to carboxyl groups does not significantly inhibit the reduction of Hg(II) by magnetite. However, the binding of Hg(II) to biomass via sulfhydryl groups severely inhibits the ability of mixed Fe(II/III) phases like magnetite and green rust to reduce Hg(II) to Hg(0). The mobility of heavy metal contaminants in aquatic and terrestrial environments is greatly influenced by their speciation, especially their oxidation state. In the case of Hg, reduction of Hg(II) to Hg(0) can increase Hg mobility because of the volatility of Hg(0). Since Hg is typically present in aquatic and terrestrial systems at low concentrations, binding of Hg(II) to high-affinity sites on bacteria could have important implications for the potential reduction of Hg(II) to Hg(0) and the overall mobility of Hg in biostimulated subsurface environments.
Collapse
Affiliation(s)
- Bhoopesh Mishra
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
| | | | | | | |
Collapse
|
18
|
Xu X, Ying Y. Microbial Biosensors for Environmental Monitoring and Food Analysis. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Plangklang P, Reungsang A. lux-Marking and application of carbofuran degrader Burkholderia cepacia PCL3. N Biotechnol 2011; 28:798-805. [PMID: 21549227 DOI: 10.1016/j.nbt.2011.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/17/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
A luxAB-mutant of the carbofuran degrading bacterium Burkholderia cepacia PCL3 was successfully constructed with the capability to emit a luminescence signal of 1.6×10(-3)RLUcfu(-1). The mutant has a growth pattern and carbofuran degradation ability similar to PCL3 wild-type. The luminescent emission by PCL3:luxAB1 directly correlated with the metabolic activity of the cells. The optimal pH, temperature and n-decanal concentration for luminescence emission are 7.0, 35°C and 0.01%, respectively. PCL3:luxAB1 was used to assess the toxicity of carbofuran and carbofuran phenol in basal salt medium (BSM) in which the different sensitivity of the cells is dependent on the biomass concentration. With the luciferase system, the degradative fraction of the augmented PCL3:luxAB1 and the difference between the active augmented PCL3:luxAB1 and indigenous microorganisms at the contaminated site could be indicated.
Collapse
Affiliation(s)
- Pensri Plangklang
- National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
20
|
Ivask A, Rõlova T, Kahru A. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 2009; 9:41. [PMID: 19426479 PMCID: PMC2685376 DOI: 10.1186/1472-6750-9-41] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 05/08/2009] [Indexed: 02/01/2023] Open
Abstract
Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights-off" construct (control) for every constructed recombinant metal sensor strain. To our knowledge, no Gram-positive metal sensor expressing a full bacterial bioluminescence cassette (luxCDABE) has been constructed previously.
Collapse
Affiliation(s)
- Angela Ivask
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
| | | | | |
Collapse
|
21
|
Fu YJ, Chen WL, Huang QY. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Appl Microbiol Biotechnol 2008; 79:363-70. [DOI: 10.1007/s00253-008-1442-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
22
|
Schottel JL, Orwin PM, Anderson CR, Flickinger MC. Spatial expression of a mercury-inducible green fluorescent protein within a nanoporous latex-based biosensor coating. J Ind Microbiol Biotechnol 2008; 35:283-90. [DOI: 10.1007/s10295-007-0288-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/07/2007] [Indexed: 11/30/2022]
|
23
|
Cardona-Marek T, Schaefer J, Ellickson K, Barkay T, Reinfelder JR. Mercury speciation, reactivity, and bioavailability in a highly contaminated estuary, Berry's Creek, New Jersey Meadowlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8268-74. [PMID: 18200850 DOI: 10.1021/es070945h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Speciation and reactivity of mercury were examined in Berry's Creek estuary downstream of a highly mercury-contaminated U.S. EPA Superfund site during the summers of 2002 and 2003. Surface water samples from Berry's Creek estuary, its confluence with the Hackensack River, and upstream of that confluence were analyzed for total (THg), particulate (PHgT), and dissolved (DHg) mercury, total and particulate monomethylmercury (MeHg), dissolved gaseous mercury (DGM), and bacterial merA gene and transcript abundances. Surface water concentrations of THg in Berry's Creek estuary (210-6800 pM) are among the highest in North America. A downstream gradient of Hg contamination is a permanent feature of Berry's Creek estuary, and the upper estuary appears to be a perennial source of Hg to the lower estuary and the Hackensack River. MeHg concentrations in Berry's Creek surface waters ranged from 2 to 14 pM, with the highest concentrations occurring at a midestuary site 2 km downstream of the tide gate. The suspended particle phase dominated Hg and MeHg speciation throughout this system, accounting for > 90% of THg in Berry's Creek estuary and 35-94% of THg in the Hackensack River. Concentrations of DGM in Berry's Creek estuary (0.1-1.0 pM) are similar to levels of DGM in other much less contaminated estuaries (0.04-0.75 pM). In addition, expression levels of the bacterial mercuric reductase gene, merA, a gene of the inorganic Hg(II)-regulated, mercury resistance (mer) operon, were low throughout Berry's Creek estuary. Thus, despite very high concentrations of mercury in Berry's Creek estuary, relatively low concentrations of DGM and merA gene expression levels indicate limited bioavailability of inorganic Hg in the estuary's surface waters. A system-wide limitation on the bioavailability of inorganic Hg, together with bacterial demethylation activity, may account for observed MeHg concentrations that, although elevated, are lower than expected given the concentrations of THg in this estuary.
Collapse
Affiliation(s)
- Tamara Cardona-Marek
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
24
|
Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta 2006; 568:200-10. [PMID: 17761261 DOI: 10.1016/j.aca.2005.11.065] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 11/24/2022]
Abstract
A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed.
Collapse
Affiliation(s)
- Yu Lei
- Division of Chemical and Biomolecular Engineering and Centre of Biotechnology, Nanyang Technological University, Singapore 637722, Singapore.
| | | | | |
Collapse
|
25
|
Norman A, Hansen LH, Sørensen SJ. A flow cytometry-optimized assay using an SOS–green fluorescent protein (SOS–GFP) whole-cell biosensor for the detection of genotoxins in complex environments. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:164-72. [PMID: 16413819 DOI: 10.1016/j.mrgentox.2005.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/22/2005] [Accepted: 11/26/2005] [Indexed: 11/29/2022]
Abstract
Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.
Collapse
Affiliation(s)
- Anders Norman
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
26
|
Toba FA, Hay AG. A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 2005; 62:135-43. [PMID: 16009273 DOI: 10.1016/j.mimet.2005.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 01/21/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Contaminated soils are usually characterized using chemical analyses. However, these do not assess the bioavailability of pollutants, a factor which may be important in estimating the risks associated with contamination. Thus there is a need to support chemical analyses with information on biological effects to determine the potential risks a pollutant may pose in the soil. Although bacterial bioreporters have been used to detect the presence of contaminants in soils, in general these studies have been carried out in slurries or soil extracts rather than soil itself. The following study presents the development of a simple solid-phase bioassay for the direct detection of the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) in soil using Ralstonia eutropha JMP 134-32, a luxCDABE-based 2,4-D whole cell bioreporter. The bioreporter was spotted onto glass microfibre filter discs that allowed its retrieval and analysis after exposure to 2,4-D amended soils. These disc-fixed cells responded in a concentration dependent manner to 2,4-D in solution (0-25 mg/L) and in spiked soil (0-50 mg/kg). The influence of environmental factors on bioavailability was demonstrated in soil with a low moisture content which prevented 2,4-D-induced bioluminescence but which did not affect bioluminescence from already induced cells. This rapid and low cost bioassay provides a proof of concept demonstrating that retrievable disk-fixed cells can be induced in soil, thus providing a measure of solid-phase bioavailability. This method overcomes some of the limitations associated with the inoculation and monitoring of bioreporters directly in soil. Additionally, this simple system should be amenable to use with other bioreporters.
Collapse
Affiliation(s)
- Faustino A Toba
- Department of Microbiology, Cornell University, Ithaca, NY 14853-5701, United States
| | | |
Collapse
|
27
|
Barkay T, Wagner-Döbler I. Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:1-52. [PMID: 16002008 DOI: 10.1016/s0065-2164(05)57001-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
28
|
Abstract
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Collapse
Affiliation(s)
- Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment de Biologie, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
29
|
Schaefer JK, Yagi J, Reinfelder JR, Cardona T, Ellickson KM, Tel-Or S, Barkay T. Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:4304-4311. [PMID: 15382857 DOI: 10.1021/es049895w] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The curious phenomenon of similar levels of methylmercury (MeHg) accumulation in fish from contaminated and pristine environments may be explained by the observation that the proportion of total mercury (HgT) present as MeHg is inversely related to HgT in natural waters. We hypothesize that this "MeHg accumulation paradox" is explained by the quantitative induction of bacterial enzymes that are encoded by the mercury resistance (mer) operon, organomercury lyase (MerB), and mercuric reductase (MerA) by inorganic Hg (Hg[II]). We tested this hypothesis in two ecosystems in New Jersey: Berry's Creek in the Meadowlands (ML) and Pine Barren (PB) lakes. Across all sites, an inverse correlation (r2 = 0.80) between the concentration of HgT (ML, 113-4220 ng L(-1); PB, 0.3-5.4 ng L(-1)) and the proportion of HgT as MeHg (MeHg in ML and PB ranged from 0.08 to 1.6 and from 0.03 to 0.34 ng L(-1), respectively) was observed. The planktonic microbial community in Meadowlands surface waters exhibited adaptation to mercury, the presence of mer genes and mRNA transcripts, and high rates of reductive demethylation (k(deg) = 0.19 day(-1)). In contrast, the microbial community of PB was not adapted to mercury and demonstrated low rates of oxidative demethylation (k(deg) = 0.01 day(-1)). These results strongly support our hypothesis and show that the degradation of MeHg by mer-encoded enzymes by the water column microbiota of contaminated environments can significantly affect the amount of MeHg that is available for entry into the aquatic food web.
Collapse
Affiliation(s)
- Jeffra K Schaefer
- Departments of Biochemistry and Microbiology and Environmental Science, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Valtonen SJ, Kurittu JS, Karp MT. A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:127-34. [PMID: 12006111 DOI: 10.1177/108705710200700205] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A group-specific bioluminescent Escherichia coli strain for studying the action of beta-lactam antibiotics is described. The strain contains a plasmid, pBlaLux1, in which the luciferase genes from Photorhabdus luminescens are inserted under the control of the beta-lactam-responsive element ampR/ampC from Citrobacter freundii. In the presence of beta-lactams, the bacterial cells are induced to express the luciferase enzyme and three additional enzymes generating the substrate for the luciferase reaction. This biosensor for beta-lactams does not need any substrate or cofactor additions, and the bioluminescence can be measured very sensitively in real time by using a luminometer. Basic parameters affecting the light production and induction in the gram-negative model organism E. coli SNO301/pBlaLux1 by various beta-lactams were studied. The dose-response curves were bell shaped, indicating toxic effects for the sensor strain at high concentrations of beta-lactams. Various beta-lactams had fairly different assay ranges: ampicillin, 0.05-1.0 microg/ml; piperacillin, 0.0025-25 microg/ml; imipenem, 0.0025-0.25 microg/ml; cephapirin, 0.025-2.5 microg/ml; cefoxitin, 0.0025-1.5 microg/ml; and oxacillin, 25-500 microg/ml. Also, the induction coefficients (signal over background noninduced control) varied considerably from 3 to 158 in a 2-hour assay. Different non-beta-lactam antibiotics did not cause induction. Because the assay can be automated using microplate technologies, the approach may be suitable for higher throughput analysis of beta-lactam action.
Collapse
Affiliation(s)
- Satu J Valtonen
- Karolinska Institutet, Center for Genomics and Bioinformatics, Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Rasmussen LD, Sørensen SJ. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 2001; 36:1-9. [PMID: 11377768 DOI: 10.1111/j.1574-6941.2001.tb00820.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 &mgr;g Hg(II) g(-1) soil, over a period of 3 months. The culturable heterotrophic diversity was investigated by colony morphology and colony appearance on solid LB medium. Functional diversity was analysed as sole carbon utilisation patterns in ECOplates. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels obtained by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When analysed by Shannon-Weaver indices, functional diversity was found to increase almost immediately after mercury addition and to remain at a level higher than the control soil for the rest of the experiment. The fraction of culturable heterotrophic bacteria increased from 1% to 10% of the total bacterial number as a result of mercury addition, and the mercury-resistant population increased to represent the entire heterotrophic population.
Collapse
Affiliation(s)
- L D. Rasmussen
- Department of General Microbiology, University of Copenhagen, Sølvgade 83H, DK-1307 K, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Weitz HJ, Ritchie JM, Bailey DA, Horsburgh AM, Killham K, Glover LA. Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing. FEMS Microbiol Lett 2001; 197:159-65. [PMID: 11313129 DOI: 10.1111/j.1574-6968.2001.tb10598.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A mini-Tn5 transposon was modified to introduce a promoterless luxCDABE cassette from Vibrio fischeri into environmentally relevant bacterial strains in order to develop bioluminescence-based biosensors for toxicity testing. The mini-Tn5 luxCDABE transposon was chromosomally integrated downstream from an active promoter into two Pseudomonas strains (Pseudomonas fluorescens 8866 and Pseudomonas putida F1). Characterisation of the bioluminescent transconjugants demonstrated that the transposon integration was stable and had no effect on growth rate. Both P. fluorescens 8866 Tn5 luxCDABE and P. putida F1 Tn5 luxCDABE were used to assess the toxicity of standard solutions (Cu, Zn and 3,5-DCP) as well as Cu- and 3,5-DCP-spiked groundwater samples. They were successfully used for bioluminescence-based bioassays and the potential value of using different bacterial biosensors for ecotoxicity testing was shown.
Collapse
Affiliation(s)
- H J Weitz
- Department Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresthill, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Hansen LH, Sørensen SJ. Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 2000; 193:123-7. [PMID: 11094290 DOI: 10.1111/j.1574-6968.2000.tb09413.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Three different whole cell biosensor constructs were made by fusing the mercury inducible promoter, P(mer), and its regulatory gene, merR, from transposon Tn21 with reporter genes luxCDABE, lacZYA, or gfp. In Escherichia coli these biosensor constructs responded to low levels of mercury by producing light, beta-galactosidase or green fluorescent protein, respectively. Since the responses were quantitative, the constructs were used to quantify bioavailable mercury in different environments. The constructs were cloned into mini-Tn5 delivery vectors, thus enabling the transfer of the mer-lux, mer-lac or mer-gfp cassettes to a variety of Gram-negative bacteria. The mer-lux cassette was transferred to a Pseudomonas putida strain, which was used to quantify water-extractable mercury in contaminated soil.
Collapse
Affiliation(s)
- L H Hansen
- Department of General Microbiology, University of Copenhagen, Solvgade 83 H, DK-1307 K, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Hansen LH, Sørensen SJ. Detection and quantification of tetracyclines by whole cell biosensors. FEMS Microbiol Lett 2000; 190:273-8. [PMID: 11034291 DOI: 10.1111/j.1574-6968.2000.tb09298.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Three different mini-Tn5 plasmids, containing a tetracycline-inducible promoter, Ptet and a regulatory gene, tetR, in operon fusions with a reporter gene system (lacZYA, luxCDABE or gfp), were constructed. These biosensor constructs responded to low levels of tetracyclines by producing beta-galactosidase, light or green fluorescent protein. They did so in a quantitative manner, thus enabling the quantification of tetracyclines in the immediate surroundings of the biosensor organism. All three constructs were transferred successfully to different gram-negative bacteria by conjugation. An Escherichia coli strain containing the Ptet-lac construct was used to determine oxytetracycline in milk as a demonstration of the application of these biosensors.
Collapse
Affiliation(s)
- L H Hansen
- Department of General Microbiology, University of Copenhagen, Denmark
| | | |
Collapse
|
35
|
Wise AA, Kuske CR. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 2000; 66:163-9. [PMID: 10618218 PMCID: PMC91800 DOI: 10.1128/aem.66.1.163-169.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. We have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.
Collapse
Affiliation(s)
- A A Wise
- Environmental Molecular Biology Group, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
36
|
von Canstein H, Li Y, Timmis KN, Deckwer WD, Wagner-Döbler I. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 1999; 65:5279-84. [PMID: 10583977 PMCID: PMC91717 DOI: 10.1128/aem.65.12.5279-5284.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater.
Collapse
Affiliation(s)
- H von Canstein
- Division of Microbiology, National Research Center for Biotechnology (GBF), D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- François M. M. Morel
- Department of Geosciences, Guyot Hall, Princeton University, New Jersey 08544; e-mail:
| | - Anne M. L. Kraepiel
- Department of Chemistry, Frick Chemical Laboratory, Princeton University, Princeton, New Jersey 08544
| | - Marc Amyot
- Université du Québec, Institut National de la Recherche Scientifique, INRSEAU, C.P. 7500, Sainte-Foy, QC, G1V 4C7, Canada
| |
Collapse
|
38
|
Abstract
A sensor plasmid was constructed by inserting the regulation unit from the cadA determinant of plasmid pI258 to control the expression of firefly luciferase. The resulting sensor plasmid pTOO24 is capable of replicating in Gram-positive and Gram-negative bacteria. The expression of the reporter gene as a function of added extracellular heavy metals was studied in Staphylococcus aureus strain RN4220 and Bacillus subtilis strain BR151. Strain RN4220(pTOO24) mainly responded to cadmium, lead and antimony, the lowest detectable concentrations being 10 nM, 33 nM and 1 nM respectively. Strain BR151(pTOO24) responded to cadmium, antimony, zinc and tin at concentrations starting from 3.3 nM, 33 nM, 1 microM, and 100 microM, respectively. The luminescence ratios between induced and uninduced cells, the induction coefficients, of strains RN4220(pTOO24) and BR151(pTOO24) were 23-50 and about 5, respectively. These results were obtained with only 2-3 h incubation times. Freeze-drying of the sensor strains had only moderate effects on the performance with respect to sensitivity or induction coefficients.
Collapse
Affiliation(s)
- S Tauriainen
- University of Turku, Department of Biotechnology, Finland
| | | | | | | |
Collapse
|