1
|
Okamoto JN, Martins MLWG, Henna Neto J. A vitamina C na esquizofrenia apresenta benefício? Estudo preliminar com análise comportamental em ratos. JORNAL BRASILEIRO DE PSIQUIATRIA 2022. [DOI: 10.1590/0047-2085000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RESUMO Objetivo O objetivo deste estudo foi analisar em ratos modelos de esquizofrenia, induzidos pela administração de cetamina, a possibilidade dos efeitos benéficos do ácido ascórbico na esquizofrenia, por meio do teste comportamental. Métodos O estudo preliminar foi simples-cego e randomizado. Foi realizado o protocolo de psicose por cetamina em 24 ratos Wistar submetidos posteriormente à análise comportamental. No primeiro grupo, foram administradas: água e cetamina; no segundo: ácido ascórbico e cetamina; no terceiro: antipsicótico, ácido ascórbico e cetamina; e no quarto: antipsicótico, água e cetamina. A análise comportamental foi feita por meio do Open Field Test, considerado o método-padrão para avaliar comportamento em modelos animais de esquizofrenia. A análise estatística foi realizada pelo software IBM-SPSS, por meio dos Modelos Lineares Generalizados. Resultados O tratamento em monoterapia de haloperidol (Média Quadrante: 44,5 ± 15,8; IC: 13,54-75,46/Média Centro: 2,67 ± 0,67; IC: 1,63-4,35) e aquele em conjunto com a vitamina C (Média Quadrante: 38,67 ± 15,8; IC: 7,71-69,52/Média Centro: 2,00 ± 0,58; IC: 1,14-3,52) demonstraram benefícios nos ratos modelos de esquizofrenia induzidos por cetamina (Média Quadrante: 108,5 ± 15,8; IC: 77,54-139,46/Média Centro: 11,33 ± 1,37; IC: 8,94-14,37) (p < 0,001). O tratamento isolado com a vitamina C não apresentou resultado significante (Média Quadrante: 62,00 ± 15,8; IC: 31,04-92,96/Média Centro: 7,00 ± 1,08; IC: 5,17-9,47). Conclusão A associação de antipsicótico e vitamina C e somente o antipsicótico demonstraram efeito terapêutico em relação aos controles. A vitamina C isolada não apresentou benefício.
Collapse
|
2
|
Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Appl Environ Microbiol 2020; 87:AEM.01850-20. [PMID: 33097513 DOI: 10.1128/aem.01850-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
The atmosphere contains diverse living microbes, of which the heterotrophic community has been the best studied. Microbes with other trophic modes, such as photoautotrophy, have received much less attention. In this study, culture-independent and dependent methods were used to examine the presence and diversity of oxygenic photoautotrophic microbes in clouds and rain collected at or around puy de Dôme Mountain, central France. Cloud water was collected from the summit of puy de Dôme (1,465 m above sea level [a.s.l.]) for cultivation and metagenomic analysis. Cyanobacteria, diatoms, green algae, and other oxygenic photoautotrophs were found to be recurrent members of clouds, while green algae affiliated with the Chlorellaceae were successfully cultured from three different clouds. Additionally, rain samples were collected below the mountain from Opme meteorological station (680 m a.s.l.). The abundance of chlorophyll a-containing cells and the diversity of cyanobacteria and green algae in rain were assessed by flow cytometry and amplicon sequencing. The corresponding downward flux of chlorophyll a-containing organisms to the ground, entering surface ecosystems with rain, varied with time and was estimated to be between ∼1 and >300 cells cm-2 day-1 during the sampling period. Besides abundant pollen from Pinales and Rosales, cyanobacteria of the Chroococcidiopsidales and green algae of the Trebouxiales were dominant in rain samples. Certain members of these taxa are known to be ubiquitous and stress tolerant and could use the atmosphere for dispersal. Overall, our results indicate that the atmosphere carries diverse, viable oxygenic photoautotrophic microbes and acts as a dispersal vector for this microbial guild.IMPORTANCE Information regarding the diversity and abundance of oxygenic photoautotrophs in the atmosphere is limited. More information from diverse locations is needed. These airborne organisms could have important impacts upon atmospheric processes and on the ecosystems they enter after deposition. Oxygenic photoautotrophic microbes are integral to ecosystem functioning, and some have the potential to affect human health. A better understanding of the diversity and the movements of these aeolian dispersed organisms is needed to understand their ecology, as well as how they could affect ecosystems and human health.
Collapse
|
3
|
Covarrubias-García I, de Jonge N, Arriaga S, Nielsen JL. Effects of ozone treatment on performance and microbial community composition in biofiltration systems treating ethyl acetate vapours. CHEMOSPHERE 2019; 233:67-75. [PMID: 31170585 DOI: 10.1016/j.chemosphere.2019.05.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Ozone (O3) treatment is an effective strategy in maintaining high efficiency and control of biomass accumulation in gas phase biofiltration. However, little is known about the long-term impact of O3 on the microbial communities. In the present study, two biofilters treating gaseous ethyl acetate were operated continuously for 230 days with inlet loads up to 180 g m-3∙h-1. A biofilter operated under continuous O3 addition (90 ppbv) yielded consistently higher removal efficiency (RE) and elimination capacity (EC) compared to the control system. After 120 days of operation, a lower biomass content accompanied by a pH of 1.5 was observed in the ozonated biofilter, which was 2 units lower compared to the control reactor. Both reactors developed a distinct microbial community composition over the course of 230 days. The bacterial community was dominated in both biofilters by Beijerinckia and Gluconacetobacter, while Rhinocladiella similis, Trichosporon veenhuissi and Exophilia oligosperma were abundant in the fungal community. These findings suggest that ozonation of the biofiltration systems not only reduced clogging, but also contributed to the selection of biomass suitable for degradation of ethyl acetate.
Collapse
Affiliation(s)
- Itzel Covarrubias-García
- Instituto Potosino de Investigación Científica y Tecnológica, Department of Environmental Sciences, Camino a la Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, DK-9220, Aalborg East, Denmark.
| | - Nadieh de Jonge
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, DK-9220, Aalborg East, Denmark.
| | - Sonia Arriaga
- Instituto Potosino de Investigación Científica y Tecnológica, Department of Environmental Sciences, Camino a la Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico.
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, DK-9220, Aalborg East, Denmark.
| |
Collapse
|
4
|
A combined approach of 16S rRNA and a functional marker gene, soxB to reveal the diversity of sulphur-oxidising bacteria in thermal springs. Arch Microbiol 2019; 201:951-967. [PMID: 31025055 DOI: 10.1007/s00203-019-01666-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
With the advent of new molecular tools, new taxa of sulphur-oxidising bacteria (SOB) in diverse environments are being discovered. However, there is a significant gap of knowledge about the ecology and diversity of SOB in thermal springs. Here, the species diversity and phylogenetic affiliations of SOB were investigated using 16S rRNA and functional gene marker, soxB in thermal springs of Thane district of Maharashtra, India. Most SOB detected by 16S rDNA sequences belong to different operational taxonomic units (OTU's): Firmicutes, α-, β-, γ-Proteobacteria and Actinobacteria with the dominance of first class. However, the soxB gene clone library sequences had shown affiliation with the β-, γ- and α-Proteobacteria. β-Proteobacteria-related sequences were dominant, with 53.3% clones belonging to genus Hydrogenophaga. The thiosulphate oxidation assay carried out for different isolates having distinct identity showed the mean sulphate-sulphur production from 117.86 ± 0.50 to 218.82 ± 2.56 mg SO4-S l-1 after 9 days of incubation. Also, sulphur oxidation by the genus Nitratireductor, Caldimonas, Geobacillus, Paenibacillus, Brevibacillus, Tristrella and Chelatococcus has been reported for the first time that reveals ecological widening over which thiotrophs are distributed.
Collapse
|
5
|
Saingam P, Baig Z, Xu Y, Xi J. Effect of ozone injection on the long-term performance and microbial community structure of a VOCs biofilter. J Environ Sci (China) 2018; 69:133-140. [PMID: 29941249 DOI: 10.1016/j.jes.2017.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 06/08/2023]
Abstract
For biofilters treating waste gases containing volatile organic compounds (VOCs), biomass accumulation is a common problem which will induce bed clogging and significant decrease in VOCs removal efficiency during long-term operation. In this study, ozone injection was developed as a biomass control strategy, and its effects on the biofilter performance and the microbial community structure were investigated in long-term operation. Two biofilters, identified as BF1 and BF2, were operated continuously for 160 days treating gaseous toluene under the same conditions, except that 200 mg/m3 ozone was continuously injected into BF1 during days 45-160. During the operation period, ozone injection did not change the toluene removal efficiency, while the pressure drop of BF1 with ozone injection was significantly lowered compared with BF2. The wet biomass accumulation rate of BF1 was 11 g/m3/hr, which was only 46% of that in BF2. According to the carbon balance result, ozone injection also increased the toluene mineralization rate from 83% to 91%, which could be an important reason for the low biomass accumulation. The PMA-qPCR result indicated that ozone injection increased the microbial viability of the biofilm. The high-throughput sequencing result also revealed that the dominant phyla and genera were not changed significantly by ozone injection, but some ozone-tolerant genera such as Rhodanobacter, Dokdonella and Rhodococcus were enhanced by ozone exposure. All the results verified that ozone injection is capable of sustaining the long-term performance of biofilters by lowering the biomass accumulation, increasing the microbial viability and changing the microbial community structure.
Collapse
Affiliation(s)
- Prakit Saingam
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zenab Baig
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Eva S. Longterm Monitoring of Nitrification and Nitrifying Communities during Biofilter Activation of Two Marine Recirculation Aquaculture Systems (RAS). ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-8400.000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Liu T, Ahn H, Sun W, McGuinness LR, Kerkhof LJ, Häggblom MM. Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1455-1464. [PMID: 26727046 DOI: 10.1021/acs.est.5b04731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation.
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Hyeri Ahn
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Weimin Sun
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lora R McGuinness
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
Cabrol L, Poly F, Malhautier L, Pommier T, Lerondelle C, Verstraete W, Lepeuple AS, Fanlo JL, Le Roux X. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:338-48. [PMID: 26651080 DOI: 10.1021/acs.est.5b02740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation.
Collapse
Affiliation(s)
- Léa Cabrol
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
- Veolia Environnement Recherche et Innovation, Chemin de la Digue, BP76, 78600, Maisons Laffitte, France
- Pontificia Universidad Católica de Valparaíso, Escuela de Ingeniería Bioquímica, Avenida Brasil 2185, Valparaíso, Chile
| | - Franck Poly
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Luc Malhautier
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
| | - Thomas Pommier
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Catherine Lerondelle
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Willy Verstraete
- LabMET, Faculty Bio-Science Engineering, Ghent University , Coupure L 653, 9000 Gent, Belgium
| | - Anne-Sophie Lepeuple
- Veolia Environnement Recherche et Innovation, Chemin de la Digue, BP76, 78600, Maisons Laffitte, France
| | - Jean-Louis Fanlo
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| |
Collapse
|
9
|
Tuorto SJ, Brown CM, Bidle KD, McGuinness LR, Kerkhof LJ. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature. PLoS One 2015; 10:e0144686. [PMID: 26710122 PMCID: PMC4692454 DOI: 10.1371/journal.pone.0144686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/23/2015] [Indexed: 02/01/2023] Open
Abstract
This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry “field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.
Collapse
Affiliation(s)
- Steven J. Tuorto
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Chris M. Brown
- Environmental Proteomics N.B. Inc, Sackville, New Brunswick, Canada
| | - Kay D. Bidle
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lora R. McGuinness
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lee J. Kerkhof
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kitamura R, Ishii K, Maeda I, Kozaki T, Iwabuchi K, Saito T. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost. J Biosci Bioeng 2015; 121:57-65. [PMID: 26111599 DOI: 10.1016/j.jbiosc.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia.
Collapse
Affiliation(s)
- Rika Kitamura
- Department of Agricultural and Environmental Engineering, Tokyo University of Agriculture and Technology, United Graduate School of Agricultural Science, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan.
| | - Kazuo Ishii
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Bidg. 2 Room 319, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Isamu Maeda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Toshinori Kozaki
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Bidg. 2 Room 319, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazunori Iwabuchi
- Department of Bioresource and Environmental Engineering, Faculty of Agriculture, Hokkaido University, 9 Kita 9 Jyou Nishi, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Takahiro Saito
- Department of Environmental Engineering, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
11
|
Koribanics NM, Tuorto SJ, Lopez-Chiaffarelli N, McGuinness LR, Häggblom MM, Williams KH, Long PE, Kerkhof LJ. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site. PLoS One 2015; 10:e0123378. [PMID: 25874721 PMCID: PMC4395306 DOI: 10.1371/journal.pone.0123378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/13/2015] [Indexed: 11/21/2022] Open
Abstract
The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.
Collapse
Affiliation(s)
- Nicole M. Koribanics
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Steven J. Tuorto
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nora Lopez-Chiaffarelli
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lora R. McGuinness
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Max M. Häggblom
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kenneth H. Williams
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Philip E. Long
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Lee J. Kerkhof
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bae H, Chung YC, Yang H, Lee C, Aryapratama R, Yoo YJ, Lee S. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:201-212. [PMID: 25560266 DOI: 10.1080/10934529.2014.975550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.
Collapse
Affiliation(s)
- Hyokwan Bae
- a Center for Water Resource Cycle Research, Korea Institute of Science and Technology (KIST) , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Bacterial genome replication at subzero temperatures in permafrost. ISME JOURNAL 2013; 8:139-49. [PMID: 23985750 DOI: 10.1038/ismej.2013.140] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/21/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022]
Abstract
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with (13)C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to -20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize (13)C-labeled DNA when supplemented with (13)C-acetate at temperatures of 0 to -20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of (13)C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.
Collapse
|
14
|
Auffret M, Yergeau É, Pilote A, Proulx É, Proulx D, Greer CW, Vandenberg G, Villemur R. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems. FEMS Microbiol Ecol 2013; 84:235-47. [PMID: 23228051 DOI: 10.1111/1574-6941.12053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/26/2023] Open
Abstract
A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1. In the biofilter, nitrification is one of the major processes by which high water quality is maintained. The bacterial population observed in the unit 1 biofilter was more stable throughout the experiment, with a higher level of nitrifying bacteria compared with the unit 2 biofilter. Geosmin appeared in fish flesh after 84 days in unit 2, whereas it appeared in unit 1 after 168 days, but at a much lower level. The geoA gene was detected in both units, 28 days prior to the detection of geosmin in fish flesh. In addition, we detected sequences associated with Sorangium and Nannocystis (Myxococcales): members of these genera are known to produce geosmin. These sequences were observed at an earlier time in unit 2 and at a higher level than in unit 1. This study confirms the advantages of new molecular methods to understand the occurrence of geosmin production in RAS.
Collapse
Affiliation(s)
- Marc Auffret
- INRS-Institut Armand-Frappier, Laval, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yasuda T, Waki M, Kuroda K, Hanajima D, Fukumoto Y, Yamagishi T, Suwa Y, Suzuki K. Responses of community structure of amoA
-encoding archaea and ammonia-oxidizing bacteria in ammonia biofilter with rockwool mixtures to the gradual increases in ammonium and nitrate. J Appl Microbiol 2012. [DOI: 10.1111/jam.12091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. Yasuda
- Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - M. Waki
- Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - K. Kuroda
- Kyushu Okinawa Agricultural Research Center; National Agriculture and Food Research Organization; Koshi Kumamoto Japan
| | - D. Hanajima
- Agricultural Research Center for Hokkaido Region; National Agriculture and Food Research Organization; Sapporo Hokkaido Japan
| | - Y. Fukumoto
- Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - T. Yamagishi
- Institute of Environmental Management Technology; National Institute of Advanced Industrial Science and Technology; Tsukuba Ibaraki Japan
| | - Y. Suwa
- Department of Biological Sciences; Chuo University; Tokyo Japan
| | - K. Suzuki
- Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| |
Collapse
|
16
|
Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 2012; 43:393-409. [PMID: 19719671 DOI: 10.1111/j.1574-6941.2003.tb01080.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract The bacterial diversity in a diffuse flow hydrothermal vent habitat at Axial Volcano, Juan de Fuca Ridge was examined shortly after an eruptive event in 1998 and again in 1999 and 2000 using PCR-amplified 16S rRNA gene sequence analyses. While considerable overlap with deep-sea background seawater was found within the alpha- and gamma-proteobacteria, unique subseafloor phylotypes were distinguishable. These included diverse members of the epsilon-proteobacteria, high temperature groups such as Desulfurobacterium, Gram-positive bacteria, and members of novel candidate divisions WS6 and ABY1. Phylotype richness was highest in the particle-attached populations from all three sampling periods, and diversity appeared to increase over that time, particularly among the epsilon-proteobacteria. A preliminary model of the subseafloor is presented that relates microbial diversity to temperature, chemical characteristics of diffuse flow fluids and the degree of mixing with seawater.
Collapse
Affiliation(s)
- Julie A Huber
- School of Oceanography and Astrobiology Program, University of Washington, Box 357940, Seattle, WA 98195, USA
| | | | | |
Collapse
|
17
|
Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Syst Appl Microbiol 2011; 34:344-52. [DOI: 10.1016/j.syapm.2010.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/23/2022]
|
18
|
Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 2011; 90:837-49. [PMID: 21424795 DOI: 10.1007/s00253-011-3191-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Biofilters are packed-bed bioreactors where contaminants, once transferred from the gas phase to the biofilm, are oxidized by diverse and complex communities of attached microorganisms. Over the last decade, more and more studies aimed at opening the back box of biofiltration by unraveling the biodiversity-ecosystem function relationship. In this review, we report the insights provided by the microbial ecology approach in biofilters and we emphasize the parallels existing with other engineered ecosystems used for wastewater treatment, as they all constitute relevant model ecosystems to explore ecological issues. We considered three characteristic ecological indicators: the density, the diversity, and the structure of the microbial community. Special attention was paid to the temporal and spatial dynamics of each indicator, insofar as it can disclose the potential relationship, or absence of relation, with any operating or functional parameter. We also focused on the impact of disturbance regime on the microbial community structure, in terms of resistance, resilience, and memory. This literature review led to mitigated conclusions in terms of biodiversity-ecosystem function relationship. Depending on the environmental system itself and the way it is investigated, the spatial and temporal dynamics of the microbial community can be either correlated (e.g., spatial stratification) or uncoupled (e.g., temporal instability) to the ecosystem function. This lack of generality shows the limits of current 16S approach in complex ecosystems, where a functional approach may be more suitable.
Collapse
|
19
|
Xia S, Duan L, Song Y, Li J, Piceno YM, Andersen GL, Alvarez-Cohen L, Moreno-Andrade I, Huang CL, Hermanowicz SW. Bacterial community structure in geographically distributed biological wastewater treatment reactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7391-7396. [PMID: 20812670 DOI: 10.1021/es101554m] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Current knowledge of the microbial communities within biological wastewater treatment reactors is incomplete due to limitations of traditional culture-based techniques and despite the emergence of recently applied molecular techniques. Here we demonstrate the application of high-density microarrays targeting universal 16S rRNA genes to evaluate microbial community composition in five biological wastewater treatment reactors in China and the United States. Results suggest a surprisingly consistent composition of microbial community structure among all five reactors. All investigated communities contained a core of bacterial phyla (53-82% of 2119 taxa identified) with almost identical compositions (as determined by colinearity analysis). These core species were distributed widely in terms of abundance but their proportions were virtually the same in all samples. Proteobacteria was the largest phylum and Firmicutes, Actinobacteria, Bacteroidetes were the subdominant phyla. The diversity among the samples can be attributed solely to a group of operational taxonomic units (OTUs) that were detected only in specific samples. Typically, these organisms ranked somewhat lower in terms of abundance but a few were present is much higher proportions.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting. Appl Microbiol Biotechnol 2010; 85:779-790. [PMID: 19826809 DOI: 10.1007/s00253-009-2253-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.
Collapse
|
21
|
Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes. Appl Environ Microbiol 2010; 76:1813-21. [PMID: 20097811 DOI: 10.1128/aem.01917-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked. In the present study, we analyzed quantitatively the epiphytic communities of three shallow lakes by a potential nitrification assay and by quantitative PCR of 16S rRNA genes. On the basis of the m(2) of the lake surface, the gene copy numbers of epiphytic ammonia oxidizers were not significantly different from those in the benthic and pelagic compartments. The potential ammonia-oxidizing activities measured in the epiphytic compartment were also not significantly different from the activities determined in the benthic compartment. No potential ammonia-oxidizing activities were observed in the pelagic compartment. No activity was detected in the epiphyton of Chara aspera, the dominant submerged macrophyte in Lake Nuldernauw in The Netherlands. The presence of ammonia-oxidizing bacterial cells in the epiphyton of Potamogeton pectinatus was also demonstrated by fluorescent in situ hybridization microscopy images. By comparing the community composition as assessed by the 16S rRNA gene PCR-denaturing gradient gel electrophoresis approach, it was concluded that the epiphytic ammonia-oxidizing communities consisted of cells that were also present in the benthic and pelagic compartments. Of the environmental parameters examined, only the water retention time, the Kjeldahl nitrogen content, and the total phosphorus content correlated with potential ammonia-oxidizing activities. None of these parameters correlated with the numbers of gene copies related to ammonia-oxidizing betaproteobacteria.
Collapse
|
22
|
Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture. Appl Biochem Biotechnol 2010; 162:1225-37. [PMID: 20069462 DOI: 10.1007/s12010-009-8886-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Reduced sulfur compounds produced by the metabolism are the one of the major problems in aquaculture. In the present study, herbivorous fishes have been cultured as biomanipulators for secretions of slime, which enhanced the production of greenwater containing beneficial bacteria. The genes encoding soxB which is largely unique to sulfur-oxidizing bacteria (SOB) due to its hydrolytic function has been targeted for examining the diversity of SOB in the green water system of coastal aquaculture. Novel sequences obtained based on the sequencing of metagenomic clone libraries for soxB genes revealed the abundance of SOB in green water system. Phylogenetic tree constructed from aligned amino acid sequences demonstrated that different clusters have only 82-93% match with Roseobacter sp., Phaeobacter sp., Roseovarius sp., Sulfitobacter sp., Ruegeria sp., and Oceanibulbus sp. The level of conservation of the soxB amino acid sequences ranged from 42% to 71%. 16S rRNA gene analyses of enrichment culture from green water system revealed the presence of Pseudoxanthomonas sp., which has 97% similarity with nutritionally fastidious Indian strain of Pseudoxanthomonas mexicana-a sulfur chemolithotrophic gamma-proteobacterium. Our results illustrate the relevance of SOB in the functioning of the green water system of coastal shrimp aquaculture for oxidation of reduced sulfur compounds, which in turn maintain the sulfide concentration well within the prescribed safe levels.
Collapse
|
23
|
Yasuda T, Kuroda K, Hanajima D, Fukumoto Y, Waki M, Suzuki K. Characteristics of the Microbial Community Associated with Ammonia Oxidation in a Full-Scale Rockwool Biofilter Treating Malodors from Livestock Manure Composting. Microbes Environ 2010; 25:111-9. [DOI: 10.1264/jsme2.me09175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tomoko Yasuda
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| | - Kazutaka Kuroda
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| | - Dai Hanajima
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| | - Yasuyuki Fukumoto
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| | - Miyoko Waki
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| | - Kazuyoshi Suzuki
- National Institute of Livestock and Grassland Science, Pollution Control Research Team
| |
Collapse
|
24
|
Krishnani KK, Shekhar MS, Gopikrishna G, Gupta BP. Molecular biological characterization and biostimulation of ammonia-oxidizing bacteria in brackishwater aquaculture. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2009; 44:1598-608. [PMID: 20183519 DOI: 10.1080/10934520903263637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present study, molecular methods based on sequencing of clone libraries have been used to provide sequence and the phylogenetic information of ammonia oxidizing bacteria (AOB). Ammonia monooxygenase (amoA) gene, which catalyzed the oxidation of ammonia to hydroxyl amine in the initial rate-determining step of nitrification was targeted for detection and characterization of AOB using gene-specific primers. The amoA genes obtained through the clone library construction are closely affiliated with Nitrosomonas sp. and other uncultured beta proteobacteria. The levels of nucleotide similarity and amino acid similarity ranged from 85-99% and 83-88%, respectively. The level of conservation of the amino acid sequences is 73%. The use of a matrix prepared from abundantly available lignocellulosic agrowaste-bagasse has successfully been demonstrated for biostimulation of AOB in aquaculture environment by supplementing nutritional requirement facilitating the biofilm mode of growth of the autotrophic consortia. Present study is useful in predictability and reliability of the treatment of ammonia in brackishwater aquaculture.
Collapse
Affiliation(s)
- K K Krishnani
- Central Institute of Brackishwater Aquaculture, Chennai, India.
| | | | | | | |
Collapse
|
25
|
Hayes AC, Zhang Y, Liss SN, Allen DG. Linking performance to microbiology in biofilters treating dimethyl sulphide in the presence and absence of methanol. Appl Microbiol Biotechnol 2009; 85:1151-66. [DOI: 10.1007/s00253-009-2272-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 11/30/2022]
|
26
|
Kemp PF, Aller JY. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 2009; 47:161-77. [PMID: 19712332 DOI: 10.1016/s0168-6496(03)00257-5] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We evaluate the substantial amount of information accumulated on bacterial diversity in a variety of environments and address several fundamental questions, focusing on aquatic systems but including other environments to provide a broader context. Bacterial diversity data were extracted from 225 16S rDNA libraries described in published reports, representing a variety of aquatic and non-aquatic environments. Libraries were predominantly composed of rare phylotypes that appeared only once or twice in the library, and the number of phylotypes observed was correlated with library size (implying that few libraries are exhaustive samples of diversity in the source community). Coverage, the estimated proportion of phylotypes in the environment represented in the library, ranged widely but on average was remarkably high and not correlated with library size. Phylotype richness was calculated by methods based on the frequency of occurrence of different phylotypes in 194 libraries that provided appropriate data. For 90% of aquatic-system libraries, and for 79% of non-aquatic libraries, the estimated phylotype richness was <200 phylotypes. Nearly all of the larger estimates were in aquatic sediments, digestive systems and soils. However, the approaches used to estimate phylotype richness may yield underestimates when libraries are too small. A procedure is described to provide an objective means of determining when a library is large enough to provide a stable and unbiased estimate of phylotype richness. A total of 56 libraries, including 44 from aquatic systems, were considered 'large enough' to yield stable estimates suitable for comparing richness among environments. Few significant differences in phylotype richness were observed among aquatic environments. For one of two richness estimators, the average phylotype richness was significantly lower in hyperthermal environments than in sediment and bacterioplankton, but no other significant differences among aquatic environments were observed. In general, and with demonstrated exceptions, published studies have captured a large fraction of bacterial diversity in aquatic systems. In most cases, the estimated bacterial diversity is lower than we would have expected, although many estimates should be considered minimum values. We suggest that on local scales, aquatic bacterial diversity is much less than any predictions of their global diversity, and remains a tractable subject for study. The global-scale diversity of aquatic Bacteria, on the other hand, may be beyond present capabilities for effective study.
Collapse
Affiliation(s)
- Paul F Kemp
- Marine Sciences Research Center, Stony Brook University, NY 11794-5000, USA.
| | | |
Collapse
|
27
|
Mertoglu B, Semerci N, Guler N, Calli B, Cecen F, Saatci AM. Monitoring of population shifts in an enriched nitrifying system under gradually increased cadmium loading. JOURNAL OF HAZARDOUS MATERIALS 2008; 160:495-501. [PMID: 18462880 DOI: 10.1016/j.jhazmat.2008.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 01/22/2008] [Accepted: 03/07/2008] [Indexed: 05/26/2023]
Abstract
The changes in nitrifying bacterial population under cadmium loading were monitored and evaluated in a laboratory scale continuous-flow enriched nitrification system. For this purpose, the following molecular microbiological methods were used: slot-blot hybridization, denaturing gradient gel electrophoresis (DGGE), real-time PCR followed by melting curve analysis, cloning and sequence analysis. The initial cadmium concentration was incrementally increased from 1 to 10mg/l which led to a drop in ammonia removal efficiency from 99 to 10%. Inhibition was recovered when cadmium loading was stopped. During the second application of cadmium, nitrifying population became more tolerant. Even at 15mg/l Cd, only a minor inhibition was observed. To investigate the variations in ammonia and nitrite oxidizing bacteria populations in a period of 483 days, ammonia monooxygenase (amoA) and 16S rRNA genes-based molecular techniques were used. An obvious shift was experienced in the diversity of ammonia oxidizers after the first application of 10mg/l Cd. Metal-tolerant ammonia oxidizing species became dominant and the microbial diversity sharply shifted from Nitrosomonas and Nitrosococcus sp. to Nitrosospira sp. which were observed to tolerate higher cadmium loadings. This result indicated that the extent of nitrification inhibition was not only related to the metal concentration and quantity of microorganisms but also depended on the type of species.
Collapse
Affiliation(s)
- Bulent Mertoglu
- Department of Bioengineering, Marmara University, 34722 Goztepe, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
28
|
McLamore E, Sharvelle S, Huang Z, Banks K. Simultaneous treatment of graywater and waste gas in a biological trickling filter. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2008; 80:2096-2103. [PMID: 19024724 DOI: 10.2175/106143008x266788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological processors are typically used in liquid- and gas-phase remediation as separately staged systems. This research presents a novel application of a biotrickling filter operated for simultaneous treatment of contaminants present in graywater and waste gas (ammonia and hydrogen sulfide). Liquid- and gas-phase contaminants were monitored via bioreactor influent/effluent samples over the course of a 300-day study. An oxygen-based bioassay was used to determine spatial location of the functional groups involved in the biodegradation of surfactants, dissolved hydrogen sulfide, and ammonium. Results indicated that a biotrickling filter is able to support the wide range of microbial species required to degrade the compounds found in graywater and waste gas, maintaining conversion efficiencies greater than 90% for parent surfactant compounds and waste gas constituents. These results provide evidence of an operational scheme that potentially reduces footprint size and cost of graywater/waste gas biotreatment.
Collapse
Affiliation(s)
- Eric McLamore
- School of Civil Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN 47905, USA.
| | | | | | | |
Collapse
|
29
|
Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Appl Environ Microbiol 2008; 74:4516-29. [PMID: 18515485 DOI: 10.1128/aem.02751-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sediments of coastal margins are important sites of carbon sequestration and nitrogen cycling. To determine the metabolic potential and structure of marine sediment microbial communities, two cores were collected each from the two stations (GMT at a depth of 200 m and GMS at 800 m) in the Gulf of Mexico, and six subsamples representing different depths were analyzed from each of these two cores using functional gene arrays containing approximately 2,000 probes targeting genes involved in carbon fixation; organic carbon degradation; contaminant degradation; metal resistance; and nitrogen, sulfur, and phosphorous cycling. The geochemistry was highly variable for the sediments based on both site and depth. A total of 930 (47.1%) probes belonging to various functional gene categories showed significant hybridization with at least 1 of the 12 samples. The overall functional gene diversity of the samples from shallow depths was in general lower than those from deep depths at both stations. Also high microbial heterogeneity existed in these marine sediments. In general, the microbial community structure was more similar when the samples were spatially closer. The number of unique genes at GMT increased with depth, from 1.7% at 0.75 cm to 18.9% at 25 cm. The same trend occurred at GMS, from 1.2% at 0.25 cm to 15.2% at 16 cm. In addition, a broad diversity of geochemically important metabolic functional genes related to carbon degradation, nitrification, denitrification, nitrogen fixation, sulfur reduction, phosphorus utilization, contaminant degradation, and metal resistance were observed, implying that marine sediments could play important roles in biogeochemical cycling of carbon, nitrogen, phosphorus, sulfate, and various metals. Finally, the Mantel test revealed significant positive correlations between various specific functional genes and functional processes, and canonical correspondence analysis suggested that sediment depth, PO(4)(3-), NH(4)(+), Mn(II), porosity, and Si(OH)(4) might play major roles in shaping the microbial community structure in the marine sediments.
Collapse
|
30
|
Ding Y, Wu W, Han Z, Chen Y. Correlation of reactor performance and bacterial community composition during the removal of trimethylamine in three-stage biofilters. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Changes in the potential functional diversity of the bacterial community in biofilters. Appl Microbiol Biotechnol 2007; 77:741-7. [DOI: 10.1007/s00253-007-1189-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/26/2007] [Accepted: 08/29/2007] [Indexed: 11/26/2022]
|
32
|
Launen LA, Dutta J, Turpeinen R, Eastep ME, Dorn R, Buggs VH, Leonard JW, Häggblom MM. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor. Biodegradation 2007; 19:347-63. [PMID: 17636392 DOI: 10.1007/s10532-007-9141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 06/22/2007] [Indexed: 11/30/2022]
Abstract
The aerobic polyaromatic hydrocarbon (PAH) degrading microbial communities of two petroleum-impacted Spartina-dominated salt marshes in the New York/New Jersey Harbor were examined using a combination of microbiological, molecular and chemical techniques. Microbial isolation studies resulted in the identification of 48 aromatic hydrocarbon-degrading bacterial strains from both vegetated and non-vegetated marsh sediments. The majority of the isolates were from the genera Paenibacillus and Pseudomonas. Radiotracer studies using (14)C-phenanthrene and (14)C-pyrene were used to measure the PAH-mineralization activity in salt marsh sediments. The results suggested a trend towards increased PAH mineralization in vegetated sediments relative to non-vegetated sediments. This trend was supported by the enumeration of PAH-degrading bacteria in non-vegetated and vegetated sediment using a Most Probable Numbers (MPN) technique, which demonstrated that PAH-degrading bacteria existed in non-vegetated and vegetated sediments at levels ranging from 10(2 )to 10(5 )cells/g sediment respectively. No difference between microbial communities present in vegetated versus non-vegetated sediments was found using terminal restriction fragment length polymorphism (of the 16S rRNA gene) or phospholipid fatty acid analysis. These studies provide information on the specific members and activity of the PAH-degrading aerobic bacterial communities present in Spartina-dominated salt marshes in the New York/New Jersey Harbor estuary.
Collapse
Affiliation(s)
- L A Launen
- Department of Biochemistry and Microbiology, Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Borin S, Marzorati M, Brusetti L, Zilli M, Cherif H, Hassen A, Converti A, Sorlini C, Daffonchio D. Microbial Succession in a Compost-packed Biofilter Treating Benzene-contaminated Air. Biodegradation 2006; 17:181-91. [PMID: 16502043 DOI: 10.1007/s10532-005-7565-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81-100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2< or =VBL< or =6.4 g m(-3) (PM) h(-1)), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and beta- and gamma-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m(-3) (PM) h(-1)) ensuring the maximum elimination capacity of the biofilter (20.1 g m(-3) (PM) h(-1)), strains affiliated to the genus Rhodococcus dominated the microflora, followed by beta-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.
Collapse
Affiliation(s)
- Sara Borin
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cai Z, Kim D, Sorial G, Saikaly P, Zein M, Oerther D. Performance and Microbial Diversity of a Trickle-Bed Air Biofilter under Interchanging Contaminants. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
35
|
McGuinness LM, Salganik M, Vega L, Pickering KD, Kerkhof LJ. Replicability of bacterial communities in denitrifying bioreactors as measured by PCR/T-RFLP analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:509-15. [PMID: 16468396 DOI: 10.1021/es050900l] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioreactors hold great promise for treating graywater in an advanced life support system for space applications. However, questions remain regarding the reproducibility and reliability of biological systems for long-term use. Although there have been numerous studies on ground-based biological systems, most studies focus on a single reactor or a simple (single carbon) waste stream. There have been very few studies on microbial communities in replicate reactors using a nonsterile, complex waste stream. In this report, we describe the characterization of five replicate denitrifying reactors receiving a complex feed, including urine and limb washes from donors at Johnson Space Center over a 100-day period. Denitrifying conditions were employed because of the ease in adding a terminal electron acceptor to the bioreactor. Bacterial populations were tracked by 16S rRNA and nosZ genes T-RFLP analysis to target the total and denitrifying microbial communities. The results demonstrated reproducible biological communities with nearly identical performance that slowly changed with time and exhibited low variability with respect to the bacterial community (T-RFLP peak area) in all reactors. These results suggest that, when designed for replication, bioreactors are not stochastic systems exhibiting chaotic behavior, but are biological systems that can be highly reproducible and reliable.
Collapse
Affiliation(s)
- Lora M McGuinness
- Institute of Marine and Coastal Sciences, Cook College, Rutgers, The State University of New Jersey, New Brunswick 08901, USA
| | | | | | | | | |
Collapse
|
36
|
Horz HP, Rich V, Avrahami S, Bohannan BJM. Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 2005; 71:2642-52. [PMID: 15870356 PMCID: PMC1087552 DOI: 10.1128/aem.71.5.2642-2652.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the diversity of methane-oxidizing bacteria (i.e., methanotrophs) in an annual upland grassland in northern California, using comparative sequence analysis of the pmoA gene. In addition to identifying type II methanotrophs commonly found in soils, we discovered three novel pmoA lineages for which no cultivated members have been previously reported. These novel pmoA clades clustered together either with clone sequences related to "RA 14" or "WB5FH-A," which both represent clusters of environmentally retrieved sequences of putative atmospheric methane oxidizers. Conservation of amino acid residues and rates of nonsynonymous versus synonymous nucleotide substitution in these novel lineages suggests that the pmoA genes in these clades code for functionally active methane monooxygenases. The novel clades responded to simulated global changes differently than the type II methanotrophs. We observed that the relative abundance of type II methanotrophs declined in response to increased precipitation and increased atmospheric temperature, with a significant antagonistic interaction between these factors such that the effect of both together was less than that expected from their individual effects. Two of the novel clades were not observed to respond significantly to these environmental changes, while one of the novel clades had an opposite response, increasing in relative abundance in response to increased precipitation and atmospheric temperature, with a significant antagonistic interaction between these factors.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
37
|
Khammar N, Malhautier L, Degrange V, Lensi R, Godon JJ, Fanlo JL. Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 2005; 98:476-90. [PMID: 15659202 DOI: 10.1111/j.1365-2672.2004.02474.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the relationships between the operation of the volatile organic compound (VOC) removal biofilter and the structure of microbial communities, and to study the impact on degradation activities and the structuring of microbial communities of biofilter malfunctions related to the qualitative composition of the polluted air. METHODS AND RESULTS A microbiological study and a measurement of biodegradation activities were simultaneously carried out on two identical peat-packed columns, seeded with two different inocula, treating polluted air containing 11 VOCs. For both reactors, the spatial structure of the microbial communities was investigated by means of single-strand conformation polymorphism (SSCP) analysis. For both reactors, stratification of degradation activities in function of depth was observed. Oxygenated compounds were removed at the top of the column and aromatics at the bottom. Comparison of SSCP patterns clearly showed a shift in community structure in function of depth inside both biofilters. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. Although the operating conditions of both reactors were identical and the biodegradation activities similar, the composition of microflora differed for biofilters A and B. Subdivision of biofilter B into two independent parts supplied with polluted air containing the complex VOC mixture showed that the microflora having colonized the bottom of biofilter B retained their potential for degrading oxygenated compounds. CONCLUSIONS This work highlights the spatialization of biodegradation functions in a biofilter treating a complex mixture of VOCs. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. SIGNIFICANCE AND IMPACT OF THE STUDY This vertical structure of microbial communities must be taken into consideration when dealing with the malfunctioning of bioreactors. These results are also useful information about changes in microbial communities following natural or anthropogenic alterations in different ecosystems (soils and sediments) where structuring of microbial communities according to depth has been observed.
Collapse
Affiliation(s)
- N Khammar
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Ales cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Spiegelman D, Whissell G, Greer CW. A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 2005; 51:355-86. [PMID: 16088332 DOI: 10.1139/w05-003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A survey of the available literature on methods most frequently used for the identification and characterization of microbial strains, communities, or consortia is presented. The advantages and disadvantages of the various methodologies were examined from several perspectives including technical, economic (time and cost), and regulatory. The methods fall into 3 broad categories: molecular biological, biochemical, and microbiological. Molecular biological methods comprise a broad range of techniques that are based on the analysis and differentiation of microbial DNA. This class of methods possesses several distinct advantages. Unlike most other commonly used methods, which require the production of secondary materials via the manipulation of microbial growth, molecular biological methods recover and test their source materials (DNA) directly from the microbial cells themselves, without the requirement for culturing. This eliminates both the time required for growth and the biases associated with cultured growth, which is unavoidably and artificially selective. The recovered nucleic acid can be cloned and sequenced directly or subpopulations can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. PCR technology, used extensively in forensic science, provides researchers with the unique ability to detect nucleic acids (DNA and RNA) in minute amounts, by amplifying a single target molecule by more than a million-fold. Molecular methods are highly sensitive and allow for a high degree of specificity, which, coupled with the ability to separate similar but distinct DNA molecules, means that a great deal of information can be gleaned from even very complex microbial communities. Biochemical methods are composed of a more varied set of methodologies. These techniques share a reliance on gas chromatography and mass spectrometry to separate and precisely identify a range of biomolecules, or else investigate biochemical properties of key cellular biomolecules. Like the molecular biological methods, some biochemical methods such as lipid analyses are also independent of cultured growth. However, many of these techniques are only capable of producing a profile that is characteristic of the microbial community as a whole, providing no information about individual members of the community. A subset of these methodologies are used to derive taxonomic information from a community sample; these rely on the identification of key subspecies of biomolecules that differ slightly but characteristically between species, genera, and higher biological groupings. However, when the consortium is already growing in chemically defined media (as is often the case with commercial products), the rapidity and relatively low costs of these procedures can mitigate concerns related to culturing biases. Microbiological methods are the most varied and the least useful for characterizing microbial consortia. These methods rely on traditional tools (cell counting, selective growth, and microscopic examination) to provide more general characteristics of the community as a whole, or else to narrow down and identify only a small subset of the members of that community. As with many of the biochemical methods, some of the microbiological methods can fairly rapidly and inexpensively create a community profile, which can be used to compare 2 or more entire consortia. However, for taxonomic identification of individual members, microbiological methods are useful only to screen for the presence of a few key predetermined species, whose preferred growth conditions and morphological characteristics are well defined and reproducible.Key words: microbial communities, microbial consortia, characterization methods, taxonomic identification.
Collapse
Affiliation(s)
- Dan Spiegelman
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC
| | | | | |
Collapse
|
39
|
Malhautier L, Khammar N, Bayle S, Fanlo JL. Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 2005; 68:16-22. [PMID: 15803311 DOI: 10.1007/s00253-005-1960-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/10/2005] [Accepted: 03/12/2005] [Indexed: 10/25/2022]
Abstract
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.
Collapse
Affiliation(s)
- Luc Malhautier
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, 6, avenue de Clavières, 30319, Ales cedex, France.
| | | | | | | |
Collapse
|
40
|
Fennell DE, Rhee SK, Ahn YB, Häggblom MM, Kerkhof LJ. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Appl Environ Microbiol 2004; 70:1169-75. [PMID: 14766602 PMCID: PMC348854 DOI: 10.1128/aem.70.2.1169-1175.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate.
Collapse
Affiliation(s)
- Donna E Fennell
- Department of Biochemistry and Microbiology and Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
41
|
Khammar N, Malhautier L, Degrange V, Lensi R, Fanlo JL. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds. CHEMOSPHERE 2004; 54:243-254. [PMID: 14575736 DOI: 10.1016/s0045-6535(03)00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To enumerate microorganisms having colonized biofilters treating volatile organic compounds, it is necessary firstly to evaluate dispersion methods. Crushing, shaking and sonication were then tested for the removal of microflora from biofilters packing materials (peat and activated carbon). Continuous or discontinuous procedures, and addition of glass beads had no effect on the number of microorganisms removed from peat particles. The duration of treatment also had no effect for shaking and crushing, but the number of microorganisms after 60 min of treatment with ultrasound was significantly higher than that obtained after 0.5 min. The comparison between these methods showed that crushing was the most efficient for the removal of microorganisms from both peat and activated carbon. The comparison between three chemical dispersion agents showed that 1% Na-pyrophosphate was less efficient, compared with 200 mM phosphate buffer or 1% Na-hexametaphosphate. To optimize the cultivation of microorganisms, three different agar media were compared. Tryptic soy agar tenfold diluted (TSA 1/10) was the most suitable medium for the culture of microflora from a peat biofilter. For the activated carbon biofilter, there was no significant difference between Luria Bertoni, TSA 1/10, and plate count agar. The optimized extraction and enumeration protocols were used to perform a quantitative characterization of microbial populations in an operating laboratory activated carbon biofilter and in two parallel peat biofilters.
Collapse
Affiliation(s)
- Nadia Khammar
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Avenue de Clavieres 6, 30319 Ales Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Humayoun SB, Bano N, Hollibaugh JT. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 2003; 69:1030-42. [PMID: 12571026 PMCID: PMC143613 DOI: 10.1128/aem.69.2.1030-1042.2003] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the variation with depth in the composition of members of the domain Bacteria in samples from alkaline, hypersaline, and currently meromictic Mono Lake in California. DNA samples were collected from the mixolimnion (2 m), the base of the oxycline (17.5 m), the upper chemocline (23 m), and the monimolimnion (35 m). Composition was assessed by sequencing randomly selected cloned fragments of 16S rRNA genes retrieved from the DNA samples. Most of the 212 sequences retrieved from the samples fell into five major lineages of the domain Bacteria: alpha- and gamma-Proteobacteria (6 and 10%, respectively), Cytophaga-Flexibacter-Bacteroides (19%), high-G+C-content gram-positive organisms (Actinobacteria; 25%), and low-G+C-content gram-positive organisms (Bacillus and Clostridium; 19%). Twelve percent were identified as chloroplasts. The remaining 9% represented beta- and delta-Proteobacteria, Verrucomicrobiales, and candidate divisions. Mixolimnion and oxycline samples had low microbial diversity, with only 9 and 12 distinct phylotypes, respectively, whereas chemocline and monimolimnion samples were more diverse, containing 27 and 25 phylotypes, respectively. The compositions of microbial assemblages from the mixolimnion and oxycline were not significantly different from each other (P = 0.314 and 0.877), but they were significantly different from those of chemocline and monimolimnion assemblages (P < 0.001), and the compositions of chemocline and monimolimnion assemblages were not significantly different from each other (P = 0.006 and 0.124). The populations of sequences retrieved from the mixolimnion and oxycline samples were dominated by sequences related to high-G+C-content gram-positive bacteria (49 and 63%, respectively) distributed in only three distinct phylotypes, while the population of sequences retrieved from the monimolimnion sample was dominated (52%) by sequences related to low-G+C-content gram-positive bacteria distributed in 12 distinct phylotypes. Twelve and 28% of the sequences retrieved from the chemocline sample were also found in the mixolimnion and monimolimnion samples, respectively. None of the sequences retrieved from the monimolimnion sample were found in the mixolimnion or oxycline samples. Elevated diversity in anoxic bottom water samples relative to oxic surface water samples suggests a greater opportunity for niche differentiation in bottom versus surface waters of this lake.
Collapse
Affiliation(s)
- Shaheen B Humayoun
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602-3636, USA
| | | | | |
Collapse
|
43
|
Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N, Girardin H, Guinebretière MH, Lebaron P, Thiéry JM, Troussellier M. Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 2002; 66:592-616, table of contents. [PMID: 12456784 PMCID: PMC134657 DOI: 10.1128/mmbr.66.4.592-616.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.
Collapse
Affiliation(s)
- Cindy E Morris
- Station de Pathologie Végétale, Station de Technologie de Produits Végétaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Friedrich U, Prior K, Altendorf K, Lipski A. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 2002; 4:721-34. [PMID: 12460280 DOI: 10.1046/j.1462-2920.2002.00349.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial diversity of an industrial biofilter used for waste gas abatement in an animal-rendering plant was investigated. A 16S rDNA clone library was generated and 444 clones were screened using computer-aided amplified ribosomal DNA restriction analysis (ARDRA). Of the screened clones, 60.8% showed unique ARDRA patterns and the remaining 174 clones were clustered into 65 groups. Almost full-length 16S rDNA sequences of 106 clones were determined and 90.5% of the clones were affiliated with the two phyla Proteobacteria and Bacteroidetes. Alpha-, Beta-, and Gammaproteobacteria accounted for 22.1, 17.6 and 18.6% respectively. Minor portions were affiliated with the Actinobacteria (2.0%), Firmicutes and Verrucomicrobia (both 1.0%), and the Deltaproteobacteria and Thermomicrobia (each 0.5%). Only six out of the 106 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species indicating that a substantial fraction of the clone sequences were derived from unknown taxa. It was also evaluated whether a database containing 281 computer-simulated bacterial rDNA fragment patterns generated from published reference sequences can be used for identification purposes. The data analysis demonstrated that this was possible only for a small number of clones, which were closely related to described bacterial strains. Rarefaction analysis of ARDRA clusters demonstrated that the 444 clones screened are insufficient to describe the entire diversity of the clone library.
Collapse
Affiliation(s)
- Udo Friedrich
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
45
|
Sakano Y, Pickering KD, Strom PF, Kerkhof LJ. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl Environ Microbiol 2002; 68:2285-93. [PMID: 11976099 PMCID: PMC127532 DOI: 10.1128/aem.68.5.2285-2293.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.
Collapse
Affiliation(s)
- Yuko Sakano
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901-8521, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The eutrophication of many ecosystems in recent decades has led to an increased interest in the ecology of nitrogen transformation. Chemolitho-autotrophic ammonia-oxidizing bacteria are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important in the global cycling of nitrogen. These organisms are unique in their ability to use the conversion of ammonia to nitrite as their sole energy source. Because of the importance of this functional group of bacteria, understanding of their ecology and physiology has become a subject of intense research over recent years. The monophyletic nature of these bacteria in terrestrial environments has facilitated molecular biological approaches in studying their ecology, and progress in this field has been rapid. The ammonia-oxidizing bacteria of the beta-subclass Proteobacteria have become somewhat of a model system within molecular microbial ecology, and this chapter reviews recent progress in our knowledge of their distribution, diversity, and ecology.
Collapse
Affiliation(s)
- G A Kowalchuk
- Netherlands Institute of Ecology, Centre for Terrestrial Ecology, Boterhoeksestraat 48, P.O. Box 40, Heteren, 6666 ZG, The Netherlands.
| | | |
Collapse
|
47
|
Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 2002; 68:245-53. [PMID: 11772633 PMCID: PMC126567 DOI: 10.1128/aem.68.1.245-253.2002] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.
Collapse
Affiliation(s)
- Hebe M Dionisi
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
48
|
Leaphart AB, Lovell CR. Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 2001; 67:1392-5. [PMID: 11229939 PMCID: PMC92742 DOI: 10.1128/aem.67.3.1392-1395.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Primers for PCR amplification of partial (1,102 of 1,680 bp) formyltetrahydrofolate synthetase (FTHFS) gene sequences were developed and tested. Partial FTHFS sequences were successfully amplified from DNA from pure cultures of known acetogens, from other FTHFS-producing organisms, from the roots of the smooth cordgrass, Spartina alterniflora, and from fresh horse manure. The amplimers recovered were cloned, their nucleotide sequences were determined, and their translated amino acid sequences were used to construct phylogenetic trees. We found that FTHFS sequences from homoacetogens formed a monophyletic cluster that did not contain sequences from nonhomoacetogens and that FTHFS sequences appear to be informative regarding major physiological features of FTHFS-producing organisms.
Collapse
Affiliation(s)
- A B Leaphart
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
49
|
Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 2000; 66:5368-82. [PMID: 11097916 PMCID: PMC92470 DOI: 10.1128/aem.66.12.5368-5382.2000] [Citation(s) in RCA: 601] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 10/04/2000] [Indexed: 11/20/2022] Open
Abstract
The current perception of evolutionary relationships and the natural diversity of ammonia-oxidizing bacteria (AOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA). However, only partial 16S rRNA sequences are available for many AOB species and most AOB have not yet been analyzed on the amoA level. In this study, the 16S rDNA sequence data of 10 Nitrosomonas species and Nitrosococcus mobilis were completed. Furthermore, previously unavailable 16S rRNA sequences were determined for three Nitrosomonas sp. isolates and for the gamma-subclass proteobacterium Nitrosococcus halophilus. These data were used to revaluate the specificities of published oligonucleotide primers and probes for AOB. In addition, partial amoA sequences of 17 AOB, including the above-mentioned 15 AOB, were obtained. Comparative phylogenetic analyses suggested similar but not identical evolutionary relationships of AOB by using 16S rRNA and AmoA as marker molecules, respectively. The presented 16S rRNA and amoA and AmoA sequence data from all recognized AOB species significantly extend the currently used molecular classification schemes for AOB and now provide a more robust phylogenetic framework for molecular diversity inventories of AOB. For 16S rRNA-independent evaluation of AOB species-level diversity in environmental samples, amoA and AmoA sequence similarity threshold values were determined which can be used to tentatively identify novel species based on cloned amoA sequences. Subsequently, 122 amoA sequences were obtained from 11 nitrifying wastewater treatment plants. Phylogenetic analyses of the molecular isolates showed that in all but two plants only nitrosomonads could be detected. Although several of the obtained amoA sequences were only relatively distantly related to known AOB, none of these sequences unequivocally suggested the existence of previously unrecognized species in the wastewater treatment environments examined.
Collapse
Affiliation(s)
- U Purkhold
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 2000. [PMID: 11097916 DOI: 10.1128/aem.66.12.5368‐5382.2000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current perception of evolutionary relationships and the natural diversity of ammonia-oxidizing bacteria (AOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA). However, only partial 16S rRNA sequences are available for many AOB species and most AOB have not yet been analyzed on the amoA level. In this study, the 16S rDNA sequence data of 10 Nitrosomonas species and Nitrosococcus mobilis were completed. Furthermore, previously unavailable 16S rRNA sequences were determined for three Nitrosomonas sp. isolates and for the gamma-subclass proteobacterium Nitrosococcus halophilus. These data were used to revaluate the specificities of published oligonucleotide primers and probes for AOB. In addition, partial amoA sequences of 17 AOB, including the above-mentioned 15 AOB, were obtained. Comparative phylogenetic analyses suggested similar but not identical evolutionary relationships of AOB by using 16S rRNA and AmoA as marker molecules, respectively. The presented 16S rRNA and amoA and AmoA sequence data from all recognized AOB species significantly extend the currently used molecular classification schemes for AOB and now provide a more robust phylogenetic framework for molecular diversity inventories of AOB. For 16S rRNA-independent evaluation of AOB species-level diversity in environmental samples, amoA and AmoA sequence similarity threshold values were determined which can be used to tentatively identify novel species based on cloned amoA sequences. Subsequently, 122 amoA sequences were obtained from 11 nitrifying wastewater treatment plants. Phylogenetic analyses of the molecular isolates showed that in all but two plants only nitrosomonads could be detected. Although several of the obtained amoA sequences were only relatively distantly related to known AOB, none of these sequences unequivocally suggested the existence of previously unrecognized species in the wastewater treatment environments examined.
Collapse
|