1
|
Passey JL, La Ragione RM. JMM Profile: Brachyspira species: the causative agent of Avian Intestinal Spirochaetosis. J Med Microbiol 2022; 71. [PMID: 36155133 DOI: 10.1099/jmm.0.001495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Brachyspira includes nine officially recognised species, several of which are pathogenic to mammals and birds. B. pilosicoli, B. intermedia, and B. alvinipulli are the causative agents of avian intestinal spirochaetosis (AIS), a gastrointestinal disease in poultry caused by the colonisation of the caeca and/ or colo-rectum by Brachyspira. AIS primarily affects layer hens and broiler breeders over the age of 15 weeks. The severity of symptoms can vary but typically presents as reduced growth rates, delayed onset of lay, reduced egg production, faecally stained eggs, and diarrhoea. This disease is estimated to cost the UK laying industry £18 million per annum. Brachyspira colonisation in humans is common in populations from developing countries and HIV-positive patients; however, it is rarely investigated as a human pathogen.
Collapse
Affiliation(s)
- Jade L Passey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, Surrey GU2 7AL, UK
| | | |
Collapse
|
2
|
Joerling J, Willems H, Ewers C, Herbst W. Differential expression of hemolysin genes in weakly and strongly hemolytic Brachyspira hyodysenteriae strains. BMC Vet Res 2020; 16:169. [PMID: 32471432 PMCID: PMC7260840 DOI: 10.1186/s12917-020-02385-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Swine dysentery (SD) is a diarrheal disease in fattening pigs that is caused by the strongly hemolytic species Brachyspira (B.) hyodysenteriae, B. hampsonii and B. suanatina. As weakly hemolytic Brachyspira spp. are considered less virulent or even non-pathogenic, the hemolysin is regarded as an important factor in the pathogenesis of SD. Four hemolysin genes (tlyA, tlyB, tlyC, and hlyA) and four putative hemolysin genes (hemolysin, hemolysin activation protein, hemolysin III, and hemolysin channel protein) have been reported, but their role in strong hemolysis is not entirely clear. Our study aimed to assess the transcriptional activity of eight (putative) hemolysin genes in a strongly hemolytic (B204) and a weakly hemolytic (G423) B. hyodysenteriae strain during non-hemolytic and hemolytic growth stages. Results Strongly and weakly hemolytic B. hyodysenteriae strains caused hemolysis on blood agar at different growth stages, namely during log phase (B204) and stationary/death phase (G423). During the lag, early log, late log (stationary phase in G423) and death phase (time points 1–4) strains differed in their hemolysin gene transcription patterns. At time point 1, transcription of the putative hemolysin gene was higher in B204 than in G423. At time point 2, tlyA and tlyC were upregulated in B204 during hemolysis. TlyB and hlyA were upregulated in both strains at all time points, but higher transcription rates were observed in the weakly hemolytic strain G423. The transcription activity of the hemolysin channel protein gene was quite similar in both strains, whereas the hemolysin activation protein gene was upregulated in the non-hemolytic stage of B204 at time point 4. Sequence analysis revealed deletions, insertions and single nucleotide polymorphisms in the G423 hlyA promoter, although without altering the transcription activity of this gene. Conclusion Our data indicate a combined activity of TlyA and TlyC as the most probable underlying mechanism of strong hemolysis in B. hyodysenteriae. Further studies should verify if the expression of tlyA is upregulated by the putative hemolysin gene. Depending on their immunogenic potential TlyA and TlyC may serve as possible vaccine candidates, especially since vaccines for an effective control of swine dysentery are currently not available.
Collapse
Affiliation(s)
- Jessica Joerling
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 85-89, 35392, Giessen, Germany
| | - Hermann Willems
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Str. 112, 35392, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 85-89, 35392, Giessen, Germany
| |
Collapse
|
3
|
Card RM, La T, Burrough ER, Ellis RJ, Nunez-Garcia J, Thomson JR, Mahu M, Phillips ND, Hampson DJ, Rohde J, Tucker AW. Weakly haemolytic variants of Brachyspira hyodysenteriae newly emerged in Europe belong to a distinct subclade with unique genetic properties. Vet Res 2019; 50:21. [PMID: 30845993 PMCID: PMC6407217 DOI: 10.1186/s13567-019-0639-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Brachyspira (B.) hyodysenteriae is widespread globally, and can cause mucohaemorrhagic colitis (swine dysentery, SD) with severe economic impact in infected herds. Typical strains of B. hyodysenteriae are strongly haemolytic on blood agar, and the haemolytic activity is believed to contribute to virulence in vivo. However, recently there have been reports of atypical weakly haemolytic isolates of B. hyodysenteriae (whBh). In this study, 34 European whBh and 82 strongly haemolytic isolates were subjected to comparative genomic analysis. A phylogenetic tree constructed using core single nucleotide polymorphisms showed that the whBh formed a distinct sub-clade. All eight genes previously associated with haemolysis in B. hyodysenteriae were present in the whBh. No consistent patterns of amino acid substitutions for all whBh were found in these genes. In contrast, a genome region containing six coding sequences (CDSs) had consistent nucleotide sequence differences between strongly and whBh isolates. Two CDSs were predicted to encode ABC transporter proteins, and a TolC family protein, which may have a role in the export of haemolysins from B. hyodysenteriae. Another difference in this region was the presence of three CDSs in whBh that are pseudogenes in strongly haemolytic isolates. One of the intact CDSs from whBh encoded a predicted PadR-like transcriptional repressor that may play a role in repression of haemolysis functions. In summary, a sub-clade of whBh isolates has emerged in Europe, and several genomic differences, that potentially explain the weakly haemolytic phenotype, were identified. These markers may provide targets for discriminatory molecular tests needed in SD surveillance.
Collapse
Affiliation(s)
- Roderick M. Card
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Eric R. Burrough
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, USA
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, Addlestone, UK
| | - Javier Nunez-Garcia
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, Addlestone, UK
- Present Address: Genomics Medicine Ireland, Dublin, Ireland
| | | | - Maxime Mahu
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Nyree D. Phillips
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - David J. Hampson
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Judith Rohde
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
4
|
Joerling J, Barth SA, Schlez K, Willems H, Herbst W, Ewers C. Phylogenetic diversity, antimicrobial susceptibility and virulence gene profiles of Brachyspira hyodysenteriae isolates from pigs in Germany. PLoS One 2018; 13:e0190928. [PMID: 29324785 PMCID: PMC5764319 DOI: 10.1371/journal.pone.0190928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/24/2017] [Indexed: 11/19/2022] Open
Abstract
Swine dysentery (SD) is an economically important diarrheal disease in pigs caused by different strongly hemolytic Brachyspira (B.) species, such as B. hyodysenteriae, B. suanatina and B. hampsonii. Possible associations of epidemiologic data, such as multilocus sequence types (STs) to virulence gene profiles and antimicrobial susceptibility are rather scarce, particularly for B. hyodysenteriae isolates from Germany. In this study, B. hyodysenteriae (n = 116) isolated from diarrheic pigs between 1990 and 2016 in Germany were investigated for their STs, susceptibility to the major drugs used for treatment of SD (tiamulin and valnemulin) and genes that were previously linked with virulence and encode for hemolysins (tlyA, tlyB, tlyC, hlyA, BHWA1_RS02885, BHWA1_RS09085, BHWA1_RS04705, and BHWA1_RS02195), outer membrane proteins (OMPs) (bhlp16, bhlp17.6, bhlp29.7, bhmp39f, and bhmp39h) as well as iron acquisition factors (ftnA and bitC). Multilocus sequence typing (MLST) revealed that 79.4% of the isolates belonged to only three STs, namely ST52 (41.4%), ST8 (12.1%), and ST112 (25.9%) which have been observed in other European countries before. Another 24 isolates belonged to twelve new STs (ST113-118, ST120-123, ST131, and ST193). The temporal distribution of STs revealed the presence of new STs as well as the regular presence of ST52 over three decades (1990s-2000s). The proportion of strains that showed resistance to both tiamulin und valnemulin (39.1%) varied considerably among the most frequent STs ranging from 0% (0/14 isolates resistant) in ST8 isolates to 46.7% (14/30), 52.1% (25/48), and 85.7% (6/7) in isolates belonging to ST112, ST52, and ST114, respectively. All hemolysin genes as well as the iron-related gene ftnA and the OMP gene bhlp29.7 were regularly present in the isolates, while the OMP genes bhlp17.6 and bhmp39h could not be detected. Sequence analysis of hemolysin genes of selected isolates revealed co-evolution of tlyB, BHWA1_RS02885, BHWA1_RS09085, and BHWA1_RS02195 with the core genome and suggested independent evolution of tlyA, tlyC, and hlyA. Our data indicate that in Germany, swine dysentery might be caused by a limited number of B. hyodysenteriae clonal groups. Major STs (ST8, ST52, and ST112) are shared with other countries in Europe suggesting a possible role of the European intra-Community trade of pigs in the dissemination of certain clones. The identification of several novel STs, some of which are single or double locus variants of ST52, may on the other hand hint towards an ongoing diversification of the pathogen in the studied area. The linkage of pleuromutilin susceptibility and sequence type of an isolate might reflect a clonal expansion of the underlying resistance mechanism, namely mutations in the ribosomal RNA genes. A linkage between single virulence-associated genes (VAGs) or even VAG patterns and the phylogenetic background of the isolates could not be established, since almost all VAGs were regularly present in the isolates.
Collapse
Affiliation(s)
- Jessica Joerling
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Stefanie A. Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
- Friedrich-Loeffler-Institut/ Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Karen Schlez
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann Willems
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Casas V, Vadillo S, San Juan C, Carrascal M, Abian J. The Exposed Proteomes of Brachyspira hyodysenteriae and B. pilosicoli. Front Microbiol 2016; 7:1103. [PMID: 27493641 PMCID: PMC4955376 DOI: 10.3389/fmicb.2016.01103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Brachyspira hyodysenteriae and Brachyspira pilosicoli are well-known intestinal pathogens in pigs. B. hyodysenteriae is the causative agent of swine dysentery, a disease with an important impact on pig production while B. pilosicoli is responsible of a milder diarrheal disease in these animals, porcine intestinal spirochetosis. Recent sequencing projects have provided information for the genome of these species facilitating the search of vaccine candidates using reverse vaccinology approaches. However, practically no experimental evidence exists of the actual gene products being expressed and of those proteins exposed on the cell surface or released to the cell media. Using a cell-shaving strategy and a shotgun proteomic approach we carried out a large-scale characterization of the exposed proteins on the bacterial surface in these species as well as of peptides and proteins in the extracellular medium. The study included three strains of B. hyodysenteriae and two strains of B. pilosicoli and involved 148 LC-MS/MS runs on a high resolution Orbitrap instrument. Overall, we provided evidence for more than 29,000 different peptides pointing to 1625 and 1338 different proteins in B. hyodysenteriae and B. pilosicoli, respectively. Many of the most abundant proteins detected corresponded to described virulence factors and vaccine candidates. The level of expression of these proteins, however, was different among species and strains, stressing the value of determining actual gene product levels as a complement of genomic-based approaches for vaccine design.
Collapse
Affiliation(s)
- Vanessa Casas
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Carlos San Juan
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Montserrat Carrascal
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Joaquin Abian
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
7
|
Abstract
Swine dysentery is a severe enteric disease in pigs, which is characterized by bloody to mucoid diarrhea and associated with reduced growth performance and variable mortality. This disease is most often observed in grower–finisher pigs, wherein susceptible pigs develop a significant mucohemorrhagic typhlocolitis following infection with strongly hemolytic spirochetes of the genus Brachyspira. While swine dysentery is endemic in many parts of the world, the disease had essentially disappeared in much of the United States by the mid-1990s as a result of industry consolidation and effective treatment, control, and elimination methods. However, since 2007, there has been a reported increase in laboratory diagnosis of swine dysentery in parts of North America along with the detection of novel pathogenic Brachyspira spp worldwide. Accordingly, there has been a renewed interest in swine dysentery and Brachyspira spp infections in pigs, particularly in areas where the disease was previously eliminated. This review provides an overview of knowledge on the etiology, pathogenesis, and diagnosis of swine dysentery, with insights into risk factors and control.
Collapse
Affiliation(s)
- E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A, Spröer C, Klenk HP, Fardeau ML, Spring S. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand Genomic Sci 2015. [PMID: 26203324 PMCID: PMC4511686 DOI: 10.1186/1944-3277-10-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
During a study of the anaerobic microbial community of a lithifying hypersaline microbial mat of Lake 21 on the Kiritimati atoll (Kiribati Republic, Central Pacific) strain L21-RPul-D2T was isolated. The closest phylogenetic neighbor was Spirochaeta africana Z-7692T that shared a 16S rRNA gene sequence identity value of 90% with the novel strain and thus was only distantly related. A comprehensive polyphasic study including determination of the complete genome sequence was initiated to characterize the novel isolate. Cells of strain L21-RPul-D2T had a size of 0.2 – 0.25 × 8–9 μm, were helical, motile, stained Gram-negative and produced an orange carotenoid-like pigment. Optimal conditions for growth were 35°C, a salinity of 50 g/l NaCl and a pH around 7.0. Preferred substrates for growth were carbohydrates and a few carboxylic acids. The novel strain had an obligate fermentative metabolism and produced ethanol, acetate, lactate, hydrogen and carbon dioxide during growth on glucose. Strain L21-RPul-D2T was aerotolerant, but oxygen did not stimulate growth. Major cellular fatty acids were C14:0, iso-C15:0, C16:0 and C18:0. The major polar lipids were an unidentified aminolipid, phosphatidylglycerol, an unidentified phospholipid and two unidentified glycolipids. Whole-cell hydrolysates contained L-ornithine as diagnostic diamino acid of the cell wall peptidoglycan. The complete genome sequence was determined and annotated. The genome comprised one circular chromosome with a size of 3.78 Mbp that contained 3450 protein-coding genes and 50 RNA genes, including 2 operons of ribosomal RNA genes. The DNA G + C content was determined from the genome sequence as 51.9 mol%. There were no predicted genes encoding cytochromes or enzymes responsible for the biosynthesis of respiratory lipoquinones. Based on significant differences to the uncultured type species of the genus Spirochaeta, S. plicatilis, as well as to any other phylogenetically related cultured species it is suggested to place strain L21-RPul-D2T (=DSM 27196T = JCM 18663T) in a novel species and genus, for which the name Salinispira pacifica gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Wajdi Ben Hania
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Manon Joseph
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne Fiebig
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany ; Current address: Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany ; Current address: School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Marie-Laure Fardeau
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Stefan Spring
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
9
|
Looft T, Allen HK, Casey TA, Alt DP, Stanton TB. Carbadox has both temporary and lasting effects on the swine gut microbiota. Front Microbiol 2014; 5:276. [PMID: 24959163 PMCID: PMC4050737 DOI: 10.3389/fmicb.2014.00276] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022] Open
Abstract
Antibiotics are used in livestock and poultry production to treat and prevent disease as well as to promote animal growth. Carbadox is an in-feed antibiotic that is widely used in swine production to prevent dysentery and to improve feed efficiency. The goal of this study was to characterize the effects of carbadox and its withdrawal on the swine gut microbiota. Six pigs (initially 3-weeks old) received feed containing carbadox and six received unamended feed. After 3-weeks of continuous carbadox administration, all pigs were switched to a maintenance diet without carbadox. DNA was extracted from feces (n = 142) taken before, during, and following (6-week withdrawal) carbadox treatment. Phylotype analysis using 16S rRNA sequences showed the gradual development of the non-medicated swine gut microbiota over the 8-week study, and that the carbadox-treated pigs had significant differences in bacterial membership relative to non-medicated pigs. Enumeration of fecal Escherichia coli showed that a diet change concurrent with carbadox withdrawal was associated with an increase in the E. coli in the non-medicated pigs, suggesting that carbadox pre-treatment prevented an increase of E. coli populations. In-feed carbadox caused striking effects within 4 days of administration, with significant alterations in both community structure and bacterial membership, notably a large relative increase in Prevotella populations in medicated pigs. Digital PCR was used to show that the absolute abundance of Prevotella was unchanged between the medicated and non-medicated pigs despite the relative increase shown in the phylotype analysis. Carbadox therefore caused a decrease in the abundance of other gut bacteria but did not affect the absolute abundance of Prevotella. The pending regulation on antibiotics used in animal production underscores the importance of understanding how they modulate the microbiota and impact animal health, which will inform the search for antibiotic alternatives.
Collapse
Affiliation(s)
- Torey Looft
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Heather K Allen
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Thomas A Casey
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - David P Alt
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| | - Thaddeus B Stanton
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service Ames, IA, USA
| |
Collapse
|
10
|
Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 2014; 35:2365-73. [DOI: 10.1016/j.biomaterials.2013.11.073] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/23/2013] [Indexed: 01/17/2023]
|
11
|
Mappley LJ, La Ragione RM, Woodward MJ. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 2013; 168:245-60. [PMID: 24355534 DOI: 10.1016/j.vetmic.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £ 18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK.
| | - Roberto M La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
| |
Collapse
|
12
|
Adherence of Brachyspira hyodysenteriae to Porcine Intestinal Epithelial Cells is Inhibited by Antibodies Against Outer Membrane Proteins. Curr Microbiol 2012. [DOI: 10.1007/s00284-012-0267-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Eggers CH, Caimano MJ, Malizia RA, Kariu T, Cusack B, Desrosiers DC, Hazlett KRO, Claiborne A, Pal U, Radolf JD. The coenzyme A disulphide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host. Mol Microbiol 2011; 82:679-97. [PMID: 21923763 DOI: 10.1111/j.1365-2958.2011.07845.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually transcribed by the sigma factors σ(70) and RpoS. The cdr gene encodes a coenzyme A disulphide reductase (CoADR) that reduces CoA-disulphides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochaete's response to reactive oxygen species. To better understand the physiologic function(s) of BbCoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5'-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t-butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO(2)) and anaerobic (< 1% O(2) , 9-13% CO(2)) cultivation at 37°C revealed a growth defect under both conditions that was particularly striking during anaerobiosis. The mutant was avirulent by needle inoculation and showed decreased survival in feeding nymphs, but displayed no survival defect in unfed flat nymphs. Based on these results, we propose that BbCoADR is necessary to maintain optimal redox ratios for CoA/CoA-disulphide and NAD(+) /NADH during periods of rapid replication throughout the enzootic cycle, to support thiol-disulphide homeostasis, and to indirectly protect the spirochaete against peroxide-mediated membrane damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi.
Collapse
Affiliation(s)
- Christian H Eggers
- Department of Biomedical Sciences, Quinnipiac University, Hamden, CT 06518, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Demonstration of genes encoding virulence and virulence life-style factors in Brachyspira spp. isolates from pigs. Vet Microbiol 2011; 155:438-43. [PMID: 22047713 DOI: 10.1016/j.vetmic.2011.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022]
Abstract
The distribution of many genes encoding virulence and virulence life-style (VL-S) factors in Brachyspira (B.) hyodysenteriae and other Brachyspira species are largely unknown. Their knowledge is essential e.g. for the improvement of diagnostic methods targeting the detection and differentiation of the species. Thus 121 German Brachyspira field isolates from diarrhoeic pigs were characterized down to the species level by restriction fragment length polymorphism analysis of the nox gene and subsequently subjected to polymerase chain reaction detecting VL-S genes for inner (clpX) and outer membrane proteins (OMPs: bhlp16, bhlp17.6, bhlp29.7, bhmp39f, bhmp39h), hemolysins (hlyA/ACP, tlyA), iron metabolism (ftnA, bitC), and aerotolerance (nox). For comparison, B. hyodysenteriae reference strains from the USA (n=7) and Australia (2) were used. Of all genes tested only nox was detected in all isolates. The simultaneous presence of both the tlyA and hlyA/ACP was restricted to the species B. hyodysenteriae. The hlyA infrequently occurred also in weakly hemolytic Brachyspira. Similarly to tlyA and hlyA all B. hyodysenteriae strains contained the ferritin gene ftnA which was also found in two Brachyspira intermedia isolates. OMP encoding genes were present in B. hyodysenteriae field isolates in rates of 0% (bhlp17.6, bhmp39h), 58.1% (bhlp29.7), and 97.3% (bhmp39f). Since the study revealed a high genetic heterogeneity among German B. hyodysenteriae field isolates differentiating them from USA as well as Australian strains, targets for diagnostic PCR were limited to the nox gene (genus specific PCR) as well as to the species specific nox(hyo) gene and the combination of hlyA and tlyA which allow to specifically detect B. hyodysenteriae.
Collapse
|
15
|
Abstract
The expression of flagellin genes in most bacteria is typically regulated by the flagellum-specific sigma(28) factor FliA, and an anti-sigma(28) factor, FlgM. However, the regulatory hierarchy in several bacteria that have multiple flagellins is more complex. In these bacteria, the flagellin genes are often transcribed by at least two different sigma factors. The flagellar filament in spirochetes consists of one to three FlaB core proteins and at least one FlaA sheath protein. Here, the genetically amenable bacterium Brachyspira hyodysenteriae was used as a model spirochete to investigate the regulation of its four flagellin genes, flaA, flaB1, flaB2, and flaB3. We found that the flaB1 and flaB2 genes are regulated by sigma(28), whereas the flaA and flaB3 genes are controlled by sigma(70). The analysis of a flagellar motor switch fliG mutant further supported this proposition; in the mutant, the transcription of flaB1 and flaB2 was inhibited, but that of flaA and flaB3 was not. In addition, the continued expression of flaA and flaB3 in the mutant resulted in the formation of incomplete flagellar filaments that were hollow tubes and consisted primarily of FlaA. Finally, our recent studies have shown that each flagellin unit contributes to the stiffness of the periplasmic flagella, and this stiffness directly correlates with motility. The regulatory mechanism identified here should allow spirochetes to change the relative ratio of these flagellin proteins and, concomitantly, vary the stiffness of their flagellar filament.
Collapse
|
16
|
Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ. Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS One 2009; 4:e4641. [PMID: 19262690 PMCID: PMC2650404 DOI: 10.1371/journal.pone.0004641] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/30/2022] Open
Abstract
Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.
Collapse
Affiliation(s)
- Matthew I. Bellgard
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Phatthanaphong Wanchanthuek
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
- Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
| | - Tom La
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Karon Ryan
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Zayed Albertyn
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Babak Shaban
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Yair Motro
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - David S. Dunn
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - David Schibeci
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree D. Phillips
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| | - David J. Hampson
- Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
17
|
Fellström C, Råsbäck T, Johansson KE, Olofsson T, Aspán A. Identification and genetic fingerprinting of Brachyspira species. J Microbiol Methods 2008; 72:133-40. [DOI: 10.1016/j.mimet.2007.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 11/07/2007] [Accepted: 11/13/2007] [Indexed: 11/25/2022]
|
18
|
Stanton TB. Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 2007; 13:43-9. [PMID: 17513139 DOI: 10.1016/j.anaerobe.2007.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/04/2007] [Indexed: 11/29/2022]
Abstract
Gene transfer agents (GTAs) are novel mechanisms for bacterial gene transfer. They resemble small, tailed bacteriophages in ultrastructure and act like generalized transducing prophages. In contrast to functional prophages, GTAs package random fragments of bacterial genomes and incomplete copies of their own genomes. The packaged DNA content is characteristic of the GTA and ranges in size from 4.4 to 13.6kb. GTAs have been reported in species of Brachyspira, Methanococcus, Desulfovibrio, and Rhodobacter. The best studied GTAs are VSH-1 of the anaerobic, pathogenic spirochete Brachyspira hyodysenteriae and RcGTA of the nonsulfur, purple, photosynthetic bacterium Rhodobacter capsulatus. VSH-1 and RcGTA have likely contributed to the ecology and evolution of these bacteria. The existence of GTAs in phylogenetically diverse bacteria suggests GTAs may be more common in nature than is now appreciated.
Collapse
Affiliation(s)
- Thad B Stanton
- Enteric Diseases and Food Safety Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 2300 Dayton Road, Ames, IA 50010, USA.
| |
Collapse
|
19
|
Boylan JA, Hummel CS, Benoit S, Garcia-Lara J, Treglown-Downey J, Crane EJ, Gherardini FC. Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress response. Mol Microbiol 2006; 59:475-86. [PMID: 16390443 DOI: 10.1111/j.1365-2958.2005.04963.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cellular responses of Borrelia burgdorferiTo reactive oxygen species (ROS) encountered during the different stages of its infective cycle are poorly understood. Few enzymes responsible for protecting proteins, DNA/RNA and lipids from damage by ROS have been identified and characterized. Data presented here suggest that bb0728 encodes an enzyme involved in this process. Biochemical analyses on purified recombinant BB0728 indicated that it functioned as a coenzyme A disulphide reductase (CoADR) (specific activity approximately 26 units per mg of protein). This enzyme was specific for coenzyme A (CoA) disulphide, required NADH and had no significant activity against other disulphides, such as oxidized glutathione or thioredoxin. The high intracellular concentration of reduced CoA (CoASH) in B. burgdorferi cells ( approximately 1 mM) and absence of glutathione suggest that CoA is the major low-molecular-weight thiol in this spirochete. Interestingly, CoASH was able to reduce H(2)O(2) and be regenerated by CoADR suggesting one role for the system may be to protect B. burgdorferi from ROS. Further, mobility-shift assays and transcriptional fusion data indicated that bb0728 was positively regulated by the Borrelia oxidative stress response regulator, BosR. Taken together, these data suggest a role for BB0728 in intracellular redox and the oxidative stress response in B. burgdorferi.
Collapse
Affiliation(s)
- Julie A Boylan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Colonic spirochetosis is a disease caused by the gram-negative bacteria Brachyspira aalborgi and Brachyspira pilosicoli. B. pilosicoli induces disease in both humans and animals, whereas B. aalborgi affects only humans and higher primates. Symptoms in humans include diarrhea, rectal bleeding, and abdominal cramps. Colonic spirochetosis is common in third world countries; however, in developed countries, the disease is observed mainly in homosexual males. Terminally ill patients infected with Brachyspira are particularly at risk for developing spirochetemia. Diarrhea, poor growth performance, and decreased feed-to-gain efficiency is seen in pigs with colonic spirochetosis. The disease in chickens is characterized by delayed and/or reduced egg production, diarrhea, poor feed conversion, and retarded growth. Thus, colonic spirochetosis can represent a serious economic loss in the swine and poultry industries. The organisms are transmitted by the fecal-oral route, and several studies have demonstrated that human, primate, pig, dog, or bird strains of B. pilosicoli can be transmitted to pigs, chickens, and mice. B. pilosicoli may be a zoonotic pathogen, and although it has not been demonstrated, there is a possibility that both B. pilosicoli and B. aalborgi can be transferred to humans via contact with the feces of infected animals, meat from infected animals, or food contaminated by food handlers. Neither B. pilosicoli nor B. aalborgi has been well characterized in terms of basic cellular functions, pathogenicity, or genetics. Studies are needed to more thoroughly understand these Brachyspira species and their disease mechanisms.
Collapse
Affiliation(s)
- James L Smith
- Microbial Food Safety Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
| |
Collapse
|
21
|
Liong MT, Shah NP. Optimization of cholesterol removal, growth and fermentation patterns of Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructo-oligosaccharide and inulin: a response surface methodology approach. J Appl Microbiol 2005; 98:1115-26. [PMID: 15836481 DOI: 10.1111/j.1365-2672.2005.02544.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To optimize cholesterol removal by Lactobacillus acidophilus ATCC 4962 in the presence of prebiotics, and study the growth and fermentation patterns of the prebiotics. METHODS AND RESULTS Lactobacillus acidophilus ATCC 4962 was screened in the presence of six prebiotics, namely sorbitol, mannitol, maltodextrin, hi-amylose maize, fructo-oligosaccharide (FOS) and inulin in order to determine the best combination for highest level of cholesterol removal. The first-order model showed that the combination of inoculum size, mannitol, FOS and inulin was best for removal of cholesterol. The second-order polynomial regression model estimated the optimum condition of the factors for cholesterol removal by L. acidophilus ATCC 4962 to be 2.64% w/v inoculum size, 4.13% w/v mannitol, 3.29% w/v FOS and 5.81% w/v inulin. Analyses of growth, mean doubling time and short-chain fatty acid (SCFA) production using quadratic models indicated that cholesterol removal and the production of SCFA were growth associated. CONCLUSIONS Optimum cholesterol removal was obtained from the fermentation of L. acidophilus ATCC 4962 in the presence of mannitol, FOS and inulin. Cholesterol removal and the production of SCFA appeared to be growth associated and highly influenced by the prebiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Response surface methodology proved reliable in developing the model, optimizing factors and analysing interaction effects. The results provide better understanding on the interactions between probiotic and prebiotics for the removal of cholesterol.
Collapse
Affiliation(s)
- M T Liong
- School of Molecular Sciences, Victoria University, Werribee Campus, Melbourne, Vic., Australia
| | | |
Collapse
|
22
|
Rosa PA, Tilly K, Stewart PE. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 2005; 3:129-43. [PMID: 15685224 DOI: 10.1038/nrmicro1086] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lyme disease is the most commonly reported vector-borne disease in North America and Europe, yet we know little about which components of the causative agent, Borrelia burgdorferi, are critical for infection or virulence. Molecular genetics has provided a powerful means by which to address these topics in other bacterial pathogens. Certain features of B. burgdorferi have hampered the development of an effective system of genetic analysis, but basic tools are now available and their application has begun to provide information about the identities and roles of key bacterial components in both the tick vector and the mammalian host. Increased genetic analysis of B. burgdorferi should advance our understanding of the infectious cycle and the pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Patricia A Rosa
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th Street, Hamilton, Montana 59840, USA.
| | | | | |
Collapse
|
23
|
Tokarz R, Anderton JM, Katona LI, Benach JL. Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 2004; 72:5419-32. [PMID: 15322040 PMCID: PMC517457 DOI: 10.1128/iai.72.9.5419-5432.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi undergoes differential gene expression during transmission from its tick vector to a vertebrate host. The addition of blood to a spirochete culture at 35 degrees C for 48 h had a dramatic effect on gene expression of this organism. Utilizing B. burgdorferi whole genome DNA arrays, we compared the transcriptomes of the spirochetes following a 2-day temperature shift with blood and without blood. Using combined data from three independent RNA isolations we demonstrated that the addition of blood led to a differential expression of 154 genes. Of these, 75 genes were upregulated, with 49 (65%) of them encoded on plasmids. Blood supplementation of cultures also resulted in the downregulation of 79 genes, where 56 (70%) were plasmid encoded. We verified our results by reverse transcriptase PCR of several genes in both flat and feeding ticks. In the 2-day experiment we observed the effect that exposure to increased temperature and blood combined had on B. burgdorferi gene expression at this crucial time when the spirochetes begin to move from the vector to a new vertebrate host. These changes, among others, coincide with the upregulation of the chemotaxis and sensing regulons, of the lp38-encoded ABC transporter, of proteases capable of remodeling the outer surface of the spirochetes, and of the recombination genes of cp32 as a transient or initial part of the stress response of the phage. These are all functions that could cause or facilitate the changes that spirochetes undergo following a blood meal in the tick.
Collapse
Affiliation(s)
- Rafal Tokarz
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, 248 Centers for Molecular Medicine, Stony Brook, NY 11794-5120, USA
| | | | | | | |
Collapse
|
24
|
Corona-Barrera E, Smith DGE, La T, Hampson DJ, Thomson JR. Immunomagnetic separation of the intestinal spirochaetes Brachyspira pilosicoli and Brachyspira hyodysenteriae from porcine faeces. J Med Microbiol 2004; 53:301-307. [PMID: 15017286 DOI: 10.1099/jmm.0.05500-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine intestinal spirochaetes are fastidious anaerobic organisms and, as a consequence, it has been necessary to develop various protocols to enhance their isolation from or detection in faeces. Immunomagnetic separation (IMS) is a method developed recently to improve separation of target cells from mixed cell suspensions. The purpose of the present study was to compare the relative sensitivity of IMS for isolation of Brachyspira pilosicoli and Brachyspira hyodysenteriae with current routine diagnostic methods (culture on selective media and PCR) for detection of these micro-organisms in pig faeces. Neither direct nor indirect IMS methods enhanced the sensitivity of detection of either organism when performed with the recommended washings during sample processing. Performance of the IMS procedure without washing gave sensitivity at levels similar to direct culture onto selective medium. Further development of IMS techniques is required to improve isolation rates of Brachyspira species from faecal samples.
Collapse
Affiliation(s)
- Enrique Corona-Barrera
- Zoonotic and Animal Pathogens, University of Edinburgh, Edinburgh, Scotland, UK 2School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia 3Scottish Agricultural College, Veterinary Science Division, Penicuik, Scotland, UK
| | - David G E Smith
- Zoonotic and Animal Pathogens, University of Edinburgh, Edinburgh, Scotland, UK 2School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia 3Scottish Agricultural College, Veterinary Science Division, Penicuik, Scotland, UK
| | - Tom La
- Zoonotic and Animal Pathogens, University of Edinburgh, Edinburgh, Scotland, UK 2School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia 3Scottish Agricultural College, Veterinary Science Division, Penicuik, Scotland, UK
| | - David J Hampson
- Zoonotic and Animal Pathogens, University of Edinburgh, Edinburgh, Scotland, UK 2School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia 3Scottish Agricultural College, Veterinary Science Division, Penicuik, Scotland, UK
| | - Jill R Thomson
- Zoonotic and Animal Pathogens, University of Edinburgh, Edinburgh, Scotland, UK 2School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia 3Scottish Agricultural College, Veterinary Science Division, Penicuik, Scotland, UK
| |
Collapse
|
25
|
Cullen PA, Coutts SAJ, Cordwell SJ, Bulach DM, Adler B. Characterization of a locus encoding four paralogous outer membrane lipoproteins of Brachyspira hyodysenteriae. Microbes Infect 2003; 5:275-83. [PMID: 12706440 DOI: 10.1016/s1286-4579(03)00027-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of Brachyspira hyodysenteriae outer membrane proteins (OMPs) that may stimulate immunity to swine dysentery is important for vaccine development. We report here the analysis of a novel locus, blpGFEA, encoding four tandem paralogous proteins of approximately 30 kDa from B. hyodysenteriae. The four proteins share 31-39% sequence identity with lipoproteins from several species of bacterial pathogens, but the locus possesses a unique genetic organization. Using antisera raised to recombinant versions of each of these proteins, only BlpA and BlpE were found to be immunologically cross-reactive with the other proteins encoded by the locus. Northern hybridization indicated that only blpA was expressed under in vitro growth conditions. In addition, convalescent swine serum recognized recombinant BlpA in immunoblotting experiments, demonstrating that it is also expressed during infection. Analysis of the translated sequences of each of the genes revealed atypical spirochetal signal peptidase II recognition sites, and BlpA was shown to be a lipoprotein by incorporation of tritiated palmitic acid. Native BlpA was completely extracted by Triton X-114 (TX-114) and partitioned exclusively into the detergent phase during extraction of whole B. hyodysenteriae cells, implicating it as a component of the brachyspiral outer membrane. Consistent with the transcriptional and immunological data, analysis of the brachyspiral outer membrane proteome also revealed expression of only BlpA. Notably, inactivation of blpA homologs in Haemophilus influenzae and Salmonella enteritidis resulted in attenuation of virulence.
Collapse
Affiliation(s)
- Paul A Cullen
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
26
|
Geueke B, Riebel B, Hummel W. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(02)00290-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Hazlett KRO, Cox DL, Sikkink RA, Auch'ere F, Rusnak F, Radolf JD. Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol 2002; 353:140-56. [PMID: 12078490 DOI: 10.1016/s0076-6879(02)53044-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
28
|
Rothkamp A, Strommenger B, Gerlach GF. Identification of Brachyspira hyodysenteriae-specific DNA fragments using representational difference analysis. FEMS Microbiol Lett 2002; 210:173-9. [PMID: 12044671 DOI: 10.1111/j.1574-6968.2002.tb11177.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two novel Brachyspira hyodysenteriae-specific DNA fragments, designated as Bh100 and Bh400, were identified using representational difference analysis. To isolate the fragments the combined DNA of the Brachyspira pilosicoli, Brachyspira intermedia, Brachyspira murdochii and Brachyspira innocens reference strains was subtracted from the genome of B. hyodysenteriae strain B204. Both fragments were present in a single copy and mapped to different positions on the genome of B. hyodysenteriae B78(T). Larger fragments encompassing the continuous open reading frames (ORF) of Bh100 and Bh400 were cloned and analysed. Whereas the ORF of 2130 bp encompassing Bh100 did not show homology to any known bacterial protein, Bh400 was part of a putative operon with significant homology to the phosphotransferase system of Bacillus subtilis.
Collapse
Affiliation(s)
- Anja Rothkamp
- Institut für Mikrobiologie und Tierseuchen, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | | | |
Collapse
|
29
|
Phan TN, Nguyen PTM, Abranches J, Marquis RE. Fluoride and organic weak acids as respiration inhibitors for oral streptococci in acidified environments. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:119-24. [PMID: 11929560 DOI: 10.1046/j.0902-0055.2001.00103.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxygen metabolism (respiration) of Streptococcus mutans GS-5 involving NADH oxidases, mainly of the H(2)O-producing type, was found to be acid sensitive, as was NADH oxidase activity of cell extracts. Respiration of intact cells in acidified media was also highly sensitive to fluoride, with a 50% inhibitory concentration of about 0.02 mM at pH 4. In contrast, NADH oxidases in cell extracts were fluoride insensitive. Fluoride inhibition of respiration of intact cells was related to weak-acid effects leading to enhanced proton permeability of cells, cytoplasmic acidification and resultant acid inhibition of NADH oxidases and glycolysis. Organic weak acids, such as indomethacin and benzoate, were also effective inhibitors. H(2)O(2) production by intact cells of Streptococcus sanguis NCTC 10904, a peroxide producer, was similarly inhibited by fluoride or organic weak acids in acidified media. Thus, weak acids act as respiratory inhibitors for oral streptococci indirectly by acidifying the cytoplasm rather than acting as direct inhibitors of NADH oxidases.
Collapse
Affiliation(s)
- T-N Phan
- Department of Microbiology & Immunology and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642-8672, USA
| | | | | | | |
Collapse
|
30
|
Stanton TB, Matson EG, Humphrey SB. Brachyspira (Serpulina) hyodysenteriae gyrB mutants and interstrain transfer of coumermycin A(1) resistance. Appl Environ Microbiol 2001; 67:2037-43. [PMID: 11319078 PMCID: PMC92833 DOI: 10.1128/aem.67.5.2037-2043.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further develop genetic techniques for the enteropathogen Brachyspira hyodysenteriae, the gyrB gene of this spirochete was isolated from a lambdaZAPII library of strain B204 genomic DNA and sequenced. The putative protein encoded by this gene exhibited up to 55% amino acid sequence identity with GyrB proteins of various bacterial species, including other spirochetes. B. hyodysenteriae coumermycin A(1)-resistant (Cn(r)) mutant strains, both spontaneous and UV induced, were isolated by plating B204 cells onto Trypticase soy blood agar plates containing 0.5 microg of coumermycin A(1)/ml. The coumermycin A(1) MICs were 25 to 100 microg/ml for the resistant strains and 0.1 to 0.25 microg/ml for strain B204. Four Cn(r) strains had single nucleotide changes in their gyrB genes, corresponding to GyrB amino acid changes of Gly(78) to Ser (two strains), Gly(78) to Cys, and Thr(166) to Ala. When Cn(r) strain 435A (Gly(78) to Ser) and Cm(r) Km(r) strain SH (DeltaflaA1::cat Deltanox::kan) were cultured together in brain heart infusion broth containing 10% (vol/vol) heat-treated (56 degrees C, 30 min) calf serum, cells resistant to chloramphenicol, coumermycin A(1), and kanamycin could be isolated from the cocultures after overnight incubation, but such cells could not be isolated from monocultures of either strain. Seven Cn(r) Km(r) Cm(r) strains were tested and were determined to have resistance genotypes of both strain 435A and strain SH. Cn(r) Km(r) Cm(r) cells could not be isolated when antiserum to the bacteriophage-like agent VSH-1 was added to cocultures, and the numbers of resistant cells increased fivefold when mitomycin C, an inducer of VSH-1 production, was added. These results indicate that coumermycin resistance associated with a gyrB mutation is a useful selection marker for monitoring gene exchange between B. hyodysenteriae cells. Gene transfer readily occurs between B. hyodysenteriae cells in broth culture, a finding with practical importance. VSH-1 is the likely mechanism for gene transfer.
Collapse
Affiliation(s)
- T B Stanton
- Pre-Harvest Food Safety and Enteric Diseases Research, National Animal Disease Center, USDA Agricultural Research Service, Ames, IA 50010, USA.
| | | | | |
Collapse
|
31
|
Yu J, Bryant AP, Marra A, Lonetto MA, Ingraham KA, Chalker AF, Holmes DJ, Holden D, Rosenberg M, McDevitt D. Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection. MICROBIOLOGY (READING, ENGLAND) 2001; 147:431-438. [PMID: 11158360 DOI: 10.1099/00221287-147-2-431] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is an important human pathogen capable of causing serious infections. NADH oxidase, a factor necessary for infection, was previously identified as part of a signature-tagged mutagenesis screen of a S. pneumoniae clinical isolate, 0100993. The mutant, with a plasmid insertion disrupting the nox gene, was attenuated for virulence in a murine respiratory tract infection model. A complete refined nox deletion mutant was generated by allelic-replacement mutagenesis and found to be attenuated for virulence 10(5)-fold in the murine respiratory tract infection model and at least 10(4)-fold in a Mongolian gerbil otitis media infection model, confirming the importance of the NADH oxidase for both types of S. pneumoniae infection. NADH oxidase converts O(2) to H(2)O. If O(2) is not fully reduced, it can form superoxide anion (O2(-)) and hydrogen peroxide (H(2)O(2)), both of which can be toxic to cells. Bacterial cell extracts from the allelic-replacement mutant were found to lack NADH oxidase activity and the mutant was unable to grow exponentially under conditions of vigorous aeration. In contrast, the mutant displayed normal growth characteristics under conditions of limited aeration. The S. pneumoniae nox gene was cloned and expressed in E. coli. The purified His-tagged NADH oxidase was shown to oxidize NADH with a K:(m) of 32 microM, but was unable to oxidize NADPH. Oxidation of NADH was independent of exogenous FAD or FMN.
Collapse
Affiliation(s)
- Jun Yu
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Alexander P Bryant
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Andrea Marra
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Michael A Lonetto
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Karen A Ingraham
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Alison F Chalker
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - David J Holmes
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - David Holden
- Department of Infectious Diseases, Imperial College School of Medicine, London W12 0NN, UK2
| | - Martin Rosenberg
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| | - Damien McDevitt
- Anti-Infectives Research, SmithKline Beecham Pharmaceuticals Research and Development, 1250 S. Collegeville Road, Collegeville, PA 19426, USA1
| |
Collapse
|
32
|
Zhang P, Cheng X, Duhamel GE. Cloning and DNA sequence analysis of an immunogenic glucose-galactose MglB lipoprotein homologue from Brachyspira pilosicoli, the agent of colonic spirochetosis. Infect Immun 2000; 68:4559-65. [PMID: 10899855 PMCID: PMC98373 DOI: 10.1128/iai.68.8.4559-4565.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonic spirochetosis (CS) is a newly emerging infectious disease of humans and animals caused by the pathogenic spirochete Brachyspira (formerly Serpulina) pilosicoli. The purpose of this study was to characterize an antigen that was recognized by antibodies present in sera of challenge-exposed pigs. The gene encoding the antigen was identified by screening a plasmid library of human B. pilosicoli strain SP16 (ATCC 49776) genomic DNA with hyperimmune and convalescent swine sera. The predicted amino acid sequence encoded by the cloned B. pilosicoli gene had a high degree of similarity and identity to glucose-galactose MglB lipoprotein. Located 106 bp downstream of the putative mglB gene was a 3'-truncated open reading frame with 73.8% similarity and 66.3% identity to mglA of Escherichia coli, suggesting a gene arrangement within an operon which is similar to those of other bacteria. A single copy of the gene was present in B. pilosicoli, and homologous sequences were widely conserved among porcine intestinal spirochetes Serpulina intermedia, Brachyspira innocens, Brachyspira murdochii, and the avian Brachyspira alvinipulli, but not in porcine Brachyspira hyodysenteriae, human Brachyspira aalborgi, and porcine Treponema succinifaciens. The deduced molecular weight of the mature MglB lipoprotein was consistent with expression by the cloned gene of a polypeptide with an apparent molecular weight of 36,000, as determined by Western blot analysis and [(3)H]palmitate labeling. Because mucin is the principal constituent of the colonic mucus gel and consists of glycoproteins that can serve as the substrate for growth and chemotaxis of B. pilosicoli in vitro, a role for MglB in mucosal localization of the spirochete appears consistent with the pathogenesis of CS. However, the presence of homologous sequences in closely related but nonpathogenic commensal spirochetes suggests that other virulence determinants may be required for pathogenesis.
Collapse
Affiliation(s)
- P Zhang
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | |
Collapse
|
33
|
Norris SJ, Weinstock GM. The genome sequence of Treponema pallidum, the syphilis spirochete: will clinicians benefit? Curr Opin Infect Dis 2000; 13:29-36. [PMID: 11964770 DOI: 10.1097/00001432-200002000-00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sequence of the Treponema pallidum genome was completed in July 1998, yielding a wealth of new information regarding the enigmatic spirochete that causes syphilis and related treponematoses. By providing the sequences and predicted functions of over 1000 genes, the genome sequence will greatly facilitate research on the genetic characteristics, physiology, antigenic structure, and pathogenesis of this organism. These advances are, in turn, expected to promote the refinement of conditions for in-vitro culture, an improvement of diagnostic tests, the development of effective vaccines, and an improved understanding of treponemal disease pathogenesis and manifestations.
Collapse
Affiliation(s)
- Steven J. Norris
- aDepartment of Pathology and Laboratory Medicine, bDepartment of Microbiology and Molecular Genetics, and cCenter for the Study of Emerging and Re-emerging Pathogens, University of Texas, Houston Medical School, Houston, Texas, USA
| | | |
Collapse
|