1
|
Gu L, Zhao S, Tadesse BT, Zhao G, Solem C. Scrutinizing a Lactococcus lactis mutant with enhanced capacity for extracellular electron transfer reveals a unique role for a novel type-II NADH dehydrogenase. Appl Environ Microbiol 2024; 90:e0041424. [PMID: 38563750 PMCID: PMC11107169 DOI: 10.1128/aem.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
4
|
Pedersen M, Neergaard JT, Cassias J, Rasmussen KK, Lo Leggio L, Sneppen K, Hammer K, Kilstrup M. Repression of the lysogenic P R promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite O M-O R operator. Sci Rep 2020; 10:8659. [PMID: 32457340 PMCID: PMC7250872 DOI: 10.1038/s41598-020-65493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.
Collapse
Affiliation(s)
- Margit Pedersen
- University of Copenhagen, Department of Biology, Copenhagen, DK2200, Denmark
| | - Jesper Tvenge Neergaard
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Johan Cassias
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | | | - Leila Lo Leggio
- University of Copenhagen, Department of Chemistry, Copenhagen, DK2200, Denmark
| | - Kim Sneppen
- University of Copenhagen, Center for Models of Life, Copenhagen, DK2200, Denmark
| | - Karin Hammer
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark.
| |
Collapse
|
5
|
Koko I, Song AAL, Masarudin MJ, Abdul Rahim R. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis. BMC Biotechnol 2019; 19:82. [PMID: 31775775 PMCID: PMC6882331 DOI: 10.1186/s12896-019-0575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/07/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Site-specific integration system allows foreign DNA to be integrated into the specific site of the host genome, enabling stable expression of heterologous protein. In this study, integrative vectors for secretion and surface display of proteins were constructed based on a lactococcal phage TP901-1 integrating system. RESULTS The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA. CONCLUSION The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.
Collapse
Affiliation(s)
- Innanurdiani Koko
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Chancellory, Universiti Teknikal Malaysia, 76100 Durian Tunggal, Melaka, Malaysia
| |
Collapse
|
6
|
Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 2019; 366:5251984. [PMID: 30561594 PMCID: PMC6322438 DOI: 10.1093/femsle/fny291] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
Collapse
Affiliation(s)
- Rosa A Börner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Amalie M Axelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
8
|
Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria. mBio 2017; 8:mBio.00526-17. [PMID: 28559484 PMCID: PMC5449655 DOI: 10.1128/mbio.00526-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient screening technologies aim to reduce both the time and the cost required for identifying rare mutants possessing a phenotype of interest in a mutagenized population. In this study, we combined a mild mutagenesis strategy with high-throughput screening based on microfluidic droplet technology to identify Lactococcus lactis variants secreting vitamin B2 (riboflavin). Initially, we used a roseoflavin-resistant mutant of L. lactis strain MG1363, JC017, which secreted low levels of riboflavin. By using fluorescence-activated droplet sorting, several mutants that secreted riboflavin more efficiently than JC017 were readily isolated from the mutagenesis library. The screening was highly efficient, and candidates with as few as 1.6 mutations per million base pairs (Mbp) were isolated. The genetic characterization revealed that riboflavin production was triggered by mutations inhibiting purine biosynthesis, which is surprising since the purine nucleotide GTP is a riboflavin precursor. Purine starvation in the mutants induced overexpression of the riboflavin biosynthesis cluster ribABGH. When the purine starvation was relieved by purine supplementation in the growth medium, the outcome was an immediate downregulation of the riboflavin biosynthesis cluster and a reduction in riboflavin production. Finally, by applying the new isolates in milk fermentation, the riboflavin content of milk (0.99 mg/liter) was improved to 2.81 mg/liter, compared with 0.66 mg/liter and 1.51 mg/liter by using the wild-type strain and the original roseoflavin-resistant mutant JC017, respectively. The results obtained demonstrate how powerful classical mutagenesis can be when combined with droplet-based microfluidic screening technology for obtaining microorganisms with useful attributes. The food industry prefers to use classical approaches, e.g., random mutagenesis followed by screening, to improve microorganisms used in food production, as the use of recombinant DNA technologies is still not widely accepted. Although modern automated screening platforms are widely accessible, screening remains as a bottleneck in strain development, especially when a mild mutagenesis approach is applied to reduce the chance of accumulating unintended mutations, which may cause unwanted phenotypic changes. Here, we incorporate a droplet-based high-throughput screening method into the strain development process and readily capture L. lactis variants with more efficient vitamin secretion from low-error-rate mutagenesis libraries. This study shows that useful mutants showing strong phenotypes but without extensive mutations can be identified with efficient screening technologies. It is therefore possible to avoid accumulating detrimental mutations while enriching beneficial ones through iterative mutagenesis screening. Due to the low mutation rates, the genetic determinants are also readily identified.
Collapse
|
9
|
Petersen KV, Liu J, Chen J, Martinussen J, Jensen PR, Solem C. Metabolic characterization and transformation of the non-dairyLactococcus lactisstrain KF147, for production of ethanol from xylose. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Kia Vest Petersen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jianming Liu
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jun Chen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jan Martinussen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Peter Ruhdal Jensen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Christian Solem
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|
10
|
Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic. Microbiology (Reading) 2017; 163:453-461. [DOI: 10.1099/mic.0.000441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries. Appl Microbiol Biotechnol 2017; 101:4737-4746. [DOI: 10.1007/s00253-017-8222-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 10/19/2022]
|
12
|
Breüner A, Frees D, Varmanen P, Boguta AM, Hammer K, Martinussen J, Kilstrup M. Ribosomal dimerization factor YfiA is the major protein synthesized after abrupt glucose depletion in Lactococcus lactis. MICROBIOLOGY-SGM 2016; 162:1829-1839. [PMID: 27557864 DOI: 10.1099/mic.0.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the yfiA transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.
Collapse
Affiliation(s)
- Anne Breüner
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Dorte Frees
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pekka Varmanen
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anna Monika Boguta
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Karin Hammer
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jan Martinussen
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mogens Kilstrup
- Metabolic Signaling and Regulation Group, DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Abstract
We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome resequencing. Four of the mutants had different mutations in structural genes with no relation to the genetic switch. However all 8 mutants had a mutation in the cI repressor gene region. Three of these were located in the promoter and Shine-Dalgarno sequences and five in the N-terminal part of the encoded CI protein involved in the DNA binding. The conclusion is that cI is the only gene involved in clear plaque formation i.e. the CI protein is the determining factor for the lysogenic pathway and its maintenance in the lactococcal phage TP901-1.
Collapse
|
14
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
15
|
Jendresen CB, Dimitrov P, Gautier L, Liu M, Martinussen J, Kilstrup M. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis. MICROBIOLOGY-SGM 2014; 160:1321-1331. [PMID: 24722907 DOI: 10.1099/mic.0.077933-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified in vivo and kinetic studies of small molecules interacting with the regulatory elements in vitro. Here we describe how in vivo regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in Lactococcus lactis. We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the pur mRNA curves reflect the in vivo kinetics of PurR PRPP binding and activation. The method singled out the xpt-pbuX operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes--many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks in vivo.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Peter Dimitrov
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Laurent Gautier
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Meng Liu
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jan Martinussen
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Mogens Kilstrup
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
16
|
Chan SHJ, Nørregaard L, Solem C, Jensen PR. Acetate kinase isozymes confer robustness in acetate metabolism. PLoS One 2014; 9:e92256. [PMID: 24638105 PMCID: PMC3956926 DOI: 10.1371/journal.pone.0092256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.
Collapse
Affiliation(s)
| | - Lasse Nørregaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (CS); (PRJ)
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (CS); (PRJ)
| |
Collapse
|
17
|
Van Duyne GD, Rutherford K. Large serine recombinase domain structure and attachment site binding. Crit Rev Biochem Mol Biol 2013; 48:476-91. [PMID: 23980849 DOI: 10.3109/10409238.2013.831807] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large serine recombinases (LSRs) catalyze the movement of DNA elements into and out of bacterial chromosomes using site-specific recombination between short DNA "attachment sites". The LSRs that function as bacteriophage integrases carry out integration between attachment sites in the phage (attP) and in the host (attB). This process is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded recombination directionality factor, nor does recombination typically occur between other pairings of attachment sites. Although the mechanics of strand exchange are reasonably well understood through studies of the closely related resolvase and invertase serine recombinases, many of the fundamental aspects of the LSR reactions have until recently remained poorly understood on a structural level. In this review, we discuss the results of several years worth of biochemical and molecular genetic studies of LSRs in light of recently described structural models of LSR-DNA complexes. The focus is understanding LSR domain structure, how LSRs bind to the attP and attB attachment sites, and the differences between attP-binding and attB-binding modes. The simplicity, site-selectivity and strong directionality of the LSRs has led to their use as important tools in a number of genetic engineering applications in a wide variety of organisms. Given the important potential role of LSR enzymes in genetic engineering and gene therapy, understanding the structure and DNA-binding properties of LSRs is of fundamental importance for those seeking to enhance or alter specificity and functionality in these systems.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia , USA
| | | |
Collapse
|
18
|
Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of Riboflavin. Appl Environ Microbiol 2013; 79:6140-7. [PMID: 23913422 DOI: 10.1128/aem.01953-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed quickly. Raising the temperature to 37°C resulted in severe growth inhibition and only slow removal of dissolved oxygen. Under these conditions, an abnormally low intracellular ratio of [ATP] to [ADP] (1.4) was found (normally around 5), which indicates that the cells are energy limited. By adding riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C. These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller. The drop was accompanied by a decrease in NADH oxidase and pyruvate dehydrogenase activities, both of which depend on FAD as a cofactor. By overexpressing the riboflavin transporter, it was possible to improve FAD biosynthesis, which resulted in increased NADH oxidase and pyruvate dehydrogenase activities and improved fitness at high temperatures in the presence of oxygen.
Collapse
|
19
|
Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl Environ Microbiol 2013; 79:3563-9. [PMID: 23542630 DOI: 10.1128/aem.00346-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attB(min)), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attB(min) site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps.
Collapse
|
20
|
Abstract
Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45-54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE).
Collapse
|
21
|
Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria. Biotechnol J 2011; 6:1147-61. [PMID: 21858927 DOI: 10.1002/biot.201100034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/09/2022]
Abstract
In the 1990s, significant efforts were invested in the research and development of food-grade expression systems in lactic acid bacteria (LAB). At this time, Lactococcus lactis in particular was demonstrated to be an ideal cell factory for the food-grade production of recombinant proteins. Steady progress has since been made in research on LAB, including Lactococcus, Lactobacillus and Streptococcus, in the areas of recombinant enzyme production, industrial food fermentation, and gene and metabolic pathway regulation. Over the past decade, this work has also led to new approaches on chromosomal integration vectors and host/vector systems. These newly constructed food-grade gene expression systems were designed with specific attention to self-cloning strategies, food-grade selection markers, plasmid replication and chromosomal gene replacements. In this review, we discuss some well-characterized chromosomal integration and food-grade host/vector systems used in LAB, with a special focus on sustainability, stability and overall safety, and give some attractive examples of protein expression that are based on these systems.
Collapse
Affiliation(s)
- Clemens Peterbauer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
22
|
Abstract
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed.
Collapse
|
23
|
Lamarque M, Aubel D, Piard JC, Gilbert C, Juillard V, Atlan D. The peptide transport system Opt is involved in both nutrition and environmental sensing during growth of Lactococcus lactis in milk. Microbiology (Reading) 2011; 157:1612-1619. [DOI: 10.1099/mic.0.048173-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis is known to take up extracellular peptides via at least three distinct peptide transporters. The well-described oligopeptide transporter Opp alone is able to ensure the growth of L. lactis in milk, while the di- and tripeptide transporter DtpT is involved in a peptide-dependent signalling mechanism. The oligopeptide Opt transporter displays two peptide-binding proteins, OptA and OptS. We previously demonstrated that OptA-dependent transport is dedicated to nutritional peptides, as an optABCDF mutant (of a strain devoid of Opp) has an impaired capacity to grow in milk. Using isogenic peptide transport mutants, this study shows that biosynthesis of the Opt transporter is much less sensitive to downregulation that is dependent on extracellular peptides taken up by DtpT than is Opp biosynthesis; this peptide-dependent regulation relies on the transcriptional repressor CodY. We demonstrate the dual function of the Opt system; while OptA contributes to the bacterial nutrition during growth in milk, OptS is involved in the transport of signalling peptides derived from milk and controlling opp expression. So, these results shed new light on the peptide-dependent regulation relying on two peptide transporters with different specificities: DtpT and Opt (via OptS).
Collapse
Affiliation(s)
- Mauld Lamarque
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Dominique Aubel
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Jean-Christophe Piard
- UMR1319 MICALIS, INRA, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Christophe Gilbert
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Vincent Juillard
- UMR1319 MICALIS, INRA, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Danièle Atlan
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| |
Collapse
|
24
|
Alsing A, Pedersen M, Sneppen K, Hammer K. Key players in the genetic switch of bacteriophage TP901-1. Biophys J 2011; 100:313-21. [PMID: 21244827 DOI: 10.1016/j.bpj.2010.12.3681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
After infection of a sensitive host temperate phages may enter either a lytic or a lysogenic pathway leading to new phage assembly or silencing as a prophage, respectively. The decision about which pathway to enter is centered in the genetic switch of the phage. In this work, we explore the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter P(R) at different concentrations of the phage repressor, CI, and compare the effect of CI on P(R) in the presence or absence of the phage-encoded MOR protein expressed from the lytic promoter P(L). We find that the presence of large amounts of MOR prevents repression of the P(R) promoter, verifying that MOR works as an antirepressor. We compare our experimental data with simulations based on previous mathematical formulations of this switch. Good agreement between data and simulations verify the model of CI repression of P(R). By including MOR in the simulations, we are able to discard a model that assumes that CI and MOR do not interact before binding together at the DNA to repress P(R). The second model of Pr repression assumes the formation of a CI:MOR complex in the cytoplasm. We suggest that a CI:MOR complex may exist in different forms that either prevent or invoke P(R) repression, introducing a new twist on mixed feedback systems.
Collapse
Affiliation(s)
- Anne Alsing
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Jendresen CB, Kilstrup M, Martinussen J. A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. Anal Biochem 2010; 409:249-59. [PMID: 21036136 DOI: 10.1016/j.ab.2010.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/25/2022]
Abstract
Quantification of nucleotides is an important part of metabolomics but has been hampered by the lack of fast, sensitive, and reliable methods. We present a less time-consuming, more sensitive, and more precise method for the quantitative determination of nucleoside triphosphates (NTPs), 5-ribosyl-1-pyrophosphate (PRPP), and inorganic pyrophosphate (PP(i)) in cell extracts. The method uses one-dimensional thin-layer chromatography (TLC) and radiolabeled biological samples. Nucleotides are resolved at the level of ionic charge in an optimized acidic ammonium formate and chloride solvent, permitting quantification of NTPs. The method is significantly simpler and faster than both current two-dimensional methods and high-performance liquid chromatography (HPLC)-based procedures, allowing a higher throughput while common sources of inaccuracies and technical problems are avoided. For determination of PP(i), treatment with inorganic pyrophosphatase (PPase) of the radiolabeled phosphate is employed for removal of contaminating pyrophosphate. Biological examples performed in triplicates showed standard deviations of approximately 10% of the mean for the determined concentrations of NTPs.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
26
|
Martinussen J, Sørensen C, Jendresen CB, Kilstrup M. Two nucleoside transporters in Lactococcus lactis with different substrate specificities. MICROBIOLOGY-SGM 2010; 156:3148-3157. [PMID: 20595258 DOI: 10.1099/mic.0.039818-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an alternative to biosynthesis of nucleotides, most organisms are capable of exploiting exogenous nucleotide sources. In order to do so, the nucleotide precursors must pass the membrane, which requires the presence of transporters. Normally, phosphorylated compounds are not subject to transport, and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of Lactococcus lactis to transport different nucleosides across the cell membrane was characterized at both genetic and physiological level, using mutagenesis and by measuring the growth and uptake of nucleosides in the different mutants supplemented with different nucleosides. Two high affinity transporters were identified: BmpA-NupABC was shown to be an ABC transporter with the ability to actively transport all common nucleosides, whereas UriP was shown to be responsible for the uptake of only uridine and deoxyuridine. Interestingly, the four genes encoding the ABC transporter were found at different positions on the chromosome. The bmpA gene was separated from the nupABC operon by 60 kb. Moreover, bmpA was subject to regulation by purine availability, whereas the nupABC operon was constitutively expressed.
Collapse
Affiliation(s)
- Jan Martinussen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Claus Sørensen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Christian Bille Jendresen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mogens Kilstrup
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
27
|
Pedersen M, Hammer K. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1. J Mol Biol 2008; 384:577-89. [PMID: 18930065 DOI: 10.1016/j.jmb.2008.09.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
A genetic switch controls whether the temperate bacteriophage TP901-1 will enter a lytic or a lysogenic life cycle after infection of its host, Lactococcus lactis. We studied this bistable switch encoded in a small DNA fragment of 979 bp by fusing it to a reporter gene on a low-copy-number plasmid. The cloned DNA fragment contained the two divergently oriented promoters, P(R) and P(L), transcribing the lysogenic and lytic gene clusters; the two promoter-proximal genes, cI and mor; and the three CI operator sites, O(R), O(L) and O(D). We show that mor encodes a protein and that this protein in concert with CI is required for the bistability. Furthermore, interaction of CI at O(R) represses transcription from the lysogenic promoter, P(R). Thus, CI regulates its own transcription. Interaction of CI at O(L) represses transcription from the lytic promoter, P(L). The presence of only O(L) (absence of O(R) and O(D)) is enough to maintain a bistable system. The distantly located operator site, O(D), functions as a helper site by increasing binding of CI at O(R) and O(L). In the immune state, O(D) increases repression of the lytic promoter, P(L). Our results strongly support the model that a hexameric form of CI binds cooperatively to the three operator sites in the immune state forming a CI-DNA loop structure. Finally, we show that in the anti-immune state, repression of the lysogenic promoter is independent of the known CI operator sites but requires the presence of both CI and MOR.
Collapse
Affiliation(s)
- Margit Pedersen
- Center for Systems Microbiology, DTU BIOSYS, Technical University of Denmark, DK-2800 Lyngby,
| | | |
Collapse
|
28
|
Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 2008; 74:4772-5. [PMID: 18539798 DOI: 10.1128/aem.00134-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper we describe the new selection/counterselection vector pCS1966, which is suitable for both sequence-specific integration based on homologous recombination and integration in a bacteriophage attachment site. This plasmid harbors oroP, which encodes a dedicated orotate transporter, and can replicate only in Escherichia coli. Selection for integration is performed primarily by resistance to erythromycin; alternatively, the ability to utilize orotate as a pyrimidine source in a pyrimidine auxotrophic mutant could be utilized. Besides allowing the cell to utilize orotate, the transporter renders the cell sensitive to 5-fluoroorotate. This sensitivity is used to select for loss of the plasmid. When expressed from its own promoter, oroP was toxic to E. coli, whereas in Lactococcus lactis the level of expression of oroP from a chromosomal copy was too low to confer 5-fluoroorotate sensitivity. In order to obtain a plasmid that confers 5-fluoroorotate sensitivity when it is integrated into the chromosome of L. lactis and at the same time can be stably maintained in E. coli, the expression of the oroP gene was controlled from a synthetic promoter conferring these traits. To demonstrate its use, a number of L. lactis strains expressing triosephosphate isomerase (tpiA) at different levels were constructed.
Collapse
|
29
|
Solem C, Koebmann B, Yang F, Jensen PR. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. J Bacteriol 2007; 189:6727-30. [PMID: 17616595 PMCID: PMC2045170 DOI: 10.1128/jb.00902-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fermentation pattern of Lactococcus lactis with altered activities of the las enzymes was examined on maltose. The wild type converted 65% of the maltose to mixed acids. An increase in phosphofructokinase or lactate dehydrogenase expression shifted the fermentation towards homolactic fermentation, and with a high level of expression of the las operon the fermentation was homolactic.
Collapse
Affiliation(s)
- Christian Solem
- Systems Microbiology, BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
30
|
Pedersen M, Hammer K. Mutational analysis of the activator of late transcription, Alt, in the lactococcal bacteriophage TP901-1. Arch Virol 2006; 152:305-20. [PMID: 17066250 DOI: 10.1007/s00705-006-0851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
An activator protein, Alt, synthesized during the early state of lytic infection is required for transcription of the late operon in the lactococcal phage TP901-1. In order to identify amino acid residues in the Alt protein required for activation of the TP901-1 late promoter, P(late), hydroxylamine mutagenesis was performed, resulting in almost saturating mutagenesis of alt. Twenty-three different non-functional alt alleles containing one, and in one case two amino acid exchanges were isolated and analyzed. Eight of the twenty-three mutant proteins were still able to activate the P(late) promoter to some extent. Our results show that alt encodes a protein of 16.7 kDa and that the last fourteen amino acids in the C-terminal part of the protein are required for activation of the P(late) promoter. By combining sequence analysis with experimental data we suggest that the C-terminal half of the Alt protein contains a helix-turn-helix-like motif involved in DNA binding. We also propose that the C-terminal half of the Alt protein may be involved in interactions with the bacterial RNA polymerase, whereas the N-terminal half of the protein is proposed to be important for the overall protein structure.
Collapse
Affiliation(s)
- M Pedersen
- Technical University of Denmark, Biocentrum-DTU, Lyngby, Denmark.
| | | |
Collapse
|
31
|
Hammer K, Mijakovic I, Jensen PR. Synthetic promoter libraries--tuning of gene expression. Trends Biotechnol 2006; 24:53-5. [PMID: 16406119 DOI: 10.1016/j.tibtech.2005.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/10/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wild-type expression level of the studied gene; this requirement can be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here, we describe the two different methods for obtaining promoter libraries and compare their applicability.
Collapse
Affiliation(s)
- Karin Hammer
- Microbial Physiology and Genetics, BioCentrum, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
32
|
Koebmann B, Solem C, Jensen PR. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J 2005; 272:2292-303. [PMID: 15853813 DOI: 10.1111/j.1742-4658.2005.04656.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.
Collapse
Affiliation(s)
- Brian Koebmann
- Microbial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | | |
Collapse
|
33
|
São-José C, Santos S, Nascimento J, Brito-Madurro AG, Parreira R, Santos MA. Diversity in the lysis-integration region of oenophage genomes and evidence for multiple tRNA loci, as targets for prophage integration in Oenococcus oeni. Virology 2004; 325:82-95. [PMID: 15231388 DOI: 10.1016/j.virol.2004.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 04/20/2004] [Accepted: 04/27/2004] [Indexed: 11/22/2022]
Abstract
The central genomic regions of Oenococcus oeni phages fOg30 and fOgPSU1 have been compared with the equivalent regions of oenophages fOg44 and phi 10MC. In all cases, an almost identical endolysin gene was followed by one of two orfs, encoding putative holins (orf117 and orf163). The fOg44 endolysin was established as a secretory protein when expressed in Lactococcus lactis. Orf117 (from fOg44) promoted lysis of Escherichia coli cultures upon induction of a defective lambda Sam7 prophage, but Orf163 (from fOg30) failed to elicit a lysis response in this system. fOg44 and fOgPSU1 were shown to integrate at the 3' end of a tRNA(Glu) and a tRNA(Lys), respectively. Searching the available sequence of the O. oeni MCW genome for attP-like elements, two other tRNA targets could be proposed for prophage establishment. Between the lysis and integration elements, a diverse cluster of genes (absent in phi 10MC) was observed. One common gene in this "lysogenic conversion cluster" was experimentally confirmed as a transcriptional repressor, affecting the expression of a putative permease gene.
Collapse
Affiliation(s)
- Carlos São-José
- Centro de Genética e Biologia Molecular e Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Ed. ICAT, 1749-016, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
34
|
Kreth J, Merritt J, Bordador C, Shi W, Qi F. Transcriptional analysis of mutacin I (mutA) gene expression in planktonic and biofilm cells of Streptococcus mutans using fluorescent protein and glucuronidase reporters. ORAL MICROBIOLOGY AND IMMUNOLOGY 2004; 19:252-6. [PMID: 15209996 DOI: 10.1111/j.1399-302x.2004.00148.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus mutans is implicated as the primary pathogen involved in the development of dental caries. The production of specific bacteriocins (called mutacins) by S. mutans is one of the major virulence factors which facilitate the dominance of the bacterium within dental plaque. While much has been revealed about the biochemical structures of mutacins, little is known about the expression and regulation of mutacin genes, largely due to the lack of proper methods to monitor mutacin gene expression, especially under biofilm conditions. In this study, a set of reporter systems with the green fluorescent protein (gfp), the monomeric red fluorescent protein (mrfp1), and the glucuronidase (gusA) are introduced to S. mutans to study the transcriptional activities of the mutacin I gene (mutA). Although the mutA-reporter fusions are in single copy on the chromosome, these reporter systems display strong signals that allow us to effectively monitor mutA gene expression in S. mutans. Using these reporter systems, we show that mutA is expressed in both planktonic and biofilm cells, even though mutacin activities are normally detected only in biofilm cells. Furthermore, we confirm that mutR, the gene upstream of the mutacin operon, is required for mutacin I gene expression. The success of this study validates the feasibility of using these reporter systems to study gene expression and regulation in S. mutans.
Collapse
Affiliation(s)
- J Kreth
- Department of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
35
|
Jørgensen CM, Hammer K, Jensen PR, Martinussen J. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. ACTA ACUST UNITED AC 2004; 271:2438-45. [PMID: 15182359 DOI: 10.1111/j.1432-1033.2004.04168.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pyrG gene from Lactococcus lactis encodes CTP synthase (EC 6.4.3.2), an enzyme converting UTP to CTP. A series of strains were constructed with different levels of pyrG expression by insertion of synthetic constitutive promoters with different strengths in front of pyrG. These strains expressed pyrG levels in a range from 3 to 665% relative to the wild-type expression level. Decreasing the level of CTP synthase to 43% had no effect on the growth rate, showing that the capacity of CTP synthase in the cell is in excess in a wild-type strain. We then studied how pyrG expression affected the intracellular pool sizes of nucleotides and the correlation between pyrG expression and nucleotide pool sizes was quantified using metabolic control analysis in terms of inherent control coefficients. At the wild-type expression level, CTP synthase had full control of the CTP concentration with a concentration control coefficient close to one and a negative concentration control coefficient of -0.28 for the UTP concentration. Additionally, a concentration control coefficient of 0.49 was calculated for the dCTP concentration. Implications for the homeostasis of nucleotide pools are discussed.
Collapse
Affiliation(s)
- Casper M Jørgensen
- Bacterial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
36
|
Sánchez C, Mayo B. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis. Plasmid 2004; 51:265-71. [PMID: 15109833 DOI: 10.1016/j.plasmid.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/23/2003] [Indexed: 10/26/2022]
Abstract
This paper reports the construction of several general cloning vectors and a specialized depurative vector based on a new lactococcal plasmid that replicates by the rolling circle mechanism [pBM02; Plasmid 49 (2003) 118]. Most vectors are shuttle vectors for Escherichia coli-Lactococcus lactis and carry replicons of both ColE1 and pBM02 plasmids (ColE1 is used even though the pBM02 replicon is fully active in both Gram-positive and Gram-negative organisms). Segregational and structural studies indicated that the new vectors were stable enough for the majority of applications. Further, since the basic replicon is compatible with plasmid derivatives of pWV01 and pSH71, they can be maintained in the same cell with members of the two largest vector series for L. lactis and other lactic acid bacteria, the pGK, and the pNZ series.
Collapse
Affiliation(s)
- Claudia Sánchez
- Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, Villaviciosa, 33300, Spain
| | | |
Collapse
|
37
|
Abstract
Probiotics have many potential therapeutic uses, but have not been universally accepted because of a lack of understanding of their action. Lactic acid bacteria (LAB) have been modified by traditional and genetic engineering methods to produce new varieties. Modern techniques of molecular biology have facilitated the identification of probiotic LAB strains, but only a few LAB have been modified by recombinant-DNA technology because of consumer resistance to their introduction to markets, especially in Europe.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, LSB 014, Leo W. Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
38
|
Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 2003; 185:5117-24. [PMID: 12923084 PMCID: PMC180999 DOI: 10.1128/jb.185.17.5117-5124.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease in expression of clpP encoding the proteolytic component of the Clp protease complex, this decrease was delayed in the absence of ClpE. Site-directed mutagenesis of the zinc-binding motif conserved in ClpE ATPases interfered with the ability to repress CtsR-dependent expression. Quantification of ClpE by Western blot analysis revealed that at a high temperature ClpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders ClpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the CtsR homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR.
Collapse
Affiliation(s)
- Pekka Varmanen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 488] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
40
|
7. Genetically modified microorganisms and their potential effects on human health and nutrition. Trends Food Sci Technol 2003. [DOI: 10.1016/s0924-2244(03)00068-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Solem C, Koebmann BJ, Jensen PR. Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 2003; 185:1564-71. [PMID: 12591873 PMCID: PMC148053 DOI: 10.1128/jb.185.5.1564-1571.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has previously been suggested to have almost absolute control over the glycolytic flux in Lactococcus lactis (B. Poolman, B. Bosman, J. Kiers, and W. N. Konings, J. Bacteriol. 169:5887-5890, 1987). Those studies were based on inhibitor titrations with iodoacetate, which specifically inhibits GAPDH, and the data suggested that it should be possible to increase the glycolytic flux by overproducing GAPDH activity. To test this hypothesis, we constructed a series of mutants with GAPDH activities from 14 to 210% of that of the reference strain MG1363. We found that the glycolytic flux was unchanged in the mutants overproducing GAPDH. Also, a decrease in the GAPDH activity had very little effect on the growth rate and the glycolytic flux until 25% activity was reached. Below this activity level, the glycolytic flux decreased proportionally with decreasing GAPDH activity. These data show that GAPDH activity has no control over the glycolytic flux (flux control coefficient = 0.0) at the wild-type enzyme level and that the enzyme is present in excess capacity by a factor of 3 to 4. The early experiments by Poolman and coworkers were performed with cells resuspended in buffer, i.e., nongrowing cells, and we therefore analyzed the control by GAPDH under similar conditions. We found that the glycolytic flux in resting cells was even more insensitive to changes in the GAPDH activity; in this case GAPDH was also present in a large excess and had no control over the glycolytic flux.
Collapse
Affiliation(s)
- Christian Solem
- Section of Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
42
|
Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 2002; 84:1073-87. [PMID: 12595135 DOI: 10.1016/s0300-9084(02)00029-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.
Collapse
Affiliation(s)
- Pierre Renault
- Génétique microbienne, Inra, domaine de Vilvert, 78352 Jouy-en-Josas, France.
| |
Collapse
|
43
|
Abstract
Starter cultures for fermented foods are today developed mainly by design rather than by screening. The design principles are based on knowledge of bacterial metabolism and physiology as well as on the interaction with the food product. In the genomics era, we will obtain a wealth of data making design on a rational basis even simpler. The design tools available are food grade tools for genetic, metabolic and protein engineering and an increased use of laboratory automation and high throughput screening methods. The large body of new data will influence the future patterns of regulation. It is currently difficult to predict in what direction the future regulatory requirements will influence innovation in the food industry. It can either become a promoting force for the practical use of biotechnology to make better and safer products, or it can be limiting the use of starter cultures to a few strains with official approval. Successful cultures based on modern technology is expected to be launched in the areas of: probiotics, bioprotection, general improvement of yield and performance for the existing culture market and probably the introduction of cultures for fermenting other food products. A scientific basis for dramatic innovations that could transform the culture industry is currently being established.
Collapse
|
44
|
Abstract
We demonstrate that the site-specific integrase encoded by phage TP901-1 of Lactococcus lactis subsp. cremoris has potential as a tool for engineering mammalian genomes. We constructed vectors that express this integrase in Escherichia coli and in mammalian cells and developed a simple plasmid assay to measure the frequency of intramolecular integration mediated by the integrase. We used the assay to document that the integrase functions efficiently in E. coli and determined that for complete reaction in E. coli, the minimal sizes of attB and attP are 31 and 50 bp, respectively. We carried out partial purification of TP901-1 integrase protein and demonstrated its functional activity in vitro in the absence of added cofactors, characterizing the time course and temperature optimum of the reaction. Finally, we showed that when expressed in human cells, the TP901-1 integrase carries out efficient intramolecular integration on a transfected plasmid substrate in the human cell environment. The TP901-1 phage integrase thus represents a new reagent for manipulating DNA in living mammalian cells.
Collapse
Affiliation(s)
- Stephanie M Stoll
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | |
Collapse
|
45
|
Abstract
A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected the activities of all three enzymes to the same extent, and enzyme activities ranging from 0.5 to 3.5 times the wild-type level were obtained.
Collapse
Affiliation(s)
- Christian Solem
- Section of Molecular Microbiology, BioCentrum, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
46
|
Grath S, van Sinderen D, Fitzgerald G. Bacteriophage-derived genetic tools for use in lactic acid bacteria. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(01)00150-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Andersen HW, Pedersen MB, Hammer K, Jensen PR. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6379-89. [PMID: 11737192 DOI: 10.1046/j.0014-2956.2001.02599.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of mutant strains of Lactococcus lactis were constructed with lactate dehydrogenase (LDH) activities ranging from below 1% to 133% of the wild-type activity level. The mutants with 59% to 133% of lactate dehydrogenase activity had growth rates similar to the wild-type and showed a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients were determined and it was found that lactate dehydrogenase exerted virtually no control on the glycolytic flux at the wild-type enzyme level and also not on the flux catalyzed by the enzyme itself, i.e. on the lactate production. As expected, the flux towards the mixed-acid products was strongly enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control ( CLDHJF1 =-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate dehydrogenase, only 70% more than needed to catalyze the lactate flux in the wild-type cells.
Collapse
Affiliation(s)
- H W Andersen
- Section of Molecular Microbiology, BioCentrum, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
48
|
Breüner A, Brøndsted L, Hammer K. Resolvase-like recombination performed by the TP901-1 integrase. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2051-2063. [PMID: 11495984 DOI: 10.1099/00221287-147-8-2051] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The site-specific recombination system of temperate lactococcal bacteriophage TP901-1 is unusual in several respects. First, the integrase belongs to the family of extended resolvases rather than to the lambda integrase family and second, in the presence of this integrase, a 56 bp attP fragment is sufficient for efficient recombination with the chromosomal attB site in the host Lactococcus lactis subsp. cremoris MG1363. In the present work, this attB site was analysed and a 43 bp attB region was found to be the smallest fragment able to participate fully in recombination. In vitro studies showed that the TP901-1 integrase binds this 43 bp attB fragment, the 56 bp attP and a larger attP fragment with equal affinity. Mutational analysis of the 5 bp common core region (TCAAT) showed that the TC dinucleotide is essential for recombination, but not for binding of the integrase, whereas none of the last three bases are important for recombination. When a number of attL sites, obtained by recombination between an attB site containing a mutation in this TC dinucleotide and a wild-type attP site, were sequenced, a mix of sites with the wild-type or the mutated sequence was obtained. These results are consistent with the hypothesis that the TC dinucleotide constitutes the TP901-1 overlap region. A 2 bp overlap region has been observed in recombination reactions catalysed by all other members of the resolvase/invertase family tested so far. By selecting for attB sites with a decreased ability to participate in recombination, two bases located outside the core region of attB were shown to be involved in the in vitro binding of the TP901-1 integrase.
Collapse
Affiliation(s)
- Anne Breüner
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark1
| | - Lone Brøndsted
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark1
| | - Karin Hammer
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark1
| |
Collapse
|
49
|
Frees D, Varmanen P, Ingmer H. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 2001; 41:93-103. [PMID: 11454203 DOI: 10.1046/j.1365-2958.2001.02503.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.
Collapse
Affiliation(s)
- D Frees
- Department of Veterinary Microbiology, Stigbøjlen 4, Denmark
| | | | | |
Collapse
|
50
|
Brøndsted L, Ostergaard S, Pedersen M, Hammer K, Vogensen FK. Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: evolution, structure, and genome organization of lactococcal bacteriophages. Virology 2001; 283:93-109. [PMID: 11312666 DOI: 10.1006/viro.2001.0871] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complete analysis of the entire genome of the temperate lactococcal bacteriophage TP901-1 has been performed and the function of 21 of 56 TP901-1-encoded ORFs has been assigned. This knowledge has been used to propose 10 functional modules each responsible for specific functions during bacteriophage TP901-1 proliferation. Short regions of microhomology in intergenic regions present in several lactococcal bacteriophages and chromosomal fragments of Lactococcus lactis are suggested to be points of exchange of genetic material through homologous recombination. Our results indicate that TP901-1 may have evolved by homologous recombination between the host chromosome and a mother phage and support the observation that phage remnants as well as prophages located in the Lactococcus chromosome contribute significantly to bacteriophage evolution. Some proteins encoded in the early transcribed region of the TP901-1 genome were more homologous to proteins encoded by phages infecting gram-positive hosts other than L. lactis. This protein homology argues for the occurrence of horizontal genetic exchange among these bacteriophages and indicates that they have access to a common gene pool.
Collapse
Affiliation(s)
- L Brøndsted
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|