1
|
Tran TH, F Escapa I, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. mSystems 2024; 9:e0113224. [PMID: 39508593 DOI: 10.1128/msystems.01132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the United States. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches. IMPORTANCE Pangenomic analysis with estimation of functional capabilities facilitates our understanding of the full biologic diversity of bacterial species. We performed systematic genomic, phylogenomic, and pangenomic analyses with qualitative estimation of the metabolic capabilities of four common human nasal Corynebacterium species, along with focused experimental validations, generating a foundational resource. The prevalence of each species in human nasal microbiota is consistent with the common coexistence of at least two species. We identified a notably high level of metabolic conservation within and among species indicating limited options for species to occupy distinct metabolic niches, highlighting the importance of investigating interactions among nasal Corynebacterium species. Comparing strains from two continents, C. pseudodiphtheriticum had restricted geographic strain distribution characterized by an evolutionarily recent loss of assimilatory sulfate reduction in U.S. strains. Our findings contribute to understanding the functions of Corynebacterium within human nasal microbiota and to evaluating their potential for future use as biotherapeutics.
Collapse
Affiliation(s)
- Tommy H Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Abiola C Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine P Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Borah Slater K, Beyß M, Xu Y, Barber J, Costa C, Newcombe J, Theorell A, Bailey MJ, Beste DJV, McFadden J, Nöh K. One-shot 13 C 15 N-metabolic flux analysis for simultaneous quantification of carbon and nitrogen flux. Mol Syst Biol 2023; 19:e11099. [PMID: 36705093 PMCID: PMC9996240 DOI: 10.15252/msb.202211099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Metabolic flux is the final output of cellular regulation and has been extensively studied for carbon but much less is known about nitrogen, which is another important building block for living organisms. For the tuberculosis pathogen, this is particularly important in informing the development of effective drugs targeting the pathogen's metabolism. Here we performed 13 C15 N dual isotopic labeling of Mycobacterium bovis BCG steady state cultures, quantified intracellular carbon and nitrogen fluxes and inferred reaction bidirectionalities. This was achieved by model scope extension and refinement, implemented in a multi-atom transition model, within the statistical framework of Bayesian model averaging (BMA). Using BMA-based 13 C15 N-metabolic flux analysis, we jointly resolve carbon and nitrogen fluxes quantitatively. We provide the first nitrogen flux distributions for amino acid and nucleotide biosynthesis in mycobacteria and establish glutamate as the central node for nitrogen metabolism. We improved resolution of the notoriously elusive anaplerotic node in central carbon metabolism and revealed possible operation modes. Our study provides a powerful and statistically rigorous platform to simultaneously infer carbon and nitrogen metabolism in any biological system.
Collapse
Affiliation(s)
| | - Martin Beyß
- Forschungszentrum Jülich GmbH, Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyJülichGermany
- Computational Systems BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Ye Xu
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Jim Barber
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Catia Costa
- Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK
| | - Jane Newcombe
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Axel Theorell
- Forschungszentrum Jülich GmbH, Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyJülichGermany
- Present address:
Computational Systems BiologyETH ZürichBaselSwitzerland
| | - Melanie J Bailey
- Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK
| | - Dany J V Beste
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Johnjoe McFadden
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Katharina Nöh
- Forschungszentrum Jülich GmbH, Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyJülichGermany
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts 2020. [DOI: 10.3390/catal10091065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bio-based plastics represent an increasing percentage of the plastics economy. The fermentative production of bioplastic monomer 5-aminovalerate (5AVA), which can be converted to polyamide 5 (PA 5), has been established in Corynebacterium glutamicum via two metabolic pathways. l-lysine can be converted to 5AVA by either oxidative decarboxylation and subsequent oxidative deamination or by decarboxylation to cadaverine followed by transamination and oxidation. Here, a new three-step pathway was established by using the monooxygenase putrescine oxidase (Puo), which catalyzes the oxidative deamination of cadaverine, instead of cadaverine transaminase. When the conversion of 5AVA to glutarate was eliminated and oxygen supply improved, a 5AVA titer of 3.7 ± 0.4 g/L was reached in microcultivation that was lower than when cadaverine transaminase was used. The elongation of the new pathway by 5AVA transamination by GABA/5AVA aminotransferase (GabT) and oxidation by succinate/glutarate semialdehyde dehydrogenase (GabD) allowed for glutarate production. Flux enforcement by the disruption of the l-glutamic acid dehydrogenase-encoding gene gdh rendered a single transaminase (GabT) in glutarate production via the new pathway responsible for nitrogen assimilation, which increased the glutarate titer to 7.7 ± 0.7 g/L, i.e., 40% higher than with two transaminases operating in glutarate biosynthesis. Flux enforcement was more effective with one coupling site, thus highlighting requirements regarding the modularity and stoichiometry of pathway-specific flux enforcement for microbial production.
Collapse
|
5
|
PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of N-Acetyl-l-Glutamate Kinase by l-Arginine in Corynebacterium glutamicum. Appl Environ Microbiol 2020; 86:AEM.00039-20. [PMID: 32060028 DOI: 10.1128/aem.00039-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.
Collapse
|
6
|
Niu T, Lv X, Liu Z, Li J, Du G, Liu L. Synergetic engineering of central carbon and nitrogen metabolism for the production ofN‐acetylglucosamine inBacillus subtilis. Biotechnol Appl Biochem 2020; 67:123-132. [DOI: 10.1002/bab.1845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Zhenmin Liu
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., Ltd. Shanghai People's Republic of China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| |
Collapse
|
7
|
Xu M, Li J, Shu Q, Tang M, Zhang X, Yang T, Xu Z, Rao Z. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol 2019; 46:1155-1166. [PMID: 31203489 DOI: 10.1007/s10295-019-02204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, Jiangsu, China.
| | - Jing Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunfeng Shu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mi Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
8
|
Xu D, Yao H, Cao C, Xu Z, Li S, Xu Z, Zhou J, Feng X, Xu H. Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 2018; 41:1337-1345. [DOI: 10.1007/s00449-018-1961-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
|
9
|
Guo J, Man Z, Rao Z, Xu M, Yang T, Zhang X, Xu Z. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol 2017; 44:443-451. [PMID: 28120129 DOI: 10.1007/s10295-017-1900-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l-1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zaiwei Man
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhenghong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology. PLoS One 2017; 12:e0168818. [PMID: 28081159 PMCID: PMC5231179 DOI: 10.1371/journal.pone.0168818] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential.
Collapse
|
11
|
Meng L, Li W, Zhang S, Wu C, Wang K. Effects of sucrose amendment on ammonia assimilation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2016; 210:160-166. [PMID: 26852272 DOI: 10.1016/j.biortech.2016.01.094] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the laboratory-scale composting of sewage sludge and pumice mixtures that were amended with sucrose. The variation in temperature, pH, NH4(+)-N, ammonia emission, bacterial community, ammonia assimilating bacteria (AAB) populations and enzymatic activity related to ammonia assimilation were detected. The addition of sucrose increased the AAB population by 2.5-3.5 times, reduced ammonia emission by 24.7-31.1% compared with the control treatment, and promoted the growth of Bacillus and Wautersiella. The activities of glutamate dehydrogenase (GDH), glutamate synthase (GS) and glutamine synthetase (GOGAT), were enhanced by the addition of sucrose. GDH made a substantial contribution to ammonia assimilation when the ammonia concentration was high (⩾1.5g/kg) in the thermophilic phase. The GS/GOGAT cycle played an important role at low ammonia concentrations (⩽1.1g/kg) in the cooling phase. These results suggested that adding sucrose to sludge compost could promote ammonia assimilation and reduce ammonia emission.
Collapse
Affiliation(s)
- Liqiang Meng
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China; Institute of Microbiology, Heilongjiang Academy of Sciences, 150010 Harbin, China; Institute of Advanced Technology, Heilongjiang Academy of Sciences, 150020 Harbin, China
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China.
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 150010 Harbin, China; Institute of Advanced Technology, Heilongjiang Academy of Sciences, 150020 Harbin, China
| | - Chuandong Wu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China
| | - Ke Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China
| |
Collapse
|
12
|
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 2014; 99:535-51. [PMID: 25431011 DOI: 10.1007/s00253-014-6224-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 01/28/2023]
Abstract
Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.
Collapse
|
13
|
Application of metabolic engineering for the biotechnological production of l-valine. Appl Microbiol Biotechnol 2014; 98:5859-70. [DOI: 10.1007/s00253-014-5782-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
14
|
Jensen JVK, Wendisch VF. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 2013; 12:63. [PMID: 23806148 PMCID: PMC3702523 DOI: 10.1186/1475-2859-12-63] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soil bacterium Corynebacterium glutamicum, best known for its glutamate producing ability, is suitable as a producer of a variety of bioproducts. Glutamate is the precursor of the amino acid proline. Proline biosynthesis typically involves three enzymes and a spontaneous cyclisation reaction. Alternatively, proline can be synthesised from ornithine, an intermediate of arginine biosynthesis. The direct conversion of ornithine to proline is catalysed by ornithine cyclodeaminase. An ornithine overproducing platform strain with deletions of argR and argF (ORN1) has been employed for production of derived compounds such as putrescine. By heterologous expression of ocd this platform strain can be engineered further for proline production. RESULTS Plasmid-based expression of ocd encoding the putative ornithine cyclodeaminase of C. glutamicum did not result in detectable proline accumulation in the culture medium. However, plasmid-based expression of ocd from Pseudomonas putida resulted in proline production with yields up to 0.31 ± 0.01 g proline/g glucose. Overexpression of the gene encoding a feedback-alleviated N-acetylglutamate kinase further increased proline production to 0.36 ± 0.01 g/g. In addition, feedback-alleviation of N-acetylglutamate kinase entailed growth-coupled production of proline and reduced the accumulation of by-products in the culture medium. CONCLUSIONS The product spectrum of the platform strain C. glutamicum ORN1 was expanded to include the amino acid L-proline. Upon further development of the ornithine overproducing platform strain, industrial production of amino acids of the glutamate family and derived bioproducts such as diamines might become within reach.
Collapse
Affiliation(s)
- Jaide Vold Korgaard Jensen
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | | |
Collapse
|
15
|
Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M. Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 2013; 288:17769-81. [PMID: 23615905 DOI: 10.1074/jbc.m113.470567] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-(13)C]-, [2-(13)C]-, [6-(13)C]-, and [U-(13)C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.
Collapse
Affiliation(s)
- José M Pastor
- Departamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química, Campus Regional de Excelencia Internacional "Campus Mare Nostrum," Universidad de Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gunka K, Commichau FM. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 2012; 85:213-24. [DOI: 10.1111/j.1365-2958.2012.08105.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int J Mol Sci 2012; 13:5482-5497. [PMID: 22754309 PMCID: PMC3382744 DOI: 10.3390/ijms13055482] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 11/17/2022] Open
Abstract
l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.
Collapse
|
18
|
Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production. Appl Microbiol Biotechnol 2010; 89:239-48. [PMID: 20922371 DOI: 10.1007/s00253-010-2922-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 02/05/2023]
Abstract
Nitrogen is one of the macronutrients necessary for living cells, and consequently, assimilation of nitrogen is a crucial step for metabolism. To satisfy their nitrogen demand and to ensure a sufficient nitrogen supply even in situations of nitrogen limitation, microorganisms have evolved sophisticated uptake and assimilation mechanisms for different nitrogen sources. This mini-review focuses on nitrogen metabolism and its control in the biotechnology workhorse Corynebacterium glutamicum, which is used for the industrial production of more than 2 million tons of L: -amino acids annually. Ammonium assimilation and connected control mechanisms on activity and transcription level are summarized, and the influence of mutations on amino acid pools and production is described with emphasis on L: -glutamate, L: -glutamine, and L: -lysine.
Collapse
|
19
|
Majors PD, McLean JS, Scholten JCM. NMR bioreactor development for live in-situ microbial functional analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 192:159-166. [PMID: 18314365 DOI: 10.1016/j.jmr.2008.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/18/2007] [Accepted: 02/11/2008] [Indexed: 05/26/2023]
Abstract
A live, in-situ metabolomics capability was developed for prokaryotic cultures under controlled growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuel production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study also showed that E. aggregans produces lactate end product in significant concentrations-a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics/systems biology methods are discussed.
Collapse
Affiliation(s)
- Paul D Majors
- Biological Sciences Division, Pacific Northwest National Laboratory, 3335 Q Avenue, MSIN: K8-98, Richland, WA 99352, USA.
| | | | | |
Collapse
|
20
|
Kivero AD, Bocharov EV, Doroshenko VG, Sobol AG, Dubinnyi MA, Arseniev AS. 2D [1H,13C] NMR study of carbon fluxes during glucose utilization by Escherichia coli MG1655. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s000368380802004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Droste P, Weitzel M, Wiechert W. Visual exploration of isotope labeling networks in 3D. Bioprocess Biosyst Eng 2007; 31:227-39. [PMID: 18074156 DOI: 10.1007/s00449-007-0177-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/20/2007] [Indexed: 11/28/2022]
Abstract
Isotope labeling networks (ILNs) are graphs explaining the flow of isotope labeled molecules in a metabolic network. Moreover, they are the structural backbone of metabolic flux analysis (MFA) by isotopic tracers which has been established as a standard experimental tool in fluxomics. To configure an isotope labeling experiment (ILE) for MFA, the structure of the corresponding ILN must be understood to a certain extent even by a practitioner. Graph algorithms help to analyze the network structure but produce rather abstract results. Here, the major obstruction is the high dimension of these networks and the large number of network components which, consequently, are hard to figure out manually. At the interface between theory and experiment, the three-dimensional interactive visualization tool CumoVis has been developed for exploring the network structure in a step by step manner. Navigation and orientation within ILNs are supported by exploiting the natural 3D structure of an underlying metabolite network with stacked labeled particles on top of each metabolite node. Network exploration is facilitated by rotating, zooming, forward and backward path tracing and, most important, network component reduction. All features of CumoVis are explained with an educational example and a realistic network describing carbon flow in the citric acid cycle.
Collapse
Affiliation(s)
- P Droste
- Simulation Group, Institute of Systems Engineering, Faculty 11/12, University of Siegen, 57068 Siegen, Germany.
| | | | | |
Collapse
|
22
|
Li J, Ma C, Ma Y, Li Y, Zhou W, Xu P. Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl Microbiol Biotechnol 2007; 74:563-71. [PMID: 17119957 DOI: 10.1007/s00253-006-0699-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 09/23/2006] [Accepted: 09/26/2006] [Indexed: 11/29/2022]
Abstract
An optimization strategy based on desirability function approach (DFA) together with response surface methodology (RSM) has been used to optimize production medium in L-glutamine fermentation. Fermentation problems often force to reach a compromise between different experimental variables in order to achieve the most suitable strategy applying in industrial production. The importance of the use of multi-objective optimization methods lies in the ability to cope with this kind of problems. A sequential RSM with different combinations of glucose and (NH(4))(2)SO(4) was performed to attain the optimal medium (OM-1) in glutamine production. Based on the result of RSM and the evaluation of production cost, a more economical optimal medium (OM-2) was obtained with the aid of DFA. In DFA study, glutamate, the main by-product in glutamine fermentation as another response was considered. Compared with OM-1 in validated experiment, similar amounts of glutamine were obtained in OM-2 while the concentration of glutamate and the production cost decreased by 53.6 and 7.1%, respectively.
Collapse
Affiliation(s)
- Jinshan Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Silberbach M, Burkovski A. Application of global analysis techniques to Corynebacterium glutamicum: New insights into nitrogen regulation. J Biotechnol 2006; 126:101-10. [PMID: 16698104 DOI: 10.1016/j.jbiotec.2006.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/24/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
The regulation of nitrogen metabolism in the amino acid producer Corynebacterium glutamicum was subject of research for several decades. While previous studies focused on single enzymes or pathways, the publication of the C. glutamicum genome sequence gave a fresh impetus to research, since a global investigation of metabolism and regulation networks became possible based on these data. This communication summarizes the advances made by different studies, in which global analysis approaches were used to characterize the C. glutamicum nitrogen starvation response. A combination of bioinformatics approaches, transcriptome and proteome analyses as well as chemostat experiments revealed new insights into the nitrogen control network of C. glutamicum. C. glutamicum reacts to a limited nitrogen supply with a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation and amino acid biosynthesis, an increased energy generation and increased protein stability. With the aid of chemostat experiments, in which different growth rates were obtained by nitrogen limitation, general starvation effects could be distinguished from specific nitrogen limitation-dependent changes. The core adaptations on the level of transcription are controlled by the master regulator of nitrogen control, the TetR-type protein AmtR. This global regulator governs transcription of at least 33 genes via binding to a palindromic consensus motif (AmtR box). Genes with AmtR box-containing promoters were identified by genome-wide screening and validated, besides by other methods, by transcriptome analyses using DNA microarrays.
Collapse
Affiliation(s)
- Maike Silberbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | |
Collapse
|
24
|
Ratcliffe RG, Shachar-Hill Y. Measuring multiple fluxes through plant metabolic networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:490-511. [PMID: 16441345 DOI: 10.1111/j.1365-313x.2005.02649.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fluxes through metabolic networks are crucial for cell function, and a knowledge of these fluxes is essential for understanding and manipulating metabolic phenotypes. Labeling provides the key to flux measurement, and in network flux analysis the measurement of multiple fluxes allows a flux map to be superimposed on the metabolic network. The principles and practice of two complementary methods, dynamic and steady-state labeling, are described, emphasizing best practice and illustrating their contribution to network flux analysis with examples taken from the plant and microbial literature. The principal analytical methods for the detection of stable isotopes are also described, as well as the procedures for obtaining flux maps from labeling data. A series of boxes summarizing the key concepts of network flux analysis is provided for convenience.
Collapse
Affiliation(s)
- R G Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | |
Collapse
|
25
|
Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 2005; 119:357-67. [PMID: 15935503 DOI: 10.1016/j.jbiotec.2005.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential component of nearly all of the complex macromolecules in a bacterial cell, e.g. proteins, nucleic acids, and cell wall components. Accordingly, most prokaryotes have developed elaborate control mechanisms to provide an optimal supply of nitrogen for cellular metabolism and to cope with situations of nitrogen limitation. In this communication, a global analysis of the Corynebacterium glutamicum nitrogen starvation response by transcriptional profiling using DNA microarrays is presented. Our results show that C. glutamicum reacts to nitrogen starvation with a rearrangement of the cellular transport capacity, changes in metabolic pathways concerning nitrogen assimilation and amino acid biosynthesis, and a decreased capacity for protein synthesis.
Collapse
Affiliation(s)
- Maike Silberbach
- Institut für Biochemie, Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 2005; 7:59-69. [PMID: 15781416 DOI: 10.1016/j.ymben.2004.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 10/05/2004] [Indexed: 11/25/2022]
Abstract
In amino acid production by coryneform bacteria, study on relationship between change in enzyme activities and production of a target amino acid is important. In glutamate production, Kawahara et al. discovered that the effect of decrease in 2-oxoglutamate dehydrogenase complex (ODHC) on glutamate production is essential (Kawahara et al., Biosci. Biotechnol. Biochem. 61(7) (1997) 1109). Significant reduction of the ODHC activity was observed in the cells under the several glutamate-productive conditions in Corynebacterium glutamicum. Recent progress in metabolic engineering enables us to quantitatively compare the flux redistribution of the different strains after change in enzyme activity precisely. In this paper, relationship between flux redistribution and change in enzyme activities after biotin deletion and addition of detergent (Tween 40) was studied in two coryneform bacteria, C. glutamicum and a newly isolated strain, Corynebacterium efficiens (Fudou et al., Int. J. Syst. Evol. Microbiol. 52(Part 4) 1127), based on metabolic flux analysis (MFA). It was observed that in both species the specific activities of isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) did not significantly change throughout the fermentation, while that of the ODHC significantly decreased after biotin depletion and Tween 40 addition. Flux redistribution clearly occurred after the decrease in ODHC specific activity. The difference in glutamate production between C. glutamicum and C. efficiens was caused by the difference in the degree of decrease in ODHC specific activity. The difference in Michaelis-Menten constants or K(m) value between ICDH, GDH, and ODHC explained the mechanism of flux redistribution at the branch point of 2-oxoglutarate. It was found that the K(m) values of ICDH and ODHC were much lower than that of GDH for both strains. It was quantitatively proved that the ODHC plays the most important role in controlling flux distribution at the key branch point of 2-oxoglutarate in both coryneform bacteria. Flux redistribution mechanism was well simulated by a Michaelis-Menten-based model with kinetic parameters. The knowledge of the mechanism of flux redistribution will contribute to improvement of glutamate production in coryneform bacteria.
Collapse
Affiliation(s)
- Tomokazu Shirai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ratcliffe RG, Shachar-Hill Y. Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 2005; 80:27-43. [PMID: 15727037 DOI: 10.1017/s1464793104006530] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Assessing the performance of the plant metabolic network, with its varied biosynthetic capacity and its characteristic subcellular compartmentation, remains a considerable challenge. The complexity of the network is such that it is not yet possible to build large-scale predictive models of the fluxes it supports, whether on the basis of genomic and gene expression analysis or on the basis of more traditional measurements of metabolites and their interconversions. This limits the agronomic and biotechnological exploitation of plant metabolism, and it undermines the important objective of establishing a rational metabolic engineering strategy. Metabolic analysis is central to removing this obstacle and currently there is particular interest in harnessing high-throughput and/or large-scale analyses to the task of defining metabolic phenotypes. Nuclear magnetic resonance (NMR) spectroscopy contributes to this objective by providing a versatile suite of analytical techniques for the detection of metabolites and the fluxes between them. The principles that underpin the analysis of plant metabolism by NMR are described, including a discussion of the measurement options for the detection of metabolites in vivo and in vitro, and a description of the stable isotope labelling experiments that provide the basis for metabolic flux analysis. Despite a relatively low sensitivity, NMR is suitable for high-throughput system-wide analyses of the metabolome, providing methods for both metabolite fingerprinting and metabolite profiling, and in these areas NMR can contribute to the definition of plant metabolic phenotypes that are based on metabolic composition. NMR can also be used to investigate the operation of plant metabolic networks. Labelling experiments provide information on the operation of specific pathways within the network, and the quantitative analysis of steady-state labelling experiments leads to the definition of large-scale flux maps for heterotrophic carbon metabolism. These maps define multiple unidirectional fluxes between branch-points in the metabolic network, highlighting the existence of substrate cycles and discriminating in favourable cases between fluxes in the cytosol and plastid. Flux maps can be used to define a functionally relevant metabolic phenotype and the extensive application of such maps in microbial systems suggests that they could have important applications in characterising the genotypes produced by plant genetic engineering.
Collapse
Affiliation(s)
- R G Ratcliffe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
| | | |
Collapse
|
28
|
Mesnard F, Ratcliffe RG. NMR analysis of plant nitrogen metabolism. PHOTOSYNTHESIS RESEARCH 2005; 83:163-80. [PMID: 16143850 DOI: 10.1007/s11120-004-2081-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 07/17/2004] [Indexed: 05/04/2023]
Abstract
The analysis of primary and secondary nitrogen metabolism in plants by nuclear magnetic resonance (NMR) spectroscopy is comprehensively reviewed. NMR is a versatile analytical tool, and the combined use of (1)H, (2)H, (13)C, (14)N and (15)N NMR allows detailed investigation of the acquisition, assimilation and metabolism of nitrogen. The analysis of tissue extracts can be complemented by the in vivo NMR analysis of functioning tissues and cell suspensions, and by the application of solid state NMR techniques. Moreover stable isotope labelling with (2)H-, (13)C- and (15)N-labelled precursors provides direct insight into specific pathways, with the option of both time-course and steady state analysis increasing the potential value of the approach. The scope of the NMR method, and its contribution to studies of plant nitrogen metabolism, are illustrated with a wide range of examples. These include studies of the GS/GOGAT pathway of ammonium assimilation, investigations of the metabolism of glutamate, glycine and other amino acids, and applications to tropane alkaloid metabolism. The continuing development of the NMR technique, together with potential applications in the emerging fields of metabolomics and metabolic flux analysis, leads to the conclusion that NMR will play an increasingly valuable role in the analysis of plant nitrogen metabolism.
Collapse
Affiliation(s)
- F Mesnard
- EA 2084, Faculté de Pharmacie, Laboratoire de Phytotechnologie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
| | | |
Collapse
|
29
|
Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A. Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 2004; 54:132-47. [PMID: 15458411 DOI: 10.1111/j.1365-2958.2004.04247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
P(II)-type signal transduction proteins play a central role in nitrogen regulation in many bacteria. In response to the intracellular nitrogen status, these proteins are rendered in their function and interaction with other proteins by modification/demodification events, e.g. by phosphorylation or uridylylation. In this study, we show that GlnK, the only P(II)-type protein in Corynebacterium glutamicum, is adenylylated in response to nitrogen starvation and deadenylylated when the nitrogen supply improves again. Both processes depend on the GlnD protein. As shown by mutant analyses, the modifying activity of this enzyme is located in the N-terminal part of the enzyme, while demodification depends on its C-terminal domain. Besides its modification status, the GlnK protein changes its intracellular localization in response to changes of the cellular nitrogen supply. While it is present in the cytoplasm during nitrogen starvation, the GlnK protein is sequestered to the cytoplasmic membrane in response to an ammonium pulse following a nitrogen starvation period. About 2-5% of the GlnK pool is located at the cytoplasmic membrane after ammonium addition. GlnK binding to the cytoplasmic membrane depends on the ammonium transporter AmtB, which is encoded in the same transcriptional unit as GlnK and GlnD, the amtB-glnK-glnD operon. In contrast, the structurally related methylammonium/ammonium permease AmtA does not bind GlnK. The membrane-bound GlnK protein is stable, most likely to inactivate AmtB-dependent ammonium transport in order to prevent a detrimental futile cycle under post-starvation ammonium-rich conditions, while the majority of GlnK is degraded within 2-4 min. Proteolysis in the transition period from nitrogen starvation to nitrogen-rich growth seems to be specific for GlnK; other proteins of the nitrogen metabolism, such as glutamine synthetase, or proteins unrelated to ammonium assimilation, such as enolase and ATP synthase subunit F(1)beta, are stable under these conditions. Our analyses of different mutant strains have shown that at least three different proteases influence the degradation of GlnK, namely FtsH, the ClpCP and the ClpXP protease complex.
Collapse
Affiliation(s)
- Julia Strösser
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | | | | | | | | |
Collapse
|
30
|
Drysch A, El Massaoudi M, Wiechert W, de Graaf AA, Takors R. Serial flux mapping ofCorynebacterium glutamicum during fed-batchL-lysine production using the sensor reactor approach. Biotechnol Bioeng 2004; 85:497-505. [PMID: 14760690 DOI: 10.1002/bit.10915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using our recently developed sensor reactor approach, lysine-producing, nongrowing Corynebacterium glutamicum MH20-22B cells were subjected to serial (13)C-labeling experiments for flux analysis during the leucine-limited fed-batch production phase in a 300-L bioreactor. Based on two-dimensional (2D) nuclear magnetic resonance (NMR) measurements of (13)C-labeling patterns of cytoplasmic free metabolites, metabolic flux distributions in the central metabolism were successfully determined. Focusing on the highly concentrated metabolite L-glutamate, the working hypothesis was validated that the equilibration of labeling patterns in intracellular pools was much faster (up to 9.45 min) than the labeling period (3 h) used in the experiments. Analysis of anaplerotic reactions revealed that highly selective lysine production was accompanied by a significant reduction of decarboxylating reactions from 10 mol% to only 2 mol%, whereas PEP/pyruvate-carboxylating fluxes remained constant at about 40 mol% of consumed glucose. These results support the conclusion that an optimized C. glutamicum L-lysine producer should possess increased PEP carboxylase and/or pyruvate carboxylase activity combined with downregulated, decarboxylating fluxes consuming oxaloacetate/malate. The findings also illustrate the usefulness of the sensor reactor approach in the study of industrial fermentations.
Collapse
Affiliation(s)
- A Drysch
- Institute of Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
31
|
Katagiri M, Nakamura M. Reappraisal of the 20th-century version of amino acid metabolism. Biochem Biophys Res Commun 2003; 312:205-8. [PMID: 14630043 DOI: 10.1016/j.bbrc.2003.09.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we advocate the radical revision of the 20th-century version of amino acid metabolism as follows. (1) Classic studies on the incorporation of [15N]ammonia into glutamate, once considered to be an epoch-making event, are not distinctive proof of the ability of animals to utilize ammonia for the synthesis of alpha-amino nitrogen. (2) Mammalian glutamate dehydrogenase has been implicated to function as a glutamate-synthesizing enzyme albeit lack of convincing proof. This enzyme, in combination with aminotransferases, is now known to play an exclusive role in the metabolic removal of amino nitrogen and energy production from excess amino acids. (3) Dr. William C Rose's "nutritionally nonessential amino acids" are, of course, essential in cellular metabolism; the nutritional nonessentiality is related to their carbon skeletons, many of which are intermediates of glycolysis or the TCA cycle. Obviously, the prime importance of amino acid nutrition should be the means of obtaining amino nitrogen. (4) Because there is no evidence of the presence of any glutamate-synthesizing enzymes in mammalian tissues, animals must depend on plants and microorganisms for preformed alpha-amino nitrogen. This is analogous to the case of carbohydrates. (5) In contrast, individual essential amino acids, similar to vitamins and essential fatty acids, should be considered important nutrients that must be included regularly in sufficient amounts in the diet.
Collapse
|
32
|
Tullius MV, Harth G, Horwitz MA. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 2003; 71:3927-36. [PMID: 12819079 PMCID: PMC162033 DOI: 10.1128/iai.71.7.3927-3936.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the role of glutamine synthetase (GS), an enzyme of central importance in nitrogen metabolism, in the pathogenicity of Mycobacterium tuberculosis, we constructed a glnA1 mutant via allelic exchange. The mutant had no detectable GS protein or GS activity and was auxotrophic for L-glutamine. In addition, the mutant was attenuated for intracellular growth in human THP-1 macrophages and avirulent in the highly susceptible guinea pig model of pulmonary tuberculosis. Based on growth rates of the mutant in the presence of various concentrations of L-glutamine, the effective concentration of L-glutamine in the M. tuberculosis phagosome of THP-1 cells was approximately 10% of the level assayed in the cytoplasm of these cells (4.5 mM), indicating that the M. tuberculosis phagosome is impermeable to even very small molecules in the macrophage cytoplasm. When complemented by the M. tuberculosis glnA1 gene, the mutant exhibited a wild-type phenotype in broth culture and in human macrophages, and it was virulent in guinea pigs. When complemented by the Salmonella enterica serovar Typhimurium glnA gene, the mutant had only 1% of the GS activity of the M. tuberculosis wild-type strain because of poor expression of the S. enterica serovar Typhimurium GS in the heterologous M. tuberculosis host. Nevertheless, the strain complemented with S. enterica serovar Typhimurium GS grew as well as the wild-type strain in broth culture and in human macrophages. This strain was virulent in guinea pigs, although somewhat less so than the wild-type. These studies demonstrate that glnA1 is essential for M. tuberculosis virulence.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California-Los Angeles, Los Angeles, California 90095-1688, USA
| | | | | |
Collapse
|
33
|
Kimura E. Metabolic engineering of glutamate production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 79:37-57. [PMID: 12523388 DOI: 10.1007/3-540-45989-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of Corynebacterium glutamicum as an efficient glutamate-overproducing microorganism in 1957, the production of L-amino acids by the fermentative method has become one of the most important research-target of industrial microbiology. Several research groups have developed metabolic engineering principles for L-amino acid-producing C. glutamicum strains over the last four decades. The mechanism of L-glutamate-overproduction by the microorganism is very unique and interesting. L-Glutamate overproduction by this bacterium, a biotin auxotroph, is induced by a biotin limitation and suppressed by an excess of biotin. Addition of a surfactant or penicillin is known to induce L-glutamate overproduction under excess biotin. After the development of the general molecular biology tools such as cloning vectors and DNA transfer technique, genes encoding biosynthetic enzymes were isolated. With those genes and tools, recombinant DNA technology can be applied in analysis of biosynthetic pathways and strain construction of C. glutamicum. In this review, key points of the L-glutamate biosynthetic pathways are summarized and the recent studies about triggering mechanism of L-glutamate overproduction by C. glutamicum are introduced. Then the metabolic flux analysis of L-glutamate overproduction is explored.
Collapse
Affiliation(s)
- Eiichiro Kimura
- Fermentation & Biotechnology Laboratories, Ajinomoto Co., Inc., 1-1 suzuki-cho, Kawasaki-ku, Kawasaki-shi, 210-8681 Japan.
| |
Collapse
|
34
|
Pfefferle W, Möckel B, Bathe B, Marx A. Biotechnological manufacture of lysine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 79:59-112. [PMID: 12523389 DOI: 10.1007/3-540-45989-8_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
L-Lysine has been manufactured using Corynebacterium glutamicum for more than 40 years. Nowadays production exceeds 600,000 tons per year. Based on conventionally bred strains, further improvement of lysine productivity has been achieved by genetic engineering. Pyruvate carboxylase, aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase and the specific lysine exporter were shown to be key enzymes for lysine production and were characterized in detail. Their combined engineering led to a striking increase in lysine formation. Pathway modeling with data emerging from 13C-isotope experiments revealed a coordinated flux through pentose phosphate cycle and tricarboxylic acid cycle and intensive futile cycling between C3 compounds of glycolysis and C4 compounds of tricarboxylic acid cycle. Process economics have been optimized by developing repeated fed-batch techniques and technical continuous fermentations. In addition, on-line metabolic pathway analysis or flow cytometry may help to improve the fermentation performance. Finally, the availability of the Corynebacterium glutamicum genome sequence has a major impact on the improvement of the biotechnological manufacture of lysine. In this context, all genes of the carbon flow from sugar uptake to lysine secretion have been identified and are accessible to manipulation. The whole sequence information gives access to post genome technologies such as transcriptome analysis, investigation of the proteome and the active metabolic network. These multi-parallel working technologies will accelerate the generation of knowledge. For the first time there is a chance of understanding the overall picture of the physiological state of lysine overproduction in a technical environment.
Collapse
Affiliation(s)
- Walter Pfefferle
- Degussa AG, Feed Additives Division, R&D Feed Additives/Biotechnology, Kantstrasse 2, 33790 Hale-Kuensebeck, Germany.
| | | | | | | |
Collapse
|
35
|
Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S. Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 2003; 25:291-8. [PMID: 14505173 DOI: 10.1007/s00449-002-0307-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Accepted: 10/29/2002] [Indexed: 10/24/2022]
Abstract
An experimental method for metabolic control analysis (MCA) was applied to the investigation of a metabolic network of glutamate production by Corynebacterium glutamicum. A metabolic reaction (MR) model was constructed and used for flux distribution analysis (MFA). The flux distribution at a key branch point, 2-oxoglutarate, was investigated in detail. Activities of isocitrate dehydrogenase (ICDH), glutamate dehydrogenase (GDH), and 2-oxoglutarate dehydrogenase complex (ODHC) around this the branch point were changed, using two genetically engineered strains (one with enhanced ICDH activity and the other with enhanced GDH activity) and by controlling environmental conditions (i.e. biotin-deficient conditions). The mole flux distribution was determined by an MR model, and the effects of the changes in the enzyme activities on the mole flux distribution were compared. Even though both GDH and ICDH activities were enhanced, the mole flux distribution was not significantly changed. When the ODHC activity was attenuated, the flux through ODHC decreased, and glutamate production was markedly increased. The flux control coefficients of the above three enzymes for glutamate production were determined based on changes in enzyme activities and the mole flux distributions. It was found that the factor with greatest impact on glutamate production in the metabolic network was obtained by attenuation of ODHC activity.
Collapse
Affiliation(s)
- H Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Burkovski A. I do it my way: Regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 2003; 179:83-8. [PMID: 12560985 DOI: 10.1007/s00203-002-0505-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 11/11/2002] [Accepted: 11/16/2002] [Indexed: 02/28/2023]
Abstract
In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, recent advances in our knowledge of ammonium uptake, its assimilation, and connected regulatory systems in Corynebacterium glutamicum are discussed with respect to the situation in the bacterial model organisms Escherichia coli and Bacillus subtilis. The regulatory network of nitrogen control in C. glutamicum differs substantially from that in these bacteria, for example, by the presence of AmtR, the unique "master regulator" of nitrogen control, the absence of a NtrB/NtrC two-component signal transduction system, and a different sensing mechanism in C. glutamicum.
Collapse
Affiliation(s)
- Andreas Burkovski
- Institut für Biochemie der Universität zu Köln, Zülpicher-Strasse 47, 50674, Köln, Germany.
| |
Collapse
|
37
|
Scharff AM, Egsgaard H, Hansen PE, Rosendahl L. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. PLANT PHYSIOLOGY 2003; 131:367-78. [PMID: 12529544 PMCID: PMC166816 DOI: 10.1104/pp.015156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Revised: 10/07/2002] [Accepted: 10/07/2002] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo (15)N nuclear magnetic resonance (NMR) by exposing detached nodules to (15)N(2) via a perfusion medium, while recording a time course of spectra. In vivo (31)P NMR spectroscopy was used to monitor the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and (15)N labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by (15)N NMR to be present in metabolically active, intact nodules. The ammonium ions were located in an intracellular environment that caused a remarkable change in the in vivo (15)N chemical shift. Alkalinity of the ammonium-containing compartment may explain the unusual chemical shift; thus, the observations could indicate that ammonium is located in the bacteroids. The observed (15)N-labeled amino acids, glutamine/glutamate and asparagine (Asn), apparently reside in a different compartment, presumably the plant cytoplasm, because no changes in the expected in vivo (15)N chemical shifts were observed. Extensive (15)N labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn (15)N amino signal was absent in in vivo (15)N NMR spectra, which could be because of an unfavorable nuclear Overhauser effect. gamma-Aminobutyric acid accumulated in the nodules during incubation, but newly synthesized (15)N gamma-aminobutyric acid seemed to be immobilized in metabolically active pea nodules, which made it NMR invisible.
Collapse
Affiliation(s)
- Anne Marie Scharff
- Risoe National Laboratory, Plant Research Department, Roskilde University, Roskilde, Denmark DK-4000.
| | | | | | | |
Collapse
|
38
|
de Graaf AA, Eggeling L, Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:9-29. [PMID: 11816814 DOI: 10.1007/3-540-45300-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Corynebacterium glutamicum has been used since several decades for the large-scale production of amino acids, esp. L-glutamate and L-lysine. After initial successes of random mutagenesis and screening approaches, further strain improvements now require a much more rational design, i.e. metabolic engineering. Not only recombinant DNA technology but also mathematical modelling of metabolism as well as metabolic flux analysis represent important metabolic engineering tools. This review covers as state-of-the-art examples of these techniques the genetic engineering of the L-lysine biosynthetic pathway resulting in a vectorless strain with significantly increased dihydrodipicolinate synthase activity, and the detailed metabolic flux analysis by 13C isotopomer labelling strategies of the anaplerotic enzyme activities in C. glutamicum resulting in the identification of gluconeogenic phosphoenolpyruvate carboxykinase as a limiting enzyme.
Collapse
Affiliation(s)
- A A de Graaf
- Institut für Biotechnologie 1, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
39
|
Schulz AA, Collett HJ, Reid SJ. Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 2001; 205:361-7. [PMID: 11750828 DOI: 10.1111/j.1574-6968.2001.tb10973.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The effect of nitrogen and carbon status on the regulation of glutamine synthetase (GS) and glutamate synthase (GOGAT) were investigated in Corynebacterium glutamicum 13032. Under carbon-sufficient, nitrogen-limiting conditions, GS and GOGAT activities were five- and seven-fold higher, respectively, and transcription of the corresponding genes (glnA and gltBD) was similarly induced. GS activity was also induced in complete medium with added glucose, while GOGAT activity was unaffected. Under carbon-limiting, nitrogen-limiting conditions, the level of GS induction was reduced approximately three-fold, whereas GOGAT activity did not respond. Disruption of the hkm gene, encoding a putative histidine kinase upstream of gltBD, reduced the levels of GOGAT activity two-fold under both nitrogen-rich and nitrogen-limiting conditions. Promoter studies using a hkm-chloramphenicol acetylase fusion plasmid revealed that transcription of hkm is moderately induced (ca. 1.5-fold) by nitrogen starvation, indicating that the Hkm protein may play a role in signal transduction of the nutritional status of the growth medium.
Collapse
Affiliation(s)
- A A Schulz
- Department of Molecular and Cell Biology, University of Cape Town, 7700, Cape Town, South Africa
| | | | | |
Collapse
|
40
|
Nolden L, Ngouoto-Nkili CE, Bendt AK, Krämer R, Burkovski A. Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 2001; 42:1281-95. [PMID: 11886559 DOI: 10.1046/j.1365-2958.2001.02694.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel nitrogen control system regulating the transcription of genes expressed in response to nitrogen starvation in Corynebacterium glutamicum was identified by us recently. In this communication, we also show that the nitrogen regulation cascade in C. glutamicum functions by a new mechanism, although components highly similar to sensor and signal transmitter proteins of Escherichia coli are used, namely uridylyltransferase and a PII-type GlnK protein. The genes encoding these key components of the nitrogen regulation cascade, glnD and glnK, are organized in an operon together with amtB, which codes for an ammonium permease. Using a combination of site-directed mutagenesis, RNA hybridization experiments, reporter gene assays, transport measurements and non-denaturing gel electrophoresis followed by immunodetection, we showed that GlnK is essential for nitrogen control and that signal transduction is transmitted by uridylylation of this protein. As a consequence of the latter, a glnD deletion strain lacking uridylyltransferase is impaired in its response to nitrogen shortage. The glnD mutant revealed a decreased growth rate in the presence of limiting amounts of ammonium or urea; additionally, changes in its protein profile were observed, as shown by in vivo labelling and two-dimensional PAGE. In contrast to E. coli, expression of glnD is upregulated upon nitrogen limitation in C. glutamicum. This indicates that the glnD gene product is probably not the primary sensor of nitrogen status in C. glutamicum as shown for enterobacteria. In accordance with this hypothesis, we found a deregulated nitrogen control as a result of the overexpression of glnD. Furthermore, quantification of cytoplasmic amino acid pools excluded the possibility that a fall in glutamine concentration is perceived as the signal for nitrogen starvation by C. glutamicum, as is found in enterobacteria. Direct measurements of the intracellular ammonium pool indicated that the concentration of this compound might indicate the cellular nitrogen status. Deduced from glnK and glnD expression patterns and the genetic organization of these genes, this regulatory mechanism is also present in Corynebacterium diphtheriae, the causative agent of diphtheria.
Collapse
Affiliation(s)
- L Nolden
- Institut für Biochemie, Universität zu Köln, Zülpicher-Str. 47, D-50674 Köln, Germany
| | | | | | | | | |
Collapse
|
41
|
Beckers G, Nolden L, Burkovski A. Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2961-70. [PMID: 11700347 DOI: 10.1099/00221287-147-11-2961] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Corynebacterium glutamicum gltB and gltD genes, encoding the large (alpha) and small (beta) subunit of glutamate synthase (GOGAT), were investigated in this study. Using RT-PCR, a common transcript of gltB and gltD was shown. Reporter gene assays and Northern hybridization experiments revealed that transcription of this operon depends on nitrogen starvation. The expression of gltBD is under control of the global repressor protein AmtR as demonstrated by gel shift experiments and analysis of gltB transcription in an amtR deletion strain. In contrast to other bacteria, in C. glutamicum GOGAT plays no pivotal role; e.g. gltB and gltD inactivation did not result in growth defects when cells were grown in standard minimal medium and only a slight increase in the doubling time of the corresponding mutant strains was observed in the presence of limiting amounts of ammonia or urea. Additionally, mutant analyses revealed that GOGAT has no essential function in glutamate production by C. glutamicum.
Collapse
Affiliation(s)
- G Beckers
- Institut für Biochemie der Universität zu Köln, Zülpicher-Str. 47, D-50674 Köln, Germany
| | | | | |
Collapse
|
42
|
Nolden L, Farwick M, Krämer R, Burkovski A. Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 2001; 201:91-8. [PMID: 11445173 DOI: 10.1111/j.1574-6968.2001.tb10738.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Regulation of glnA expression and glutamine synthetase I activity was analyzed in Corynebacterium glutamicum. Transcription is regulated by the global repressor protein AmtR, essential for derepression of glnA transcription are GlnK and uridylyltransferase, key proteins of the C. glutamicum nitrogen regulatory system. Glutamine synthetase I activity is controlled by adenylylation/deadenylylation via adenylyltransferase. The gene encoding this bifunctional enzyme, glnE, was isolated and its function was characterized by deletion analysis. Upstream of glnE, a second gene encoding a GSI-type protein in C. glutamicum was isolated. This gene, designated glnA2, forms an operon with glnE, its transcription is not regulated and neither its deletion or overexpression showed any effect. Therefore, the physiological role of glnA2 remains unclear.
Collapse
Affiliation(s)
- L Nolden
- Institut für Biochemie, Universität zu Köln, Cologne, Germany
| | | | | | | |
Collapse
|
43
|
Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A. Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. MICROBIOLOGY (READING, ENGLAND) 2001; 147:135-43. [PMID: 11160807 DOI: 10.1099/00221287-147-1-135] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Corynebacterium glutamicum, a Gram-positive soil bacterium widely used in the industrial production of amino acids, two genes encoding (putative) ammonium uptake carriers have been described. The isolation of amt was the first report of the sequence of a gene encoding a bacterial ammonium uptake system combined with the characterization of the corresponding protein. Recently, a second amt gene, amtB, with so far unknown function, was isolated. The isolation of this gene and the suggestion of a new concept for ammonium acquisition prompted the reinvestigation of ammonium transport in C. glutamicum. In this study it is shown that Amt mediates uptake of (methyl)ammonium into the cell with high affinity and strictly depending on the membrane potential. As shown by the determination of K:(m) at different pH values, ammonium/methylammonium, but not ammonia/methylamine, are substrates of Amt. AmtB exclusively accepts ammonium as a transport substrate. In addition, hints of another, until now unknown, low-affinity, ammonium-specific uptake system were found.
Collapse
Affiliation(s)
- J Meier-Wagner
- Institut für Biochemie der Universität zu Köln, Zülpicher-Str. 47, D-50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Monitoring biocatalysed reactions and metabolic pathways using NMR spectroscopy is of growing interest. As a non-invasive analytical method providing simultaneous information about intracellular and extracellular constituents, it is superior to other analytical techniques and has a wide range of applications: kinetics and stoichiometrics of metabolic events, metabolic fluxes and enzyme activities can be detected in situ or after taking a sample from the biotransformation mixture. New NMR pulse sequences provide even more valuable experiments in these fields. Research topics range from the monitoring of polymer formation to fermentations producing beverages or antibiotics. Routine monitoring of industrial fermentations by NMR seems to be imminent.
Collapse
Affiliation(s)
- H Weber
- Institute of Organic Chemistry, Technical University Graz, Stremayrgasse 16, A-8010 Graz, Austria.
| | | |
Collapse
|
45
|
Sahm H, Eggeling L, de Graaf AA. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 2000; 381:899-910. [PMID: 11076021 DOI: 10.1515/bc.2000.111] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. During the last 15 years, genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for the construction of strains with the desired genotypes. In order to obtain a better understanding of the central metabolism and to quantify the in vivo fluxes in C. glutamicum, the [13C]-labelling technique was combined with metabolite balancing to achieve a unifying comprehensive pathway analysis. These methods can determine the flux distribution at the branch point between glycolysis and the pentose phosphate pathway. The in vivo fluxes in the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified glucose-6-phosphate and 6-phosphogluconate dehydrogenases determined in vitro were in full accordance with the fluxes measured by the [13C]-labelling technique. These data indicate that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH/NADP concentrations and the specific activity of glucose-6-phosphate dehydrogenase. The carbon flux via the oxidative pentose phosphate pathway correlated with the NADPH demand for L-lysine synthesis. Although it has generally been accepted that phosphoenolpyruvate carboxylase fulfills a main anaplerotic function in C. glutamicum, we recently detected that a biotin-dependent pyruvate carboxylase exists as a further anaplerotic enzyme in this bacterium. In addition to the activities of these two carboxylases three enzymes catalysing the decarboxylation of the C4 metabolites oxaloacetate or malate are also present in this bacterium. The individual flux rates at this complex anaplerotic node were investigated by using [13C]-labelled substrates. The results indicate that both carboxylation and decarboxylation occur simultaneously in C. glutamicum so that a high cyclic flux of oxaloacetate via phosphoenolpyruvate to pyruvate was found. Furthermore, we detected that in C. glutamicum two biosynthetic pathways exist for the synthesis of DL-diaminopimelate and L-lysine. As shown by NMR spectroscopy the relative use of both pathways in vivo is dependent on the ammonium concentration in the culture medium. Mutants defective in one pathway are still able to synthesise enough L-lysine for growth, but the L-lysine yields with overproducers were reduced. The luxury of having these two pathways gives C. glutamicum an increased flexibility in response to changing environmental conditions and is also related to the essential need for DL-diaminopimelate as a building block for the synthesis of the murein sacculus.
Collapse
Affiliation(s)
- H Sahm
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | | | |
Collapse
|